Markov Decision Processes

Bruno Scherrer

INRIA (Institut National de Recherche en Informatique et ses Applications)
IECL (Institut Elie Cartan de Lorraine)

Reinforcement Learning Summer SCOOL
Lille - July 3rd

Credits for this lecture

Based on some material (slides, code, etc...) from:

- Alessandro Lazaric, "Introduction to Reinforcement learning", Toulouse, 2015
- Dimitri Bertsekas, "A series of lectures given at Tsinghua University", Jue 2014, http://web.mit.edu/dimitrib/www/publ.html

References:

- "Neuro-Dynamic Programming" by D. P. Bertsekas and J. N. Tsitsiklis, Athena Scientific, 1996
- "Markov Decision Processes, Discrete Stochastic Dynamic Programming", by M. L. Puterman

Markov Decision Processes

- Research area initiated in the 1950s (Bellman), known under various names (in various communities)
- Reinforcement learning (Artificial Intelligence, Machine Learning)
- Stochastic optimal control (Control theory)
- Stochastic shortest path (Operations research)
- Sequential decision making under uncertainty (Economics)
\Rightarrow Markov decision processes, dynamic programming
- Control of dynamical systems (under uncertainty)
- A rich variety of (accessible \& elegant) theory/math, algorithms, and applications/illustrations
- I will not cover the exploration/exploitation issues of RL

Markov Decision Processes

- Research area initiated in the 1950s (Bellman), known under various names (in various communities)
- Reinforcement learning (Artificial Intelligence, Machine Learning)
- Stochastic optimal control (Control theory)
- Stochastic shortest path (Operations research)
- Sequential decision making under uncertainty (Economics)
\Rightarrow Markov decision processes, dynamic programming
- Control of dynamical systems (under uncertainty)
- A rich variety of (accessible \& elegant) theory/math, algorithms, and applications/illustrations

Markov Decision Processes

- Research area initiated in the 1950s (Bellman), known under various names (in various communities)
- Reinforcement learning (Artificial Intelligence, Machine Learning)
- Stochastic optimal control (Control theory)
- Stochastic shortest path (Operations research)
- Sequential decision making under uncertainty (Economics)
\Rightarrow Markov decision processes, dynamic programming
- Control of dynamical systems (under uncertainty)
- A rich variety of (accessible \& elegant) theory/math, algorithms, and applications/illustrations
- I will not cover the exploration/exploitation issues of RL

Brief Outline

- Part 1: "Small" problems
- Optimal control problem definitions
- Dynamic Programming (DP) principles, standard algorithms
- Part 2: "Large" problems
- Approximate DP Algorithms
- Theoretical guarantees

Outline for Part 1

- Finite-Horizon Optimal Control
- Problem definition
- Policy evaluation: Value Iteration ${ }^{1}$
- Policy optimization: Value Iteration ${ }^{2}$
- Stationary Infinite-Horizon Optimal Control
- Bellman operators
- Contraction Mappings
- Stationary policies
- Policy evaluation
- Policy optimization: Value Iteration ${ }^{3}$, Policy Iteration, Modified/Optimistic Policy Iteration

The Finite-Horizon Optimal Control Problem

- Discrete-time dynamical system

$$
x_{t+1}=f_{t}\left(x_{t}, a_{t}, w_{t}\right), \quad t=0,1, \ldots, H-1
$$

- t : Discrete time
- x_{t} : State: summarizes past information for predicting future optimization
- a_{t} : Control/Action: decision to be selected at time t from a given set A
- w_{t} : Random parameter: disturbance/noise
- H: Horizon: number of times control is applied
- Reward (or Cost) function that is additive over time

$$
\mathbb{E}\left\{\sum_{t=0}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right)\right\}
$$

- Goal: optimize over policies (feedback control law):

$$
a_{t} \sim \pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right), \quad t=0,1, \ldots, H-1
$$

where $\mathcal{F}_{t}=\left\{x_{0}, a_{0}, r_{0}, x_{1}, \ldots, x_{t-1}, a_{t-1}, r_{t-1}, x_{t}\right\}$.

Important assumptions

- The distribution of the noise w_{t} does not depend on past values w_{t-1}, \ldots, w_{0}. Equivalently:

$$
\mathbb{P}\left(x_{t+1}=x^{\prime} \mid x_{t}=x, a_{t}=a\right)=\mathbb{P}\left(x_{t+1}=x^{\prime} \mid \mathcal{F}_{t}\right) \quad \text { (Markov) }
$$

- Optimization over policies $\pi_{0}, \ldots, \pi_{H-1}$, i.e. functions/rules

$$
a_{t} \sim \pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)
$$

This (closed-loop control) is DIFFERENT FROM optimizing over sequences of actions a_{0}, \ldots, a_{H-1} (open-loop)!

- Optimization is in expectation (no risk measure)

The model is called: Markov Decision Process (MDP)

Policy Spaces

Policies can be:

- history-dependent $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$ vs Markov $\left(\pi_{t}\left(\cdot \mid x_{t}\right)\right)$
- stationary $(\pi(\cdot \mid \cdot))$ vs non-stationary $\left(\pi_{t}(\cdot \mid \cdot)\right)$
- random $\left(\pi_{t}\left(a_{t}=a \mid \cdot\right)\right)$ vs deterministic $\left(\pi_{t}\left(x_{t}\right) \in A\left(x_{t}\right)\right)$

> Which type of policy should be considered depends on the the model/objective. In MDPs, we shall see that we only need to consider Markov deterministic policies.

> Theorem
> Let π be some history-dependent policy. Then for each initial state $x_{0}=y$, there exists a Markov policy that induces the same distributions ($x_{t}=\cdot, a_{t}=\cdot$) for all time $t \geq 0$.

Policy Spaces

Policies can be:

- history-dependent $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$ vs Markov $\left(\pi_{t}\left(\cdot \mid x_{t}\right)\right)$
- stationary $(\pi(\cdot \mid \cdot))$ vs non-stationary $\left(\pi_{t}(\cdot \mid \cdot)\right)$
- random $\left(\pi_{t}\left(a_{t}=a \mid \cdot\right)\right)$ vs deterministic $\left(\pi_{t}\left(x_{t}\right) \in A\left(x_{t}\right)\right)$

Which type of policy should be considered depends on the the model/objective. In MDPs, we shall see that we only need to consider Markov deterministic policies.

Theorem
Let π be some history-dependent policy. Then for each initial state
$x_{0}=y$, there exists a Markov policy that induces the same
distributions ($x_{t}=\cdot, a_{t}=\cdot$) for all time $t \geq 0$.

Policy Spaces

Policies can be:

- history-dependent $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$ vs Markov $\left(\pi_{t}\left(\cdot \mid x_{t}\right)\right)$
- stationary $(\pi(\cdot \mid \cdot))$ vs non-stationary $\left(\pi_{t}(\cdot \mid \cdot)\right)$
- $\operatorname{random}\left(\pi_{t}\left(a_{t}=a \mid \cdot\right)\right)$ vs deterministic $\left(\pi_{t}\left(x_{t}\right) \in A\left(x_{t}\right)\right)$

Which type of policy should be considered depends on the the model/objective. In MDPs, we shall see that we only need to consider Markov deterministic policies.

Theorem

Let π be some history-dependent policy. Then for each initial state $x_{0}=y$, there exists a Markov policy that induces the same distributions ($x_{t}=\cdot, a_{t}=\cdot$) for all time $t \geq 0$.

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.

Then, by induction on t, one can prove that

$$
\forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}-x \mid x_{0}=y\right)
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right)
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right)
$$

Then, by induction on t, one can prove that

$$
\begin{gathered}
\forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) . \\
\mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\sum_{z \in X} \sum_{a \in A} \mathbb{P}^{\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right)}
\end{gathered}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right)
$$

Then, by induction on t, one can prove that

$$
\begin{gathered}
\forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) . \\
\mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\sum_{z \in X} \sum_{a \in A} \mathbb{P}_{\left(x_{t}=x \mid x_{0}=y \cdot x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right)} .
\end{gathered}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\begin{aligned}
& \forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=x, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
&=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right)
\end{aligned}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\begin{aligned}
& \forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
&=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right)
\end{aligned}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\begin{aligned}
\forall t \geq & 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) . \\
& \begin{aligned}
\mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right) & =\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
& =\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
& =\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) .
\end{aligned}
\end{aligned}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\begin{aligned}
& \forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
&=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
&=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) . \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x, a_{t}=a \mid x_{0}=y\right)=\mathbb{P}^{\pi^{\prime}}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)
\end{aligned}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\begin{aligned}
& \forall t \geq 0 \geq \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
&=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
&=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) . \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}\right.\left.=x, a_{t}=a \mid x_{0}=y\right)=\mathbb{P}^{\pi^{\prime}}\left(a_{t}=a \mid x_{t}=x\right. \\
&\left.x_{0}=y\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)
\end{aligned}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\begin{aligned}
& \forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)= \\
& =\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
& = \\
& =\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& \\
& \qquad \begin{aligned}
\mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right)
\end{aligned} \\
& \quad=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) \mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right)
\end{aligned}
$$

Proof

$x_{0}=y . a_{t} \sim \pi_{t}\left(a_{t} \mid \mathcal{F}_{t}\right)$. Write $\mathbb{P}^{\pi}(\cdot)$ for the probabilities induced by the fact of following $\left(\pi_{t}\left(\cdot \mid \mathcal{F}_{t}\right)\right)$.
Let π^{\prime} be defined as

$$
\pi_{t}^{\prime}\left(a_{t}=a \mid x_{t}=x\right)=\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) .
$$

Then, by induction on t, one can prove that

$$
\begin{aligned}
& \forall t \geq 0, \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& \mathbb{P}^{\pi^{\prime}}\left(x_{t}=x \mid x_{0}=y\right)=\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi^{\prime}}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
& = \\
& =\sum_{z \in X} \sum_{a \in A} \mathbb{P}\left(x_{t}=x \mid x_{0}=y, x_{t-1}=z, a_{t-1}=a\right) \mathbb{P}^{\pi}\left(x_{t-1}=z, a_{t-1}=a \mid x_{0}=y\right) \\
& =\mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right)
\end{aligned} \begin{aligned}
\mathbb{P}^{\pi^{\prime}}\left(x_{t}=x, a_{t}=a \mid x_{0}=y\right) & =\mathbb{P}^{\pi^{\prime}}\left(a_{t}=a \mid x_{t}=x\right. \\
& =\mathbb{P}^{\pi}\left(a_{t}=a \mid x_{t}=x, x_{0}=y\right) \mathbb{P}^{\pi}\left(x_{t}=x \mid x_{0}=y\right) \\
& =\mathbb{P}^{\pi}\left(x_{t}=x, a_{t}=a \mid x_{0}=y\right)
\end{aligned}
$$

Example: The Retail Store Management Problem

Each month t, a store contains x_{t} items (maximum capacity M) of a specific goods and the demand for that goods is w_{t}. At the beginning of each month t, the manager of the store can order a_{t} more items from his supplier. The cost of maintaining an inventory of x is $h(x)$. The cost to order a items is $C(a)$. The income for selling q items is $f(q)$. If the demand w is bigger than the available inventory x, customers that cannot be served leave. The value of the remaining inventory at the end of the year is $g(x)$.
$M=20, f(x)=x, g(x)=0.25 x, h(x)=0.25 x, C(a)=(1+0.5 a) \mathbb{1}_{a>0}, w_{t} \sim$

- State space: $x \in X=\{0,1, \ldots, M\}$
- Action space: At state $x, a \in A(x)=\{0,1, \ldots, M-x\}$
- Dynamics: $x_{t+1}=\max \left(x_{t}+a_{t}-w_{t}, 0\right)$

and $R(x)=g(x)$.

Example: The Retail Store Management Problem

Each month t, a store contains x_{t} items (maximum capacity M) of a specific goods and the demand for that goods is w_{t}. At the beginning of each month t, the manager of the store can order a_{t} more items from his supplier. The cost of maintaining an inventory of x is $h(x)$. The cost to order a items is $C(a)$. The income for selling q items is $f(q)$. If the demand w is bigger than the available inventory x, customers that cannot be served leave. The value of the remaining inventory at the end of the year is $g(x)$.
$M=20, f(x)=x, g(x)=0.25 x, h(x)=0.25 x, C(a)=(1+0.5 a) \mathbb{1}_{a>0}, w_{t} \sim$

- $t=0,1, \ldots, 11, H=12$
- State space: $x \in X=\{0,1, \ldots, M\}$
- Action space: At state $x, a \in A(x)=\{0,1, \ldots, M-x\}$
- Dynamics: $x_{t+1}=\max \left(x_{t}+a_{t}-w_{t}, 0\right)$
- Reward: $r\left(x_{t}, a_{t}, w_{t}\right)=-C\left(a_{t}\right)-h\left(x_{t}+a_{t}\right)+f\left(\min \left(w_{t}, x_{t}+a_{t}\right)\right)$ and $R(x)=g(x)$.

Example: The Retail Store Management Problem

Each month t, a store contains x_{t} items (maximum capacity M) of a specific goods and the demand for that goods is w_{t}. At the beginning of each month t, the manager of the store can order a_{t} more items from his supplier. The cost of maintaining an inventory of x is $h(x)$. The cost to order a items is $C(a)$. The income for selling q items is $f(q)$. If the demand w is bigger than the available inventory x, customers that cannot be served leave. The value of the remaining inventory at the end of the year is $g(x)$.
$M=20, f(x)=x, g(x)=0.25 x, h(x)=0.25 x, C(a)=(1+0.5 a) \mathbb{1}_{a>0}, w_{t} \sim$

- $t=0,1, \ldots, 11, H=12$
- State space: $x \in X=\{0,1, \ldots, M\}$
- Action space: At state $x, a \in A(x)=\{0,1, \ldots, M-x\}$
- Dynamics: $x_{t+1}=\max \left(x_{t}+a_{t}-w_{t}, 0\right)$
- Reward: $r^{\prime}\left(x_{t}, a_{t}, w_{t}\right)=-C^{\prime}\left(a_{t}\right)-h^{\prime}\left(x_{t}+a_{t}\right)+f\left(\min \left(w_{t}, x_{t}+a_{t}\right)\right)$ and $R(x)=g(x)$.

Example: The Retail Store Management Problem

Each month t, a store contains x_{t} items (maximum capacity M) of a specific goods and the demand for that goods is w_{t}. At the beginning of each month t, the manager of the store can order a_{t} more items from his supplier. The cost of maintaining an inventory of x is $h(x)$. The cost to order a items is $C(a)$. The income for selling q items is $f(q)$. If the demand w is bigger than the available inventory x, customers that cannot be served leave. The value of the remaining inventory at the end of the year is $g(x)$.
$M=20, f(x)=x, g(x)=0.25 x, h(x)=0.25 x, C(a)=(1+0.5 a) \mathbb{1}_{a>0}, w_{t} \sim$

- $t=0,1, \ldots, 11, H=12$
- State space: $x \in X=\{0,1, \ldots, M\}$
- Action space: At state $x, a \in A(x)=\{0,1, \ldots, M-x\}$
- Dynamics: $x_{t+1}=\max \left(x_{t}+a_{t}-w_{t}, 0\right)$
- Reward: $r\left(x_{t}, a_{t}, w_{t}\right)=-C\left(a_{t}\right)-h\left(x_{t}+a_{t}\right)+f\left(\min \left(w_{t}, x_{t}+a_{t}\right)\right)$ and $R(x)=g(x)$.

Example: The Retail Store Management Problem

Each month t, a store contains x_{t} items (maximum capacity M) of a specific goods and the demand for that goods is w_{t}. At the beginning of each month t, the manager of the store can order a_{t} more items from his supplier. The cost of maintaining an inventory of x is $h(x)$. The cost to order a items is $C(a)$. The income for selling q items is $f(q)$. If the demand w is bigger than the available inventory x, customers that cannot be served leave. The value of the remaining inventory at the end of the year is $g(x)$.
$M=20, f(x)=x, g(x)=0.25 x, h(x)=0.25 x, C(a)=(1+0.5 a) \mathbb{1}_{a>0}, w_{t} \sim$

- $t=0,1, \ldots, 11, H=12$
- State space: $x \in X=\{0,1, \ldots, M\}$
- Action space: At state $x, a \in A(x)=\{0,1, \ldots, M-x\}$
- Dynamics: $x_{t+1}=\max \left(x_{t}+a_{t}-w_{t}, 0\right)$
and $R(x)=g(x)$.

Example: The Retail Store Management Problem

Each month t, a store contains x_{t} items (maximum capacity M) of a specific goods and the demand for that goods is w_{t}. At the beginning of each month t, the manager of the store can order a_{t} more items from his supplier. The cost of maintaining an inventory of x is $h(x)$. The cost to order a items is $C(a)$. The income for selling q items is $f(q)$. If the demand w is bigger than the available inventory x, customers that cannot be served leave. The value of the remaining inventory at the end of the year is $g(x)$.
$M=20, f(x)=x, g(x)=0.25 x, h(x)=0.25 x, C(a)=(1+0.5 a) \mathbb{1}_{a>0}, w_{t} \sim$

- $t=0,1, \ldots, 11, H=12$
- State space: $x \in X=\{0,1, \ldots, M\}$
- Action space: At state $x, a \in A(x)=\{0,1, \ldots, M-x\}$
- Dynamics: $x_{t+1}=\max \left(x_{t}+a_{t}-w_{t}, 0\right)$
- Reward: $r\left(x_{t}, a_{t}, w_{t}\right)=-C\left(a_{t}\right)-h\left(x_{t}+a_{t}\right)+f\left(\min \left(w_{t}, x_{t}+a_{t}\right)\right)$ and $R(x)=g(x)$.

Example: The Retail Store Management Problem

2 stationary det. policies and 1 non-stationary det. policy:

$$
\pi^{(2)}(x)=\max \{(M-x) / 2-x ; 0\}
$$

$\pi^{(1)}(x)= \begin{cases}M-x & \text { if } x<M / 4 \\ 0 & \text { otherwise }\end{cases}$

$$
\pi_{t}^{(3)}(x)= \begin{cases}M-x & \text { if } t<6 \\ \lfloor(M-x) / 5\rfloor & \text { otherwise }\end{cases}
$$

Example: The Retail Store Management Problem

2 stationary det. policies and 1 non-stationary det. policy:

$$
\pi^{(2)}(x)=\max \{(M-x) / 2-x ; 0\}
$$

$\pi^{(1)}(x)= \begin{cases}M-x & \text { if } x<M / 4 \\ 0 & \text { otherwise }\end{cases}$

$$
\pi_{t}^{(3)}(x)= \begin{cases}M-x & \text { if } t<6 \\ \lfloor(M-x) / 5\rfloor & \text { otherwise }\end{cases}
$$

Remark. MDP + policy \Rightarrow Markov chain on X.

The Finite-Horizon Optimal Control Problem

- System: $x_{t+1}=f_{t}\left(x_{t}, a_{t}, w_{t}\right), \quad t=0,1, \ldots, H-1$
- Policy $\pi=\left(\pi_{0}, \ldots, \pi_{H-1}\right)$, such that $a_{t} \sim \pi_{t}\left(\cdot \mid x_{t}\right)$

The expected return of π starting at x at time s (the value of π in x at time s) is:

$$
v_{\pi, s}(x)=\mathbb{E}_{\pi}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\}
$$

How can we evaluate $v_{\pi, 0}(x)$ for some x ?

- Estimate by simulation and Monte-Carlo

The Finite-Horizon Optimal Control Problem

- System: $x_{t+1}=f_{t}\left(x_{t}, a_{t}, w_{t}\right), \quad t=0,1, \ldots, H-1$
- Policy $\pi=\left(\pi_{0}, \ldots, \pi_{H-1}\right)$, such that $a_{t} \sim \pi_{t}\left(\cdot \mid x_{t}\right)$

The expected return of π starting at x at time s (the value of π in x at time s) is:

$$
v_{\pi, s}(x)=\mathbb{E}_{\pi}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\}
$$

How can we evaluate $v_{\pi, 0}(x)$ for some x ?

- Estimate by simulation and Monte-Carlo ©: approximate
- Develop the tree of all possible realizations : \cdot : time $=O\left(e^{H}\right)$

The Finite-Horizon Optimal Control Problem

- System: $x_{t+1}=f_{t}\left(x_{t}, a_{t}, w_{t}\right), \quad t=0,1, \ldots, H-1$
- Policy $\pi=\left(\pi_{0}, \ldots, \pi_{H-1}\right)$, such that $a_{t} \sim \pi_{t}\left(\cdot \mid x_{t}\right)$

The expected return of π starting at x at time s (the value of π in x at time s) is:

$$
v_{\pi, s}(x)=\mathbb{E}_{\pi}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\}
$$

How can we evaluate $v_{\pi, 0}(x)$ for some x ?

- Estimate by simulation and Monte-Carlo (2: approximate
- Develop the tree of all possible realizations : : : time $=O\left(e^{H}\right)$

Policy evaluation by Value Iteration

$v_{\pi, s}(x)=\mathbb{E}_{\pi}\left[\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right]$
$=\mathbb{E}_{\pi}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid x_{s}=x\right]+\mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right]$

$$
=\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right) \times\left(\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right.
$$

$+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid\right.$ $=\sum-\left(a_{s}=a \mid x_{s}-x\right)\left(\mathbb{T}^{r}\left[r_{s}\left(x, \pi(x), w_{s}\right)\right]+\sum_{y} \pi\left(x_{s+1}=y x_{s}=x, a_{s}=a\right) v_{\pi, s+1}(y)\right.$.

The computation of $v_{\pi, s}(\cdot)$ can be done from $v_{\pi, s+1}(\cdot)$, and recurrently using $v_{\pi, H}(\cdot)=R(\cdot)$. ©: : time $=O\left(|X|^{2} H\right)$, for all x_{0} !
"Dynamic Programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems."

Policy evaluation by Value Iteration

$v_{\pi, s}(x)=\mathbb{E}_{\pi}\left[\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right]$

$$
=\mathbb{E}_{\pi}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid x_{s}=x\right]+\mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right]
$$

$$
=\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right) \times\left(\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right.
$$

 recurrently using $v_{\pi, H}(\cdot)=R(\cdot)$. ©: : time $=O\left(|X|^{2} H\right)$, for all x_{0} !
"Dynamic Programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems."

Policy evaluation by Value Iteration

$$
\begin{aligned}
& v_{\pi, s}(x)=\mathbb{E}_{\pi}\left[\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
& \\
& =\mathbb{E}_{\pi}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid x_{s}=x\right]+\mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
& \\
& =\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right) \times\left(\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
& \left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x, x_{s+1}=y\right]\right) \\
&
\end{aligned}
$$

Policy evaluation by Value Iteration

$$
\begin{aligned}
& v_{\pi, s}(x)=\mathbb{E}_{\pi}\left[\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
& \\
& =\mathbb{E}_{\pi}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid x_{s}=x\right]+\mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
& \\
& =\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right) \times\left(\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
& \left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x_{s}, x_{s+1}=y\right]\right) \\
&
\end{aligned}
$$

"Dynamic Programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems.'

Policy evaluation by Value Iteration

$$
\begin{aligned}
& v_{\pi, s}(x)=\mathbb{E}_{\pi}\left[\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
& =\mathbb{E}_{\pi}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid x_{s}=x\right]+\mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
& =\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right) \times\left(\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
& \left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x=x_{s}, x_{s+1}=y\right]\right) \\
& =\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right)\left(\mathbb{E}\left[r_{s}\left(x, \pi(x), w_{s}\right)\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{\pi, s+1}(y) .\right)
\end{aligned}
$$

Policy evaluation by Value Iteration

$$
\begin{aligned}
& v_{\pi, s}(x)=\mathbb{E}_{\pi}\left[\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
&=\mathbb{E}_{\pi}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid x_{s}=x\right]+\mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
&=\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right) \times\left(\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
&\left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x, x_{s+1}=y\right]\right) \\
&= \sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right)\left(\mathbb{E}\left[r_{s}\left(x, \pi(x), w_{s}\right)\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{\pi, s+1}(y) .\right)
\end{aligned}
$$

The computation of $v_{\pi, s}(\cdot)$ can be done from $v_{\pi, s+1}(\cdot)$, and recurrently using $v_{\pi, H} H(\cdot)=R(\cdot)$. ©: time $=O\left(|X|^{2} H\right)$, for all x_{0} !
"Dynamic Programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems."

Policy evaluation by Value Iteration

$$
\begin{aligned}
& v_{\pi, s}(x)=\mathbb{E}_{\pi}\left[\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a t, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
&=\mathbb{E}_{\pi}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid x_{s}=x\right]+\mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right] \\
&=\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right) \times\left(\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
&\left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \mathbb{E}_{\pi}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x_{s}, x_{s+1}=y\right]\right) \\
&=\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right)\left(\mathbb{E}\left[r_{s}\left(x, \pi(x), w_{s}\right)\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{\pi, s+1}(y) .\right)
\end{aligned}
$$

The computation of $v_{\pi, s}(\cdot)$ can be done from $v_{\pi, s+1}(\cdot)$, and recurrently using $v_{\pi, H} H(\cdot)=R(\cdot)$. ©: time $=O\left(|X|^{2} H\right)$, for all x_{0} !
"Dynamic Programming is a method for solving a complex problem by breaking it down into a collection of simpler subproblems."
Notations: $v_{\pi, s}=T_{\pi_{s}} v_{\pi, s+1}=r_{\pi s}+P_{\pi_{s}} v_{\pi, s+1}$.

Example: the Retail Store Management Problem

Optimal value and policy

- System: $x_{t+1}=f_{t}\left(x_{t}, a_{t}, w_{t}\right), \quad t=0,1, \ldots, H-1$
- Policy $\pi=\left(\pi_{0}, \ldots, \pi_{H-1}\right)$, such that $a_{t} \sim \pi_{t}\left(\cdot \mid x_{t}\right)$
- Value (expected return) of π if we start from x :

$$
v_{\pi, 0}(x)=\mathbb{E}_{\pi}\left\{\sum_{t=0}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{0}=x\right\}
$$

- Optimal value function $v_{*, 0}$ and optimal policy π_{*} :

$$
v_{*, 0}\left(x_{0}\right)=\max _{\pi=\left(\pi_{0}, \ldots, \pi_{H-1}\right)} v_{\pi, 0}\left(x_{0}\right) \quad \text { and } \quad v_{\pi_{*}, 0}\left(x_{0}\right)=v_{*, 0}\left(x_{0}\right)
$$

Optimal value and policy

- System: $x_{t+1}=f_{t}\left(x_{t}, a_{t}, w_{t}\right), \quad t=0,1, \ldots, H-1$
- Policy $\pi=\left(\pi_{0}, \ldots, \pi_{H-1}\right)$, such that $a_{t} \sim \pi_{t}\left(\cdot \mid x_{t}\right)$
- Value (expected return) of π if we start from x :

$$
v_{\pi, 0}(x)=\mathbb{E}_{\pi}\left\{\sum_{t=0}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{0}=x\right\}
$$

- Optimal value function $v_{*, 0}$ and optimal policy π_{*} :

$$
v_{*, 0}\left(x_{0}\right)=\max _{\pi=\left(\pi_{0}, \ldots, \pi_{H-1}\right)} v_{\pi, 0}\left(x_{0}\right) \quad \text { and } \quad v_{\pi_{*}, 0}\left(x_{0}\right)=v_{*, 0}\left(x_{0}\right)
$$

Naive optimization: time: $O\left(e^{H}\right)$ ©

Policy optimization by Value Iteration

$v_{*, s}(x)=\max _{\pi_{s}, \ldots} \mathbb{E}_{\pi_{s}, \ldots}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\}$
$=\max _{\pi_{s}, \pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s}, \pi_{s+1}, \ldots}\left\{\sum_{a} \pi_{s}\left(a_{s}=a \mid x_{s}=x\right)\left(r_{s}\left(x_{s}, a, w_{s}\right)\right.\right.$
$\left.\left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right)\left(\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right)\right) \mid x_{s}=x, x_{s+1}=y\right)\right\}$
$=\max \left\{\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right.$
$+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right)$
$=\max \left\{\mathbb{E}^{r}\left[r_{s}\left(x, a, w_{s}\right)\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{x, s+1}(y)\right\}$
Dynamic Programming: The computation of $v_{*, s}(\cdot)$ can be done from $v_{*, 5+1}(\cdot)$, and recurrently using: $v_{*, H}(\cdot)=R(\cdot)$. $\cdot:$ time $=O\left(|X|^{2}|A| H\right)$,
for all x_{0}. Then, $\pi_{*, S}(x)$ is any (deterministically chosen) action a that
minimizes the r.h.s.

Policy optimization by Value Iteration

$$
\begin{aligned}
& v_{*, s}(x)=\max _{\pi_{s}, \ldots} \mathbb{E}_{\pi_{s}, \ldots}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\} \\
= & \max _{\pi_{s}, \pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s}, \pi_{s+1}, \ldots}\left\{\sum _ { a } \pi _ { s } (a _ { s } = a | x _ { s } = x) \left(r_{s}\left(x_{s}, a, w_{s}\right)\right.\right. \\
& +\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right)\left(\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right)\right) \mid x_{s}=x, x_{s+1}=y
\end{aligned}
$$

Dynamic Programming: The computation of $v_{*, s}(\cdot)$ can be done from $v_{*, s+1}(\cdot)$, and recurrently using: $v_{*, H}(\cdot)=R(\cdot)$. © : time $=O\left(|X|^{2}|A| H\right)$ for all x_{0}. Then, $\pi_{*, s}(x)$ is any (deterministically chosen) action a that
minimizes the r.h.s.

Policy optimization by Value Iteration

$$
\begin{aligned}
& v_{*, s}(x)=\max _{\pi_{s}, \ldots} \mathbb{E}_{\pi_{s}, \ldots}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\} \\
& =\max _{\pi_{s}, \pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s}, \pi_{s+1}, \ldots}\left\{\sum _ { a } \pi _ { s } (a _ { s } = a | x _ { s } = x) \left(r_{s}\left(x_{s}, a, w_{s}\right)\right.\right. \\
& \left.\left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right)\left(\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right)\right) \mid x_{s}=x, x_{s+1}=y\right)\right\} \\
& =\max _{a}\left\{\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
& \left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \max _{\pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s+1}, \ldots}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s+1}=y\right]\right\} \\
& =\max \left\{\mathbb{E}\left[\operatorname{rs}_{s}\left(x, a, w_{s}\right)\right]+\sum_{v} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{t, s+1}(y)\right\}
\end{aligned}
$$

Policy optimization by Value Iteration

$$
\begin{aligned}
& v_{*, s}(x)=\max _{\pi_{s}, \ldots} \mathbb{E}_{\pi_{s}, \ldots}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\} \\
& =\max _{\pi_{s}, \pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s}, \pi_{s+1}, \ldots}\left\{\sum _ { a } \pi _ { s } (a _ { s } = a | x _ { s } = x) \left(r_{s}\left(x_{s}, a, w_{s}\right)\right.\right. \\
& \left.\left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right)\left(\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right)\right) \mid x_{s}=x, x_{s+1}=y\right)\right\} \\
& =\max _{a}\left\{\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
& \left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \max _{\pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s+1}, \ldots}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s+1}=y\right]\right\} \\
& =\max _{a}\left\{\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{*, s+1}(y)\right\} \text {. }
\end{aligned}
$$

Policy optimization by Value Iteration

$$
\begin{aligned}
& v_{*, s}(x)=\max _{\pi_{s}, \ldots} \mathbb{E}_{\pi_{s}, \ldots}\left\{\sum_{t=s}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s}=x\right\} \\
= & \max _{\pi_{s}, \pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s}, \pi_{s+1}, \ldots}\left\{\sum _ { a } \pi _ { s } (a _ { s } = a | x _ { s } = x) \left(r_{s}\left(x_{s}, a, w_{s}\right)\right.\right. \\
& \left.\left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right)\left(\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right)\right) \mid x_{s}=x, x_{s+1}=y\right)\right\} \\
= & \max _{a}\left\{\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]\right. \\
& \left.+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) \max _{\pi_{s+1}, \ldots} \mathbb{E}_{\pi_{s+1}, \ldots}\left[\sum_{t=s+1}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)+R\left(x_{H}\right) \mid x_{s+1}=y\right]\right\} \\
= & \max _{a}\left\{\mathbb{E}\left[r_{s}\left(x, a, w_{s}\right)\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{*, s+1}(y)\right\} .
\end{aligned}
$$

Dynamic Programming: The computation of $v_{*, s}(\cdot)$ can be done from $v_{*, s+1}(\cdot)$, and recurrently using: $v_{*, H}(\cdot)=R(\cdot)$. ©: : time $=O\left(|X|^{2}|A| H\right)$, for all x_{0}. Then, $\pi_{*, s}(x)$ is any (deterministically chosen) action a that minimizes the r.h.s.

Example: the Retail Store Management Problem

Bellman's principle of optimality

- The recurrent identities (recall that $v_{*, s}(\cdot)=v_{\pi_{*}, 0}(\cdot)$)

$$
\begin{aligned}
v_{*, s}(x) & =\max _{a}\left\{\mathbb{E}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid a_{s}=a\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=a\right) v_{*, s+1}(y)\right\} \\
& =\mathbb{E}\left[r_{s}\left(x_{s}, a_{s}, w_{s}\right) \mid a_{s}=\pi_{*, s}\left(x_{s}\right)\right]+\sum_{y} \mathbb{P}\left(x_{s+1}=y \mid x_{s}=x, a_{s}=\pi_{*, s}\left(x_{s}\right)\right) v_{*, s+1}(y)
\end{aligned}
$$

are called Bellman equations.

- Notations:

$$
\begin{aligned}
v_{*, s}=T_{s} v_{*, s} & =\max _{\pi_{s}} T_{\pi_{s}} v_{*, s+1} \\
& =\max _{\pi_{s} \text { det. }} T_{\pi_{s}} v_{*, s+1}=T_{\pi_{*, s}} v_{*, s+1}
\end{aligned}
$$

- At each step, Dyn. Prog. solves ALL the tail subroblems tail subproblems of a given time length, using the solution of the tail subproblems of shorter time length

Outline for Part 1

- Finite-Horizon Optimal Control
- Problem definition
- Policy evaluation: Value Iteration ${ }^{1}$
- Policy optimization: Value Iteration ${ }^{2}$
- Stationary Infinite-Horizon Optimal Control
- Bellman operators
- Contraction Mappings
- Stationary policies
- Policy evaluation
- Policy optimization: Value Iteration ${ }^{3}$, Policy Iteration, Modified/Optimistic Policy Iteration

Infinite-Horizon Optimal Control Problem

- Same as finite-horizon (Markov Decision Process), but:
- the number of stages is infinite
- the system is stationary ($f_{t}=f, w_{t} \sim w, r_{t}=r$)

$$
x_{t+1}=f\left(x_{t}, a_{t}, w_{t}\right)\left[\Leftrightarrow \mathbb{P}\left(x_{t+1}=x^{\prime} \mid x_{t}=x, a_{t}=a\right)=p\left(x, a, x^{\prime}\right)\right]
$$

- Find a policy $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$ that maximizes (for all x)

$$
v_{\pi_{0}^{\infty}}(x)=\lim _{H \rightarrow \infty} \mathbb{E}\left\{\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, a_{t}, w_{t}\right) \mid x_{0}=x\right\}
$$

- $\gamma \in(0,1)$ is called the discount factor
- Stochastic shortest path problems $(\gamma=1$ with a termination state
reached with probability 1) (sparingly covered)
- Det. Stationary policies $\pi=(\pi, \pi, \ldots)$ play a central role We will not cover the average reward criterion $\lim _{H \rightarrow \infty} \frac{1}{H} \mathbb{E}\left\{\sum_{t=0}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)\right\}$ nor unbounded rewards.

Infinite-Horizon Optimal Control Problem

- Same as finite-horizon (Markov Decision Process), but:
- the number of stages is infinite
- the system is stationary ($f_{t}=f, w_{t} \sim w, r_{t}=r$)

$$
x_{t+1}=f\left(x_{t}, a_{t}, w_{t}\right)\left[\Leftrightarrow \mathbb{P}\left(x_{t+1}=x^{\prime} \mid x_{t}=x, a_{t}=a\right)=p\left(x, a, x^{\prime}\right)\right]
$$

- Find a policy $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$ that maximizes (for all x)

$$
v_{\pi_{0}^{\infty}}(x)=\lim _{H \rightarrow \infty} \mathbb{E}\left\{\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, a_{t}, w_{t}\right) \mid x_{0}=x\right\}
$$

- $\gamma \in(0,1)$ is called the discount factor
- Discounted problems $\left(\gamma<1,|r| \leq M<\infty, v \leq \frac{M}{1-\gamma}\right)$
- Stochastic shortest path problems ($\gamma=1$ with a termination state reached with probability 1) (sparingly covered)
- Det. Stationary policies $\pi=(\pi, \pi, \ldots)$ play a central role We will not cover the average reward criterion $\lim _{H \rightarrow \infty} \frac{1}{H} \mathbb{E}\left\{\sum_{t=0}^{H-1} r_{t}\left(x_{t}, a_{t}, w_{t}\right)\right\}$ nor unbounded rewards...

Example: Student Dilemma

Stationary MDPs naturally represented as a graph:

States x_{5}, x_{6}, x_{7} are terminal. Whatever the policy, they are reached in finite time with probability 1 so we can take $\gamma=1$.

Example: Tetris

Example: the Retail Store Management Problem

Each month t, a store contains x_{t} items (maximum capacity M) of a specific goods and the demand for that goods is w_{t}. At the end of each month the manager of the store can order a_{t} more items from his supplier. The cost of maintaining an inventory of x is $h(x)$. The cost to order a items is $C(a)$. The income for selling q items is $f(q)$. If the demand w is bigger than the available inventory x, customers that cannot be served leave. The value of the remaining inventory at the end of the year is $g(x)$. The rate of inflation is $\alpha=3 \%=0.03$.
$M=20, f(x)=x, g(x)=0.25 x, h(x)=0.25 x, C(a)=(1+0.5 a) \mathbb{1}_{a>0}, w_{t} \sim U(\{5,6, \ldots, 15\}), \gamma=\frac{1}{1+\alpha}$

- $t=0,1, \ldots$
- State space: $x \in X=\{0,1, \ldots, M\}$
- Action space: At state $x, a \in A(x)=\{0,1, \ldots, M-x\}$
- Dynamics: $x_{t+1}=\max \left(x_{t}+a_{t}-w_{t}, 0\right)$
- Reward: $r\left(x_{t}, a_{t}, w_{t}\right)=-C\left(a_{t}\right)-h\left(x_{t}+a_{t}\right)+f\left(\min \left(w_{t}, x_{t}+a_{t}\right)\right)$.

Bellman operators (I)

- For any function v of x, denote,

$$
\begin{aligned}
\forall x, \quad(T v)(x) & =\max _{a} \mathbb{E}[r(x, a, w)]+\mathbb{E}[\gamma v(f(x, a, w))] \\
& =\max _{a} r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v(y)
\end{aligned}
$$

- $T v$ is the optimal value for the one-stage problem with stage reward r and terminal reward $R=\gamma v$.
- T operates on bounded functions of x to produce other bounded functions of x.
- For any stationary policy π and v, denote

- $T_{\pi} v$ is the value of π for the same one-stage problem
- The critical structure of the problem is captured in T and T and most of the theory of discounted problems can be developed using these two (Bellman) operators.

Bellman operators (I)

- For any function v of x, denote,

$$
\begin{aligned}
\forall x, \quad(T v)(x) & =\max _{a} \mathbb{E}[r(x, a, w)]+\mathbb{E}[\gamma v(f(x, a, w))] \\
& =\max _{a} r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v(y)
\end{aligned}
$$

- $T v$ is the optimal value for the one-stage problem with stage reward r and terminal reward $R=\gamma v$.
- T operates on bounded functions of x to produce other bounded functions of x.
- For any stationary policy π and v, denote

$$
\left(T_{\pi} v\right)(x)=r(x, \pi(x))+\gamma \sum_{y} \mathbb{P}(y \mid x, \pi(x)) v(y), \quad \forall x
$$

- $T_{\pi} v$ is the value of π for the same one-stage problem

Bellman operators (I)

- For any function v of x, denote,

$$
\begin{aligned}
\forall x, \quad(T v)(x) & =\max _{a} \mathbb{E}[r(x, a, w)]+\mathbb{E}[\gamma v(f(x, a, w))] \\
& =\max _{a} r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v(y)
\end{aligned}
$$

- $T v$ is the optimal value for the one-stage problem with stage reward r and terminal reward $R=\gamma v$.
- T operates on bounded functions of x to produce other bounded functions of x.
- For any stationary policy π and v, denote

$$
\left(T_{\pi} v\right)(x)=r(x, \pi(x))+\gamma \sum_{y} \mathbb{P}(y \mid x, \pi(x)) v(y), \quad \forall x
$$

- $T_{\pi} v$ is the value of π for the same one-stage problem
- The critical structure of the problem is captured in T and T_{π} and most of the theory of discounted problems can be developed using these two (Bellman) operators.

Bellman operators (II)

- Given $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, consider the H-stage policy $\pi_{0}^{H}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right)$ with terminal reward $R=0$
- For $0 \leq s \leq H$, consider the $(H-s)$-stage "tail" policy $\pi_{s}^{H}=\left(\pi_{s}, \pi_{s+1}, \ldots, \pi_{H-1}\right)$ with $R=0$

$$
v_{\pi_{0}^{H}}(x)=\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right]
$$

$=\left(T_{\pi_{0}} v_{\pi_{1}^{H}}\right)(x)$

- By induction $\left(v_{\pi_{H}^{H}}=0\right)$, we get for all x,

Bellman operators (II)

- Given $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, consider the H-stage policy $\pi_{0}^{H}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right)$ with terminal reward $R=0$
- For $0 \leq s \leq H$, consider the $(H-s)$-stage "tail" policy

$$
\left.\pi_{s}^{H}=\overline{(}_{s}, \bar{\pi}_{s+1}, \ldots, \pi_{H-1}\right) \text { with } R=0
$$

$$
\begin{aligned}
v_{\pi_{0}^{H}}(x) & =\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma\left(\sum_{t=1}^{H-1} \gamma^{t-1} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right)\right]
\end{aligned}
$$

$=\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma v_{\pi_{1}^{H}}\left(x_{1}\right)\right]$
$=\left(T_{\pi_{0}} v_{\pi_{1}^{H}}\right)(x)$

- By induction $\left(v_{\pi_{H}^{H}}=0\right)$, we get for all x,

Bellman operators (II)

- Given $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, consider the H-stage policy $\pi_{0}^{H}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right)$ with terminal reward $R=0$
- For $0 \leq s \leq H$, consider the $(H-s)$-stage "tail" policy $\left.\pi_{s}^{H}=\overline{(}_{s}, \bar{\pi}_{s+1}, \ldots, \pi_{H-1}\right)$ with $R=0$

$$
\begin{aligned}
v_{\pi_{0}^{H}}(x) & =\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma\left(\sum_{t=1}^{H-1} \gamma^{t-1} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma v_{\pi_{1}^{H}}\left(x_{1}\right)\right]
\end{aligned}
$$

- By induction $\left(v_{\pi_{H}^{H}}=0\right)$, we get for all x,

Bellman operators (II)

- Given $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, consider the H-stage policy $\pi_{0}^{H}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right)$ with terminal reward $R=0$
- For $0 \leq s \leq H$, consider the $(H-s)$-stage "tail" policy $\left.\pi_{s}^{H}=\overline{(}_{s}, \bar{\pi}_{s+1}, \ldots, \pi_{H-1}\right)$ with $R=0$

$$
\begin{aligned}
v_{\pi_{0}^{H}}(x) & =\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma\left(\sum_{t=1}^{H-1} \gamma^{t-1} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma v_{\pi_{1}^{H}}\left(x_{1}\right)\right] \\
& =\left(T_{\pi_{0}} v_{\pi_{1}^{H}}\right)(x)
\end{aligned}
$$

- By induction $\left(v_{\pi_{H}^{H}}=0\right)$, we get for all x,

Bellman operators (II)

- Given $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, consider the H-stage policy $\pi_{0}^{H}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right)$ with terminal reward $R=0$
- For $0 \leq s \leq H$, consider the $(H-s)$-stage "tail" policy $\pi_{s}^{H}=\left(\pi_{s}, \pi_{s+1}, \ldots, \pi_{H-1}\right)$ with $R=0$

$$
\begin{aligned}
v_{\pi_{0}^{H}}(x) & =\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma\left(\sum_{t=1}^{H-1} \gamma^{t-1} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma v_{\pi_{1}^{H}}\left(x_{1}\right)\right] \\
& =\left(T_{\pi_{0}} v_{\pi_{1}^{H}}\right)(x)
\end{aligned}
$$

- By induction $\left(v_{\pi_{H}^{H}}=0\right)$, we get for all x,

$$
v_{\pi_{0}^{H}}(x)=\left(T_{\pi_{0}} T_{\pi_{1}} \ldots T_{\pi_{H-1}} 0\right)(x)
$$

Bellman operators (II)

- Given $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, consider the H-stage policy $\pi_{0}^{H}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{H-1}\right)$ with terminal reward $R=0$
- For $0 \leq s \leq H$, consider the $(H-s)$-stage "tail" policy $\pi_{s}^{H}=\left(\pi_{s}, \pi_{s+1}, \ldots, \pi_{H-1}\right)$ with $R=0$

$$
\begin{aligned}
v_{\pi_{0}^{H}}(x) & =\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma\left(\sum_{t=1}^{H-1} \gamma^{t-1} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right)\right] \\
& =\mathbb{E}_{x_{0}=x}\left[r\left(x_{0}, \pi_{0}\left(x_{0}\right), w_{0}\right)+\gamma v_{\pi_{1}^{H}}\left(x_{1}\right)\right] \\
& =\left(T_{\pi_{0}} v_{\pi_{1}^{H}}\right)(x)
\end{aligned}
$$

- By induction $\left(v_{\pi_{H}^{H}}=0\right)$, we get for all x,

$$
v_{\pi_{0}^{H}}(x)=\left(T_{\pi_{0}} T_{\pi_{1}} \ldots T_{\pi_{H-1}} 0\right)(x) \xrightarrow{H \rightarrow \infty} v_{\pi_{0}^{\infty}}(x)
$$

Bellman operators (III)

- Similarly, the optimal H-stage value function with terminal reward $R=0$ is $T^{H} 0$.
- Fortunately, it can be shown that
i.e, the infinite-horizon problem is the limit of the H-horizon problem when the horizon H tends to ∞
(*) For any policy $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, and any initial state x,

Bellman operators (III)

- Similarly, the optimal H -stage value function with terminal reward $R=0$ is $T^{H} 0$.
- Fortunately, it can be shown that

$$
v_{*}=\max _{\pi_{0}^{\infty}} v_{\pi_{0}^{\infty}}=\max _{\pi_{0}^{\infty}} \lim _{H \rightarrow \infty} v_{\pi_{0}^{H}} \stackrel{(*)}{=} \lim _{H \rightarrow \infty} \max _{\pi_{0}^{H}} v_{\pi_{0}^{H}}=\lim _{H \rightarrow \infty} T^{H} 0
$$

i.e, the infinite-horizon problem is the limit of the \underline{H}-horizon problem when the horizon H tends to ∞
(*) For any policy $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, and any initial state x,

Bellman operators (III)

- Similarly, the optimal H-stage value function with terminal reward $R=0$ is $T^{H} 0$.
- Fortunately, it can be shown that

$$
v_{*}=\max _{\pi_{0}^{\infty}} v_{\pi_{0}^{\infty}}=\max _{\pi_{0}^{\infty}} \lim _{H \rightarrow \infty} v_{\pi_{0}^{H}} \stackrel{(*)}{=} \lim _{H \rightarrow \infty} \max _{\pi_{0}^{H}} v_{\pi_{0}^{H}}=\lim _{H \rightarrow \infty} T^{H} 0
$$

i.e, the infinite-horizon problem is the limit of the H -horizon problem when the horizon H tends to ∞
(*) For any policy $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, and any initial state x,

$$
\begin{aligned}
v_{\pi_{0}^{\infty}}(x) & =\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right] \\
& =\underbrace{\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right]}_{T_{\pi_{0}} T_{\pi_{1}} \cdots T_{\pi_{H-1}} 0}+\underbrace{\mathbb{E}_{x_{0}=x}\left[\sum_{t=H}^{\infty} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right]}_{|\cdot| \leq \sum_{t=H}^{\infty} \gamma^{t} M \leq \frac{\gamma^{H} M}{1-\gamma}}
\end{aligned}
$$

Bellman operators (III)

- Similarly, the optimal H-stage value function with terminal reward $R=0$ is $T^{H} 0$.
- Fortunately, it can be shown that

$$
v_{*}=\max _{\pi_{0}^{\infty}} v_{\pi_{0}^{\infty}}=\max _{\pi_{0}^{\infty}} \lim _{H \rightarrow \infty} v_{\pi_{0}^{H}} \stackrel{(*)}{=} \lim _{H \rightarrow \infty} \max _{\pi_{0}^{H}} v_{\pi_{0}^{H}}=\lim _{H \rightarrow \infty} T^{H} 0
$$

i.e, the infinite-horizon problem is the limit of the H -horizon problem when the horizon H tends to ∞
(*) For any policy $\pi_{0}^{\infty}=\left(\pi_{0}, \pi_{1}, \ldots\right)$, and any initial state x,

$$
\begin{aligned}
v_{\pi_{0}^{\infty}}(x) & =\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right] \\
& =\underbrace{\mathbb{E}_{x_{0}=x}\left[\sum_{t=0}^{H-1} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right]}_{T_{\pi_{0}} T_{\pi_{1}} \cdots T_{\pi_{H-1}} 0}+\underbrace{\mathbb{E}_{x_{0}=x}\left[\sum_{t=H}^{\infty} \gamma^{t} r\left(x_{t}, \pi_{t}\left(x_{t}\right), w_{t}\right)\right]}_{|\cdot| \leq \sum_{t=H}^{\infty} \gamma^{t} M \leq \frac{\gamma^{H}}{1-\gamma}}
\end{aligned}
$$

$$
\stackrel{\max }{\Rightarrow} v_{*}(x)=\left(T^{H} 0\right)(x)+O\left(\gamma^{H}\right)
$$

The contraction property

Theorem

T and T_{π} are γ-contraction mappings for the max norm $\|\cdot\|_{\infty}$. where for all function $v,\|v\|_{\infty}=\max _{x}|v(x)|$, and an operator F is a γ-contraction mapping for that norm iff:

$$
\forall v_{1}, v_{2}, \quad\left\|F v_{1}-F v_{2}\right\|_{\infty} \leq \gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
$$

Proof (for T): By using $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$,

$\max _{x} \max _{a}$

- By Banach fixed point theorem, F has one and only one fixed point f^{*} to which the sequence $f_{n}=F f_{n-1}=F^{n} f_{0}$ converges for any f_{0}.
- $v_{*}=T v_{*}$, and for any stationary policy $\pi, v_{\pi}=T_{\pi} v_{\pi}$.

The contraction property

Theorem

T and T_{π} are γ-contraction mappings for the max norm $\|\cdot\|_{\infty}$. where for all function $v,\|v\|_{\infty}=\max _{x}|v(x)|$, and an operator F is a γ-contraction mapping for that norm iff:

$$
\forall v_{1}, v_{2}, \quad\left\|F v_{1}-F v_{2}\right\|_{\infty} \leq \gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
$$

Proof (for T): By using $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$,

$$
\begin{aligned}
& \max _{x}|\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{1}(x)\right\}}^{\left(T v_{1}\right)(x)}-\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{2}(y)\right\}}^{\left(T v_{2}\right)(x)}| \\
& \leq \max _{x}\left|\max _{a} \sum_{y} \mathbb{P}(y \mid x, a)\left(v_{1}(x)-v_{2}(x)\right)\right| \leq \max _{x} \max _{a} \sum_{y} \mathbb{P}(y \mid x, a)\left\|v_{1}-v_{2}\right\| \infty
\end{aligned}
$$

The contraction property

Theorem

T and T_{π} are γ-contraction mappings for the max norm $\|\cdot\|_{\infty}$. where for all function $v,\|v\|_{\infty}=\max _{x}|v(x)|$, and an operator F is a γ-contraction mapping for that norm iff:

$$
\forall v_{1}, v_{2}, \quad\left\|F v_{1}-F v_{2}\right\|_{\infty} \leq \gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
$$

Proof (for T): By using $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$,

$$
\begin{aligned}
& \max _{x}|\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{1}(x)\right\}}^{\left(T_{v_{1}}\right)(x)}-\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{2}(y)\right\}}^{\left(T v_{2}\right)(x)}| \\
& \leq \max _{x}\left|\max _{a} \gamma \sum_{y} \mathbb{P}(y \mid x, a)\left(v_{1}(x)-v_{2}(x)\right)\right| \leq \max _{x} \max _{a} \gamma \sum_{y} \mathbb{P}(y \mid x, a)\left\|v_{1}-v_{2}\right\| \infty=\gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
\end{aligned}
$$

The contraction property

Theorem

T and T_{π} are γ-contraction mappings for the max norm $\|\cdot\|_{\infty}$. where for all function $v,\|v\|_{\infty}=\max _{x}|v(x)|$, and an operator F is a γ-contraction mapping for that norm iff:

$$
\forall v_{1}, v_{2}, \quad\left\|F v_{1}-F v_{2}\right\|_{\infty} \leq \gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
$$

Proof (for T): By using $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$,

$$
\begin{aligned}
& \max _{x}|\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{1}(x)\right\}}^{\left(T v_{1}\right)(x)}-\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{2}(y)\right\}}^{\left(T v_{2}\right)(x)}| \\
& \leq \max _{x}\left|\max _{a} \gamma \sum_{y} \mathbb{P}(y \mid x, a)\left(v_{1}(x)-v_{2}(x)\right)\right| \leq \max _{x} \max _{a} \gamma \sum_{y} \mathbb{P}(y \mid x, a)\left\|v_{1}-v_{2}\right\|_{\infty}=\gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
\end{aligned}
$$

- By Banach fixed point theorem, F has one and only one fixed point f^{*} to which the sequence $f_{n}=F f_{n-1}=F^{n} f_{0}$ converges for any f_{0}.

The contraction property

Theorem

T and T_{π} are γ-contraction mappings for the max norm $\|\cdot\|_{\infty}$. where for all function $v,\|v\|_{\infty}=\max _{x}|v(x)|$, and an operator F is a γ-contraction mapping for that norm iff:

$$
\forall v_{1}, v_{2}, \quad\left\|F v_{1}-F v_{2}\right\|_{\infty} \leq \gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
$$

Proof (for T): By using $\left|\max _{a} f(a)-\max _{a} g(a)\right| \leq \max _{a}|f(a)-g(a)|$,

$$
\begin{aligned}
& \max _{x}|\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{1}(x)\right\}}^{\left(T v_{1}\right)(x)}-\overbrace{\max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{2}(y)\right\}}^{\left(T v_{2}\right)(x)}| \\
& \leq \max _{x}\left|\max _{a} \gamma \sum_{y} \mathbb{P}(y \mid x, a)\left(v_{1}(x)-v_{2}(x)\right)\right| \leq \max _{x} \max _{a} \gamma \sum_{y} \mathbb{P}(y \mid x, a)\left\|v_{1}-v_{2}\right\|_{\infty}=\gamma\left\|v_{1}-v_{2}\right\|_{\infty} .
\end{aligned}
$$

- By Banach fixed point theorem, F has one and only one fixed point f^{*} to which the sequence $f_{n}=F f_{n-1}=F^{n} f_{0}$ converges for any f_{0}.
- $v_{*}=T v_{*}, \quad$ and for any stationary policy $\pi, v_{\pi}=T_{\pi} v_{\pi}$.

There exists an optimal stationary policy

Theorem

A stationary policy π is optimal if and only if for all $x, \pi(x)$ attains the maximum in Bellman's optimality equation $v_{*}=T v_{*}$, i.e.

$$
\forall x, \quad \pi(x) \in \arg \max _{a}\left\{r(x, a)+\sum_{y} \mathbb{P}(y \mid x, a) v_{*}(y)\right\}
$$

or equivalently $T_{\pi} v_{*}=T v_{*}$
In the sequel, for any function v (not necessarily v_{*} !), we shall say that π is greedy with respect to v when $T_{\pi} v=T v$, and write $\pi=\mathcal{G} v$. \Rightarrow A policy π_{*} is optimal iff $\pi_{*}=\mathcal{G} v_{*}$.

Proof: (1) Let π be such that $T_{\pi} v_{*}=T v_{*}$. Since $v_{*}=T v_{*}$, we have $v_{*}=T_{\pi} v_{*}$, and by the uniqueness of the fixed point of T_{π} (which is v_{π}), then $v_{\pi}=v_{*}$

There exists an optimal stationary policy

Theorem

A stationary policy π is optimal if and only if for all $x, \pi(x)$ attains the maximum in Bellman's optimality equation $v_{*}=T v_{*}$, i.e.

$$
\forall x, \quad \pi(x) \in \arg \max _{a}\left\{r(x, a)+\sum_{y} \mathbb{P}(y \mid x, a) v_{*}(y)\right\}
$$

or equivalently $T_{\pi} v_{*}=T v_{*}$
In the sequel, for any function v (not necessarily v_{*} !), we shall say that π is greedy with respect to v when $T_{\pi} v=T v$, and write $\pi=\mathcal{G} v$.
\Rightarrow A policy π_{*} is optimal iff $\pi_{*}=\mathcal{G} v_{*}$.
Proof: (1) Let π be such that $T_{\pi} v_{*}=T v_{*}$. Since $v_{*}=T v_{*}$, we have $v_{*}=T_{\pi} v_{*}$, and by the uniqueness of the fixed point of T_{π} (which is v_{π}), then $v_{\pi}=v_{*}$.

There exists an optimal stationary policy

Theorem

A stationary policy π is optimal if and only if for all $x, \pi(x)$ attains the maximum in Bellman's optimality equation $v_{*}=T v_{*}$, i.e.

$$
\forall x, \quad \pi(x) \in \arg \max _{a}\left\{r(x, a)+\sum_{y} \mathbb{P}(y \mid x, a) v_{*}(y)\right\}
$$

or equivalently $T_{\pi} v_{*}=T v_{*}$
In the sequel, for any function v (not necessarily v_{*} !), we shall say that π is greedy with respect to v when $T_{\pi} v=T v$, and write $\pi=\mathcal{G} v$. \Rightarrow A policy π_{*} is optimal iff $\pi_{*}=\mathcal{G} v_{*}$.

Proof: (1) Let π be such that $T_{\pi} v_{*}=T v_{*}$. Since $v_{*}=T v_{*}$, we have $v_{*}=T_{\pi} v_{*}$, and by the uniqueness of the fixed point of T_{π} (which is v_{π}), then $v_{\pi}=v_{*}$.
(2) Let π be optimal. This means $v_{\pi}=v_{*}$. Since $v_{\pi}=T_{\pi} v_{\pi}$, we have $v_{*}=T_{\pi} v_{*}$ and the result follows from $v_{*}=T v_{*}$.

A few comments

- The space of (deterministic) stationary policies is much smaller than the space of (random) non-stationary policies. If the state and action spaces are finite, then it is finite $\left(|A|^{|X|}\right)$.
- Solving an infinite-horizon problem essentially amounts to find the optimal value function v_{*}, i.e. to solve the fixed point equation $v_{*}=T v_{*}$ (then take any policy $\pi \in \mathcal{G} v_{*}$)
- We already have an algorithm: for any v_{0},

$$
v_{k+1} \leftarrow T v_{k} \quad \text { (Value Iteration) }
$$

converges asymptotically to the optimal value v_{*}

- Convergence rate is at least linear:

$$
\left\|v_{*}-v_{k+1}\right\|_{\infty}=\left\|T v_{*}-T v_{k}\right\|_{\infty} \leq \gamma\left\|v_{*}-v_{k}\right\|_{\infty}
$$

A few comments

- The space of (deterministic) stationary policies is much smaller than the space of (random) non-stationary policies. If the state and action spaces are finite, then it is finite $\left(|A|^{|X|}\right)$.
- Solving an infinite-horizon problem essentially amounts to find the optimal value function v_{*}, i.e. to solve the fixed point equation $v_{*}=T v_{*}$ (then take any policy $\pi \in \mathcal{G} v_{*}$)
- We already have an algorithm: for any v_{0},

converges asymptotically to the optimal value v_{*}
- Convergence rate is at least linear:

A few comments

- The space of (deterministic) stationary policies is much smaller than the space of (random) non-stationary policies. If the state and action spaces are finite, then it is finite $\left(|A|^{|X|}\right)$.
- Solving an infinite-horizon problem essentially amounts to find the optimal value function v_{*}, i.e. to solve the fixed point equation $v_{*}=T v_{*}$ (then take any policy $\pi \in \mathcal{G} v_{*}$)
- We already have an algorithm: for any v_{0},

$$
v_{k+1} \leftarrow T v_{k} \quad \text { (Value Iteration) }
$$

converges asymptotically to the optimal value v_{*}

- Convergence rate is at least linear:

A few comments

- The space of (deterministic) stationary policies is much smaller than the space of (random) non-stationary policies. If the state and action spaces are finite, then it is finite $\left(|A|^{|X|}\right)$.
- Solving an infinite-horizon problem essentially amounts to find the optimal value function v_{*}, i.e. to solve the fixed point equation $v_{*}=T v_{*}$ (then take any policy $\pi \in \mathcal{G} v_{*}$)
- We already have an algorithm: for any v_{0},

$$
v_{k+1} \leftarrow T v_{k} \quad \text { (Value Iteration) }
$$

converges asymptotically to the optimal value v_{*}

- Convergence rate is at least linear:

$$
\left\|v_{*}-v_{k+1}\right\|_{\infty}=\left\|T v_{*}-T v_{k}\right\|_{\infty} \leq \gamma\left\|v_{*}-v_{k}\right\|_{\infty}
$$

Example: the Retail Store Management Problem

$30 / 64$

Mini-Tetris

Assume we play on a small 5×5 board.

We can enumerate the $2^{25} \simeq 3.10^{6}$ possible boards and run Value Iteration. The optimal value from the start of the game is $\simeq 13,7$ lines on average per game.

Example: the student dilemma

Evaluation of v_{π} with $\pi=\{$ rest, work, work, rest $\}$

This can be done by Value Iteration: $v_{k+1} \leftarrow T_{\pi} v_{k} \ldots$

Example: the student dilemma

Evaluation of v_{π} with $\pi=\{$ rest, work, work, rest $\}$

This can be done by Value Iteration: $v_{k+1} \leftarrow T_{\pi} v_{k} \ldots$

Example: the student dilemma

\[

\]

Linear system of equations with unknowns $V_{i}=v_{\pi}\left(x_{i}\right)$

Example: the student dilemma

$$
\begin{gathered}
v_{\pi}=T_{\pi} v_{\pi} \\
\Uparrow
\end{gathered}
$$

$$
v_{\pi}(x)=r(x, \pi(x))+\gamma \sum_{y} p(y \mid x, \pi(x)) v_{\pi}(y)
$$

Linear system of equations with unknowns $V_{i}=v_{\pi}\left(x_{i}\right)$

$$
\left\{\begin{array}{l}
V_{1}=0+0.5 V_{1}+0.5 V_{2} \\
V_{2}=1+0.3 V_{1}+0.7 V_{3} \\
V_{3}=-1+0.5 V_{4}+0.5 V_{3} \\
V_{4}=-10+0.9 V_{6}+0.1 V_{4} \\
V_{5}=-10 \\
V_{6}=100 \\
V_{7}=-1000
\end{array}\right.
$$

Example: the student dilemma

\[

\]

Linear system of equations with unknowns $V_{i}=v_{\pi}\left(x_{i}\right)$

$$
\left\{\begin{array}{l}
V_{1}=0+0.5 V_{1}+0.5 V_{2} \\
V_{2}=1+0.3 V_{1}+0.7 V_{3} \\
V_{3}=-1+0.5 V_{4}+0.5 V_{3} \\
V_{4}=-10+0.9 V_{6}+0.1 V_{4} \\
V_{5}=-10 \\
V_{6}=100 \\
V_{7}=-1000
\end{array}\right.
$$

$$
\Rightarrow
$$

$$
\begin{gathered}
\left(v_{\pi}, r_{\pi} \in \mathbb{R}^{7}, P_{\pi} \in \mathbb{R}^{7 \times 7}\right) \\
v_{\pi}=r_{\pi}+\gamma P_{\pi} v_{\pi} \\
\Downarrow \\
v_{\pi}=\left(I-\gamma P_{\pi}\right)^{-1} r_{\pi}
\end{gathered}
$$

Example: the student dilemma

$$
\begin{aligned}
& v_{\pi}=T_{\pi} v_{\pi} \\
& \Uparrow
\end{aligned}
$$

Linear system of equations with unknowns $V_{i}=v_{\pi}\left(x_{i}\right)$

$$
\left\{\begin{array}{lc}
V_{1}=0+0.5 V_{1}+0.5 V_{2} & \\
V_{2}=1+0.3 V_{1}+0.7 V_{3} & \left(v_{\pi}, r_{\pi} \in \mathbb{R}^{7}, P_{\pi} \in \mathbb{R}^{7 \times 7}\right) \\
V_{3}=-1+0.5 V_{4}+0.5 V_{3} & v_{\pi}=r_{\pi}+\gamma P_{\pi} v_{\pi} \\
V_{4}=-10+0.9 V_{6}+0.1 V_{4} & \\
V_{5}=-10 & \\
V_{6}=100 & v_{\pi}=\left(I-\gamma P_{\pi}\right)^{-1} r_{\pi} \\
V_{7}=-1000 &
\end{array}\right.
$$

$$
\left(I-\gamma P_{\pi}\right)^{-1}=I+\gamma P_{\pi}+\left(\gamma P_{\pi}\right)^{2}+\ldots(\text { always invertible })
$$

Policy Iteration

- For any initial stationary policy π_{0}, for $k=0,1, \ldots$
- Policy evaluation: compute the value $v_{\pi_{k}}$ of π_{k} :

$$
v_{\pi_{k}}=T_{\pi} v_{\pi_{k}} \Leftrightarrow v_{\pi_{k}}=\left(I-\gamma P_{\pi_{k}}\right)^{-1} r_{\pi_{k}}
$$

- Policy improvement: pick π_{k+1} greedy wrt to $v_{\pi_{k}}\left(\pi_{k+1}=\mathcal{G} v_{\pi_{k}}\right)$:

$$
T_{\pi_{k+1}} v_{\pi_{k}}=T v_{\pi_{k}} \Leftrightarrow \quad \forall x, \pi_{k+1}(x) \in \arg \max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{\pi_{k+1}}(y)\right\}
$$

- Stop when $v_{\pi_{k+1}}=v_{\pi_{k}}$.
convergence occurs in a finite number of iterations.

Policy Iteration

- For any initial stationary policy π_{0}, for $k=0,1, \ldots$
- Policy evaluation: compute the value $v_{\pi_{k}}$ of π_{k} :

$$
v_{\pi_{k}}=T_{\pi} v_{\pi_{k}} \Leftrightarrow v_{\pi_{k}}=\left(I-\gamma P_{\pi_{k}}\right)^{-1} r_{\pi_{k}}
$$

- Policy improvement: pick π_{k+1} greedy wrt to $v_{\pi_{k}}\left(\pi_{k+1}=\mathcal{G} v_{\pi_{k}}\right)$:

$$
T_{\pi_{k+1}} v_{\pi_{k}}=T v_{\pi_{k}} \Leftrightarrow \quad \forall x, \pi_{k+1}(x) \in \arg \max _{a}\left\{r(x, a)+\gamma \sum_{y} \mathbb{P}(y \mid x, a) v_{\pi_{k+1}}(y)\right\}
$$

- Stop when $v_{\pi_{k+1}}=v_{\pi_{k}}$.

Theorem

Policy Iteration generates a sequence of policies with non-decreasing values ($v_{\pi_{k+1}} \geq v_{\pi_{k}}$). When the MDP is finite, convergence occurs in a finite number of iterations.

Policy Iteration

Proof: (1) Monotonicity:

$$
v_{\pi_{k+1}}-v_{\pi_{k}}=\left(I-\gamma P_{\pi_{k+1}}\right)^{-1} r_{\pi_{k+1}}-v_{\pi_{k}}
$$

$$
=\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right)
$$

$$
=\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(T_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right)
$$

where we used $\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}=I+\gamma P_{\pi_{k+1}}+\left(\gamma P_{\pi_{k+1}}\right)^{2}+\cdots \geq 0$
(2) Öptimality: Ässume $v_{\pi_{k+1}}=v_{\pi_{k}}$. Then
$v_{\pi_{k}}=T_{\pi_{k+1}} v_{\pi_{k+1}}=T_{\pi_{k+1}} v_{\pi_{k}}=T v_{\pi_{k}}$, and thus $v_{\pi_{k}}=v_{*}$ (by the uniqueness of the fixed point of T).

Policy Iteration

Proof: (1) Monotonicity:

$$
\begin{aligned}
v_{\pi_{k+1}}-v_{\pi_{k}} & =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1} r_{\pi_{k+1}}-v_{\pi_{k}} \\
& =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right) \\
& =\underbrace{\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(T_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right)}_{\geq 0} \\
& =\underbrace{\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}}_{\geq 0} \underbrace{T v_{\pi_{k}}-T_{\pi_{k}} v_{\pi_{k}}})
\end{aligned}
$$

where we used $\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}=I+\gamma P_{\pi_{k+1}}+\left(\gamma P_{\pi_{k+1}}\right)^{2}+\cdots \geq 0$
(2) Optimality: Assume $v_{\pi_{k+1}}=v_{\pi_{k}}$. Then
$v_{\pi_{k}}=T_{\pi_{k+1}} v_{\pi_{k+1}}=T_{\pi_{k+1}} v_{\pi_{k}}=T v_{\pi_{k}}$, and thus $v_{\pi_{k}}=v_{*}$ (by the uniqueness of the fixed point of T).

Policy Iteration

Proof: (1) Monotonicity:

$$
\begin{aligned}
v_{\pi_{k+1}}-v_{\pi_{k}} & =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1} r_{\pi_{k+1}}-v_{\pi_{k}} \\
& =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right) \\
& =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}(\underbrace{\left.T_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right)}_{\geq 0} \\
& =\underbrace{\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}}_{\geq 0} \underbrace{T v_{\pi_{k}}-T_{\pi_{k}} v_{\pi_{k}}})
\end{aligned}
$$

where we used $\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}=I+\gamma P_{\pi_{k+1}}+\left(\gamma P_{\pi_{k+1}}\right)^{2}+\cdots \geq 0$
(2) Optimality: Assume $v_{\pi_{k+1}}=v_{\pi_{k}}$. Then
$v_{\pi_{k}}=T_{\pi_{k+1}} v_{\pi_{k+1}}=T_{\pi_{k+1}} v_{\pi_{k}}=T v_{\pi_{k}}$, and thus $v_{\pi_{k}}=v_{*}$ (by the uniqueness of the fixed point of T).

Policy Iteration

Proof: (1) Monotonicity:

$$
\begin{aligned}
v_{\pi_{k+1}}-v_{\pi_{k}} & =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1} r_{\pi_{k+1}}-v_{\pi_{k}} \\
& =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right) \\
& =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(T_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right) \\
& =\underbrace{\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}}_{\geq 0}(\underbrace{\left.T v_{\pi_{k}}-T_{\pi_{k}} v_{\pi_{k}}\right)}_{\geq 0})
\end{aligned}
$$

where we used $\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}=I+\gamma P_{\pi_{k+1}}+\left(\gamma P_{\pi_{k+1}}\right)^{2}+\cdots \geq 0$
(2) Optimality: Assume $v_{\pi_{k+1}}=v_{\pi_{k}}$. Then uniqueness of the fixed point of T).

Policy Iteration

Proof: (1) Monotonicity:

$$
\begin{aligned}
v_{\pi_{k+1}}-v_{\pi_{k}} & =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1} r_{\pi_{k+1}}-v_{\pi_{k}} \\
& =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(r_{\pi_{k+1}}+\gamma P_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right) \\
& =\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}\left(T_{\pi_{k+1}} v_{\pi_{k}}-v_{\pi_{k}}\right) \\
& =\underbrace{\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}}_{\geq 0}(\underbrace{\left.T v_{\pi_{k}}-T_{\pi_{k}} v_{\pi_{k}}\right)}_{\geq 0})
\end{aligned}
$$

where we used $\left(I-\gamma P_{\pi_{k+1}}\right)^{-1}=I+\gamma P_{\pi_{k+1}}+\left(\gamma P_{\pi_{k+1}}\right)^{2}+\cdots \geq 0$
(2) Optimality: Assume $v_{\pi_{k+1}}=v_{\pi_{k}}$. Then $v_{\pi_{k}}=T_{\pi_{k+1}} v_{\pi_{k+1}}=T_{\pi_{k+1}} v_{\pi_{k}}=T v_{\pi_{k}}$, and thus $v_{\pi_{k}}=v_{*}$ (by the uniqueness of the fixed point of T).

Value Iteration vs Policy Iteration

- Policy Iteration (PI)
- Convergence in finite time (in practice very fast) ${ }^{(*)}$
- Each iteration has complexity $O\left(|X|^{2}|A|\right)+O\left(|X|^{3}\right) \quad(\mathcal{G}+$ inv. $)$
- Value Iteration (VI)
- Asymptotic convergence (in practice may be long for π to converge)
- Each iteration has complexity $O\left(|X|^{2}|A|\right) \quad(T)$
(*) Theorem (Ye, 2010, Hansen 2011, Scherrer 2013)
Policy Iteration converges in at most $O\left(\frac{|X||A|}{1-\gamma} \log \frac{1}{1-\gamma}\right)$ iterations.

Proof of the complexity of PI

Lemma

For all pairs of policies π and $\pi^{\prime}, \quad v_{\pi^{\prime}}-v_{\pi}=\left(I-\gamma P_{\pi^{\prime}}\right)^{-1}\left(T_{\pi^{\prime}} v_{\pi}-v_{\pi}\right)$.

$$
\begin{array}{lr}
\leq\left\|v_{*}-T_{\pi_{k}} v_{*}\right\|_{\infty} & \\
\leq\left\|v_{*}-v_{\pi_{k}}\right\|_{\infty} & \{\text { Lemma }\} \\
\leq \gamma^{k}\left\|v_{\pi_{*}}-v_{\pi_{0}}\right\|_{\infty} & \{\gamma \text {-contraction }\} \\
=\gamma^{k}\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\left(v_{*}-T_{\pi_{0}} v_{*}\right)\right\|_{\infty} & \{\text { Lemma }\} \\
\leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . & \left\{\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\right\|_{\infty}=\frac{1}{1-\gamma}\right\}
\end{array}
$$

Elimination of a non-optimal action:
For all "sufficiently big" $k, \pi_{k}\left(s_{0}\right)$ must differ from $\pi_{0}\left(s_{0}\right)$.
"sufficiently big": $\frac{\gamma^{k}}{1-\gamma}<1 \Leftrightarrow k \geq\left\lceil\frac{\log \frac{1}{1-\gamma}}{1-\gamma}\right\rceil>\left\lceil\frac{\log \frac{1}{1-\gamma}}{\log \frac{1}{\gamma}}\right\rceil$
There are at most $n(m-1)$ non-optimal actions to eliminate.

Proof of the complexity of PI

Lemma

For all pairs of policies π and $\pi^{\prime}, \quad v_{\pi^{\prime}}-v_{\pi}=\left(I-\gamma P_{\pi^{\prime}}\right)^{-1}\left(T_{\pi^{\prime}} v_{\pi}-v_{\pi}\right)$.

Elimination of a non-optimal action:
For all "sufficiently big" $k, \pi_{k}\left(s_{0}\right)$ must differ from $\pi_{0}\left(s_{0}\right)$.
"sufficiently big": $\frac{\gamma^{k}}{1-\gamma}<1 \Leftrightarrow k \geq\left\lceil\frac{\log \frac{1}{1-\gamma}}{1-\gamma}\right\rceil>\left\lceil\frac{\log \frac{1}{1-\frac{\gamma}{\gamma}}}{\log \frac{1}{\gamma}}\right\rceil$
There are at most $n(m-1)$ non-optimal actions to eliminate.

Proof of the complexity of PI

Lemma

For all pairs of policies π and $\pi^{\prime}, \quad v_{\pi^{\prime}}-v_{\pi}=\left(I-\gamma P_{\pi^{\prime}}\right)^{-1}\left(T_{\pi^{\prime}} v_{\pi}-v_{\pi}\right)$.

For some state s_{0}, (the "worst" state of π_{0})
$v_{*}\left(s_{0}\right)-T_{\pi_{k}} v_{*}\left(s_{0}\right) \leq\left\|v_{*}-T_{\pi_{k}} v_{*}\right\|_{\infty}$
$\leq\left\|v_{*}-v_{\pi_{k}}\right\|_{\infty} \quad$ \{Lemma\}
$\leq \gamma^{k}\left\|v_{\pi_{*}}-v_{\pi_{0}}\right\|_{\infty} \quad\{\gamma$-contraction $\}$
$=\gamma^{k}\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\left(v_{*}-T_{\pi_{0}} v_{*}\right)\right\|_{\infty}$
\{Lemma\}

$$
\leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . \quad\left\{\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\right\|_{\infty}=\frac{1}{1-\gamma}\right\}
$$

Elimination of a non-optimal action:
For all "sufficiently big" $k, \pi_{k}\left(s_{0}\right)$ must differ from $\pi_{0}\left(s_{0}\right)$.

Proof of the complexity of PI

Lemma

For all pairs of policies π and $\pi^{\prime}, \quad v_{\pi^{\prime}}-v_{\pi}=\left(I-\gamma P_{\pi^{\prime}}\right)^{-1}\left(T_{\pi^{\prime}} v_{\pi}-v_{\pi}\right)$.

For some state s_{0}, (the "worst" state of π_{0})
$v_{*}\left(s_{0}\right)-T_{\pi_{k}} v_{*}\left(s_{0}\right) \leq\left\|v_{*}-T_{\pi_{k}} v_{*}\right\|_{\infty}$

$$
\begin{array}{lr}
\leq\left\|v_{*}-v_{\pi_{k}}\right\|_{\infty} & \{\text { Lemma }\} \\
\leq \gamma^{k}\left\|v_{\pi_{*}}-v_{\pi_{0}}\right\|_{\infty} & \{\gamma \text {-contraction }\} \\
=\gamma^{k}\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\left(v_{*}-T_{\pi_{0}} v_{*}\right)\right\|_{\infty} & \{\text { Lemma }\} \\
\leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . & \left\{\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\right\|_{\infty}=\frac{1}{1-\gamma}\right\} \\
=\frac{\gamma^{k}}{1-\gamma}\left(v_{*}\left(s_{0}\right)-T_{\pi_{0}} v_{*}\left(s_{0}\right)\right) . &
\end{array}
$$

Elimination of a non-optimal action:
For all "sufficiently big" $k, \pi_{k}\left(s_{0}\right)$ must differ from $\pi_{0}\left(s_{0}\right)$.
"sufficiently big": $\frac{\gamma^{k}}{1-\gamma}<1 \Leftrightarrow k \geq\left|\frac{\log \frac{1}{1-\gamma}}{1-\gamma}\right|>\left|\frac{\log \frac{1}{1-\gamma}}{\log \frac{1}{\gamma}}\right|$

Proof of the complexity of PI

Lemma

For all pairs of policies π and $\pi^{\prime}, \quad v_{\pi^{\prime}}-v_{\pi}=\left(I-\gamma P_{\pi^{\prime}}\right)^{-1}\left(T_{\pi^{\prime}} v_{\pi}-v_{\pi}\right)$.

For some state s_{0}, (the "worst" state of π_{0})

$$
\begin{array}{rlr}
v_{*}\left(s_{0}\right)-T_{\pi_{k}} v_{*}\left(s_{0}\right) & \leq\left\|v_{*}-T_{\pi_{k}} v_{*}\right\|_{\infty} & \\
& \leq\left\|v_{*}-v_{\pi_{k}}\right\|_{\infty} & \{\text { Lemma }\} \\
& \leq \gamma^{k}\left\|v_{\pi_{*}}-v_{\pi_{0}}\right\|_{\infty} & \{\gamma \text {-contraction }\} \\
& =\gamma^{k}\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\left(v_{*}-T_{\pi_{0}} v_{*}\right)\right\|_{\infty} & \{\text { Lemma }\} \\
& \leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . & \left\{\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\right\|_{\infty}=\frac{1}{1-\gamma}\right\} \\
& =\frac{\gamma^{k}}{1-\gamma}\left(v_{*}\left(s_{0}\right)-T_{\pi_{0}} v_{*}\left(s_{0}\right)\right) . &
\end{array}
$$

Elimination of a non-optimal action:
For all "sufficiently big" $k, \pi_{k}\left(s_{0}\right)$ must differ from $\pi_{0}\left(s_{0}\right)$
"sufficiently big": $\frac{\gamma^{k}}{1-\gamma}<1 \Leftrightarrow k \geq\left\lceil\left[\frac{\log \frac{1}{1-\gamma}}{1-\gamma}\right\rceil>\left\lceil\frac{\log \frac{1}{1}-\gamma}{\log \frac{1}{\gamma}}\right\rceil\right.$

Proof of the complexity of PI

Lemma

For all pairs of policies π and $\pi^{\prime}, \quad v_{\pi^{\prime}}-v_{\pi}=\left(I-\gamma P_{\pi^{\prime}}\right)^{-1}\left(T_{\pi^{\prime}} v_{\pi}-v_{\pi}\right)$.

For some state s_{0}, (the "worst" state of π_{0})

$$
\begin{aligned}
v_{*}\left(s_{0}\right)-T_{\pi_{k}} v_{*}\left(s_{0}\right) & \leq\left\|v_{*}-T_{\pi_{k}} v_{*}\right\|_{\infty} \\
& \leq\left\|v_{*}-v_{\pi_{k}}\right\|_{\infty} \\
& \leq \gamma^{k}\left\|v_{\pi_{*}}-v_{\pi_{0}}\right\|_{\infty} \\
& =\gamma^{k}\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\left(v_{*}-T_{\pi_{0}} v_{*}\right)\right\|_{\infty} \\
& \leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . \\
& =\frac{\gamma^{k}}{1-\gamma}\left(v_{*}\left(s_{0}\right)-T_{\pi_{0}} v_{*}\left(s_{0}\right)\right) .
\end{aligned}
$$

$$
\leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . \quad\left\{\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\right\|_{\infty}=\frac{1}{1-\gamma}\right\}
$$

Elimination of a non-optimal action:
For all "sufficiently big" $k, \pi_{k}\left(s_{0}\right)$ must differ from $\pi_{0}\left(s_{0}\right)$.
"sufficiently big" : $\frac{\gamma^{k}}{1-\gamma}<1 \Leftrightarrow k \geq\left\lceil\frac{\log \frac{1}{1-\gamma}}{1-\gamma}\right\rceil>\left\lceil\frac{\log \frac{1}{1-\gamma}}{\log \frac{1}{\gamma}}\right\rceil$.

Proof of the complexity of PI

Lemma

For all pairs of policies π and $\pi^{\prime}, \quad v_{\pi^{\prime}}-v_{\pi}=\left(I-\gamma P_{\pi^{\prime}}\right)^{-1}\left(T_{\pi^{\prime}} v_{\pi}-v_{\pi}\right)$.

For some state s_{0}, (the "worst" state of π_{0})

$$
\begin{aligned}
v_{*}\left(s_{0}\right)-T_{\pi_{k}} v_{*}\left(s_{0}\right) & \leq\left\|v_{*}-T_{\pi_{k}} v_{*}\right\|_{\infty} \\
& \leq\left\|v_{*}-v_{\pi_{k}}\right\|_{\infty} \\
& \leq \gamma^{k}\left\|v_{\pi_{*}}-v_{\pi_{0}}\right\|_{\infty} \\
& =\gamma^{k}\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\left(v_{*}-T_{\pi_{0}} v_{*}\right)\right\|_{\infty} \\
& \leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . \\
& =\frac{\gamma^{k}}{1-\gamma}\left(v_{*}\left(s_{0}\right)-T_{\pi_{0}} v_{*}\left(s_{0}\right)\right) .
\end{aligned}
$$

$$
\begin{array}{ll}
\leq \frac{\gamma^{k}}{1-\gamma}\left\|v_{*}-T_{\pi_{0}} v_{*}\right\|_{\infty} . & \left\{\left\|\left(I-\gamma P_{\pi_{0}}\right)^{-1}\right\|_{\infty}=\frac{1}{1-\gamma}\right\} \\
=\frac{\gamma^{k}}{1-\gamma}\left(v_{*}\left(s_{0}\right)-T_{\pi_{0}} v_{*}\left(s_{0}\right)\right) . &
\end{array}
$$

Elimination of a non-optimal action:
For all "sufficiently big" $k, \pi_{k}\left(s_{0}\right)$ must differ from $\pi_{0}\left(s_{0}\right)$.
"sufficiently big" : $\frac{\gamma^{k}}{1-\gamma}<1 \Leftrightarrow k \geq\left\lceil\frac{\log \frac{1}{1-\gamma}}{1-\gamma}\right\rceil>\left\lceil\frac{\log \frac{1}{1-\gamma}}{\log \frac{1}{\gamma}}\right\rceil$.
There are at most $n(m-1)$ non-optimal actions to eliminate.

Example: Grid-World

Modified/Optimistic Policy Iteration (I)

Value Iteration

$$
v_{k+1} \leftarrow T v_{k}=T v_{k} v_{k}
$$

Policy Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow v_{\pi_{k+1}}
\end{aligned}
$$

Modified Policy Iteration (Puterman and Shin, 1978)

In practice, moderate values of m allow to find optimal policies faster than VI while being lighter than PI.
λ-Policy Iteration (loffe and Bertsekas, 1996)
$\pi_{k+1} \leftarrow \mathcal{G} v_{k}$
$v_{k+1} \leftarrow(1-\lambda) \sum_{i=0}^{\infty} \lambda^{i}\left(T_{\pi_{k+1}}\right)^{i+1} v_{k} \quad \lambda \in[0,1]$

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

Modified/Optimistic Policy Iteration (I)

Value Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow T v_{k}=T_{\pi_{k+1}} v_{k}
\end{aligned}
$$

Policy Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow v_{\pi_{k+1}}=\left(T_{\pi_{k+1}}\right)^{\infty} v_{k}
\end{aligned}
$$

Modified Policy Iteration (Puterman and Shin, 1978)

In practice, moderate values of m allow to find optimal policies faster than VI while being lighter than PI .
λ-Policy Iteration (loffe and Bertsekas, 1996)

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

Modified/Optimistic Policy Iteration (I)

Value Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow T v_{k}=T_{\pi_{k+1}} v_{k}
\end{aligned}
$$

Policy Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow v_{\pi_{k+1}}=\left(T_{\pi_{k+1}}\right)^{\infty} v_{k}
\end{aligned}
$$

Modified Policy Iteration (Puterman and Shin, 1978)

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow\left(T_{\pi_{k+1}}\right)^{m} v_{k} \quad m \in \mathbb{N}
\end{aligned}
$$

In practice, moderate values of m allow to find optimal policies faster than VI while being lighter than PI.

ג-Policy Iteration (Ioffe and Bertsekas, 1996)

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

Modified/Optimistic Policy Iteration (I)

Value Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow T v_{k}=T_{\pi_{k+1}} v_{k}
\end{aligned}
$$

Policy Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow v_{\pi_{k+1}}=\left(T_{\pi_{k+1}}\right)^{\infty} v_{k}
\end{aligned}
$$

Modified Policy Iteration (Puterman and Shin, 1978)

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow\left(T_{\pi_{k+1}}\right)^{m} v_{k} \quad m \in \mathbb{N}
\end{aligned}
$$

In practice, moderate values of m allow to find optimal policies faster than VI while being lighter than PI.
λ-Policy Iteration (loffe and Bertsekas, 1996)

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow(1-\lambda) \sum_{i=0}^{\infty} \lambda^{i}\left(T_{\pi_{k+1}}\right)^{i+1} v_{k} \quad \lambda \in[0,1]
\end{aligned}
$$

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

Modified/Optimistic Policy Iteration (I)

Value Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow T v_{k}=T_{\pi_{k+1}} v_{k}
\end{aligned}
$$

Policy Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow v_{\pi_{k+1}}=\left(T_{\pi_{k+1}}\right)^{\infty} v_{k}
\end{aligned}
$$

Modified Policy Iteration (Puterman and Shin, 1978)

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow\left(T_{\pi_{k+1}}\right)^{m} v_{k} \quad m \in \mathbb{N}
\end{aligned}
$$

In practice, moderate values of m allow to find optimal policies faster than VI while being lighter than PI.
λ-Policy Iteration (loffe and Bertsekas, 1996)

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow(1-\lambda) \sum_{i=0}^{\infty} \lambda^{i}\left(T_{\pi_{k+1}}\right)^{i+1} v_{k} \quad \lambda \in[0,1]
\end{aligned}
$$

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow \sum_{i=0}^{\infty} \lambda_{i}\left(T_{\pi_{k+1}}\right)^{i+1} v_{k} \quad \lambda_{i} \geq 0, \quad \sum_{i=0}^{\infty} \lambda_{i}=1
\end{aligned}
$$

Modified/Optimistic Policy Iteration (II)

Theorem (Puterman and Shin, 1978)
For any m, Modified Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Theorem (loffe and Bertsekas, 1996)
For any λ, λ-Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Theorem (Thiéry and Scherrer, 2009)
For any set of weights λ_{i}, Optimistic Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Modified/Optimistic Policy Iteration (II)

Theorem (Puterman and Shin, 1978)
For any m, Modified Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Theorem (loffe and Bertsekas, 1996)
For any λ, λ-Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Theorem (Thiéry and Scherrer, 2009)
For any set of weights λ_{i}, Optimistic Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Modified/Optimistic Policy Iteration (II)

Theorem (Puterman and Shin, 1978)

For any m, Modified Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Theorem (loffe and Bertsekas, 1996)
For any λ, λ-Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Theorem (Thiéry and Scherrer, 2009)
For any set of weights λ_{i}, Optimistic Policy Iteration converges asymptotically to an optimal value-policy pair v_{*}, π_{*}.

Optimism in the greedy partition

The " q -value" variation (I)

- The \mathbf{q}-value of policy π at (x, a) is the value if one first takes action a and then follows policy π :
$q_{\pi}(x, a)=E\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x, a_{0}=a,\left\{\forall t \geq 1, a_{t}=\pi\left(x_{t}\right)\right\}\right]$
- q_{π} and q_{*} satisfy the following Bellman equations

- The following relations hold:

The " q -value" variation (I)

- The \mathbf{q}-value of policy π at (x, a) is the value if one first takes action a and then follows policy π :

$$
q_{\pi}(x, a)=E\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x, a_{0}=a,\left\{\forall t \geq 1, a_{t}=\pi\left(x_{t}\right)\right\}\right]
$$

- q_{π} and q_{*} satisfy the following Bellman equations

$$
\begin{aligned}
\forall x, q_{\pi}(x, a)=r(x, a)+\gamma \sum_{y} p(y \mid x, a) q_{\pi}(y, \pi(y)) & \Leftrightarrow q_{\pi}=T_{\pi} \boldsymbol{q}_{\pi} \\
\forall x, q_{*}(x, a)=r(x, a)+\gamma \sum_{y} p(y \mid x, a) \max _{a^{\prime}} q_{*}\left(y, a^{\prime}\right) & \Leftrightarrow q_{*}=T q_{*} \\
\forall x, \pi(x) \in \arg \max _{a} q(x, a) & \Leftrightarrow \pi=\mathcal{G} \boldsymbol{q}
\end{aligned}
$$

- The following relations hold:

The " q -value" variation (I)

- The \mathbf{q}-value of policy π at (x, a) is the value if one first takes action a and then follows policy π :

$$
q_{\pi}(x, a)=E\left[\sum_{t=0}^{\infty} \gamma^{t} r\left(x_{t}, a_{t}\right) \mid x_{0}=x, a_{0}=a,\left\{\forall t \geq 1, a_{t}=\pi\left(x_{t}\right)\right\}\right]
$$

- q_{π} and q_{*} satisfy the following Bellman equations

$$
\begin{aligned}
\forall x, q_{\pi}(x, a)=r(x, a)+\gamma \sum_{y} p(y \mid x, a) q_{\pi}(y, \pi(y)) & \Leftrightarrow q_{\pi}=T_{\pi} \boldsymbol{q}_{\pi} \\
\forall x, q_{*}(x, a)=r(x, a)+\gamma \sum_{y} p(y \mid x, a) \max _{a^{\prime}} q_{*}\left(y, a^{\prime}\right) & \Leftrightarrow q_{*}=T q_{*} \\
\forall x, \pi(x) \in \arg \max _{a} q(x, a) & \Leftrightarrow \pi=\mathcal{G} \boldsymbol{q}
\end{aligned}
$$

- The following relations hold:

$$
\begin{array}{ll}
v_{\pi}(x)=q_{\pi}(x, \pi(x)), & q_{\pi}(x, a)=r(x, a)+\gamma \sum_{y} p(y \mid x, a) v_{\pi}(y) \\
v_{*}(x)=\max _{a} q_{*}(x, a), & \boldsymbol{q}_{*}(x, a)=r(x, a)+\gamma \sum_{y} p(y \mid x, a) v_{*}(y)
\end{array}
$$

The "q-value" variation (II)

- "q-values" are values in an "augmented problem" where states are $X \times A$:
$\left(x_{t}, a_{t}\right) \xrightarrow{\text { uncontrolled/stochastic }}\left(x_{t+1}\right) \xrightarrow{\text { controlled/deterministic }}\left(x_{t+1}, a_{t+1}\right)$
- VI, PI and MPI with q - values are mathematically equivalent to their v-counterparts
- Requires more memory $(O(|X||A|)$ instead of $O(|X|))$
- The computation of $\mathcal{G} q$ is lighter $(O(|A|)$ instead of $O\left(|X|^{2}|A|\right)$) and model-free:

$$
\forall x, \pi(x) \in \arg \max _{a} q(x, a) \Leftrightarrow \pi=\mathcal{G} q
$$

$$
\forall x, \pi_{*}(x) \in \arg \max _{a} q_{*}(x, a)
$$

The "q-value" variation (II)

- "q-values" are values in an "augmented problem" where states are $X \times A$:
$\left(x_{t}, a_{t}\right) \xrightarrow{\text { uncontrolled/stochastic }}\left(x_{t+1}\right) \xrightarrow{\text { controlled/deterministic }}\left(x_{t+1}, a_{t+1}\right)$
- VI, PI and MPI with q - values are mathematically equivalent to their v-counterparts
- Requires more memory $(O(|X||A|)$ instead of $O(|X|))$
- The computation of $\mathcal{G q}$ is lighter $(O(|A|)$ instead of $\left.O\left(|X|^{2}|A|\right)\right)$ and model-free:

$$
\begin{aligned}
& \forall x, \pi(x) \in \arg \max _{a} q(x, a) \quad \Leftrightarrow \quad \pi=\mathcal{G} q \\
& \forall x, \pi_{*}(x) \in \arg \max _{a} q_{*}(x, a)
\end{aligned}
$$

Outline for Part 1

- Finite-Horizon Optimal Control
- Problem definition
- Policy evaluation: Value Iteration ${ }^{1}$
- Policy optimization: Value Iteration ${ }^{2}$
- Stationary Infinite-Horizon Optimal Control
- Bellman operators
- Contraction Mappings
- Stationary policies
- Policy evaluation
- Policy optimization: Value Iteration ${ }^{3}$, Policy Iteration, Modified/Optimistic Policy Iteration

Brief Outline

- Part 1: "Small" problems
- Optimal control problem definitions
- Dynamic Programming (DP) principles, standard algorithms
- Part 2: "Large" problems
- Approximate DP Algorithms
- Theoretical guarantees

Outline for Part 2

- Approximate Dynamic Programming
- Approximate VI: Fitted-Q Iteration
- Approximate MPI: AMPI-Q, CBMPI

Algorithms

Value Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow T v_{k}=T_{\pi_{k+1}} v_{k}
\end{aligned}
$$

Policy Iteration

$$
\begin{gathered}
\pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
v_{k+1} \leftarrow v_{\pi_{k+1}}=\left(T_{\pi_{k+1}}\right)^{\infty} v_{k}
\end{gathered}
$$

Modified Policy Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow\left(T_{\pi_{k+1}}\right)^{m} v_{k} \quad m \in \mathbb{N}
\end{aligned}
$$

When the problem is big (ex: Tetris, $\simeq 2^{10 \times 20} \simeq 10^{60}$ states!), even applying once $T_{\pi_{k+1}}$ or storing the value function is infeasible.

Algorithms

Value Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow T v_{k}=T_{\pi_{k+1}} v_{k}
\end{aligned}
$$

Modified Policy Iteration

$$
\begin{aligned}
& \pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
& v_{k+1} \leftarrow\left(T_{\pi_{k+1}}\right)^{m} v_{k} \quad m \in \mathbb{N}
\end{aligned}
$$

$$
\begin{gathered}
\pi_{k+1} \leftarrow \mathcal{G} v_{k} \\
v_{k+1} \leftarrow v_{\pi_{k+1}}=\left(T_{\pi_{k+1}}\right)^{\infty} v_{k}
\end{gathered}
$$

Policy Iteration

Approximate VI: Fitted Q-Iteration

$\left(q_{k}\right)$ are represented in $\mathcal{F} \subseteq \mathbb{R}^{X \times A}$
■ π_{k+1}
$\leftarrow \mathcal{G} q_{k}$
$■ q_{k+1} \leftarrow T_{\pi_{k+1}} q_{k}$

- Policy update ■

In state x, the greedv action is estimated by:

$$
\pi_{k+1}(x)=\arg \max _{a \in A} q_{k}(x, a)
$$

- Value function update
(1) Point-wise estimation through samples: For N state-action pairs $\left(x^{(i)}, a^{(i)}\right) \sim \mu$, simulate a transition $\left(r^{(i)}, x^{(i)}\right)$ and compute an unbiased estimate of $\left[T_{\pi_{k+1}} q_{k}\right]\left(x^{(i)}, a^{(i)}\right)$
(2) Generalisation through regression: q_{k+1} is computed as the best fit of these estimates in \mathcal{F}

Approximate VI: Fitted Q-Iteration

$$
\left(q_{k}\right) \text { are represented in } \mathcal{F} \subseteq \mathbb{R}^{X \times A}
$$

$\square \pi_{k+1} \leftarrow \mathcal{G} q_{k}$
$\square q_{k+1} \leftarrow T_{\pi_{k+1}} q_{k}$

- Policy update

In state x, the greedy action is estimated by:

$$
\pi_{k+1}(x)=\arg \max _{a \in A} q_{k}(x, a)
$$

- Value function update
(1) Point-wise estimation through samples: For N state-action pairs $\left(x^{(i)}, a^{(i)}\right) \sim \mu$, simulate a transition $\left(r^{(i)}, x^{\prime(i)}\right)$ and compute an unbiased estimate of $\left[T_{\pi_{k+1}} q_{k}\right]\left(x^{(i)}, a^{(i)}\right)$

$$
\widehat{q}_{k+1}\left(x^{(i)}, a^{(i)}\right)=r_{t}^{(i)}+\gamma \boldsymbol{q}_{k}\left(x^{\prime(i)}, \pi_{k+1}\left(x^{\prime(i)}\right)\right)
$$

(2) Generalisation through regression:
q_{k+1} is computed as the best fit of these estimates in \mathcal{F}

$$
q_{k+1}=\arg \min _{q \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N}\left(q\left(x^{(i)}, a^{(i)}\right)-\widehat{q}_{k+1}\left(x^{(i)}, a^{(i)}\right)\right)^{2}
$$

Approximate Value Iteration

Fitted Q-Iteration is an instance of Approximate VI:

$$
q_{k+1}=T q_{k}+\epsilon_{k+1}
$$

where (regression literature):
$\left\|\epsilon_{k+1}\right\|_{2, \mu}=\left\|q_{k+1}-T q_{k}\right\|_{2, \mu} \leq O(\underbrace{\sup _{g \in \mathcal{F}} \inf _{f \in \mathcal{F}}\|f-T g\|_{2, \mu}}_{\text {Approx.error }}+\underbrace{\frac{1}{\sqrt{n}}}_{\text {Estim.error }})$
Theorem
Assume $\left\|\epsilon_{k}\right\|_{\infty} \leq \epsilon$. The loss due to running policy π_{k} instead of the optimal policy π_{*} satisfies

Approximate Value Iteration

Fitted Q-Iteration is an instance of Approximate VI:

$$
q_{k+1}=T q_{k}+\epsilon_{k+1}
$$

where (regression literature):

$$
\left\|\epsilon_{k+1}\right\|_{2, \mu}=\left\|q_{k+1}-T q_{k}\right\|_{2, \mu} \leq O(\underbrace{\sup _{g \in \mathcal{F}} \inf _{f \in \mathcal{F}}\|f-T g\|_{2, \mu}}_{\text {Approx.error }}+\underbrace{\frac{1}{\sqrt{n}}}_{\text {Estim.error }})
$$

Theorem

Assume $\left\|\epsilon_{k}\right\|_{\infty} \leq \epsilon$. The loss due to running policy π_{k} instead of the optimal policy π_{*} satisfies

$$
\limsup _{k \rightarrow \infty}\left\|q_{*}-q_{\pi_{k}}\right\|_{\infty} \leq \frac{2 \gamma}{(1-\gamma)^{2}} \epsilon
$$

Error propagation for AVI

(1) Bounding: $\left\|q_{*}-q_{k}\right\|_{\infty}$:

$$
\begin{aligned}
\left\|q_{*}-q_{k}\right\|_{\infty} & =\left\|q_{*}-T q_{k-1}-\epsilon_{k}\right\|_{\infty} \\
& \leq\left\|T q_{*}-T q_{k-1}\right\|_{\infty}+\epsilon \\
& \leq \gamma\left\|q_{*}-q_{k-1}\right\|_{\infty}+\epsilon \\
& \leq \frac{\epsilon}{1-\gamma}
\end{aligned}
$$

(2) From $\left\|q_{*}-q_{k}\right\|_{\infty}$ to $\left\|q_{*}-q_{\pi_{k+1}}\right\|_{\infty}\left(\pi_{k+1}=\mathcal{G} q_{k}\right)$:

Error propagation for AVI

(1) Bounding: $\left\|q_{*}-q_{k}\right\|_{\infty}$:

$$
\begin{aligned}
\left\|q_{*}-q_{k}\right\|_{\infty} & =\left\|q_{*}-T q_{k-1}-\epsilon_{k}\right\|_{\infty} \\
& \leq\left\|T q_{*}-T q_{k-1}\right\|_{\infty}+\epsilon \\
& \leq \gamma\left\|q_{*}-q_{k-1}\right\|_{\infty}+\epsilon \\
& \leq \frac{\epsilon}{1-\gamma} .
\end{aligned}
$$

(2) From $\left\|q_{*}-q_{k}\right\|_{\infty}$ to $\left\|q_{*}-q_{\pi_{k+1}}\right\|_{\infty}\left(\pi_{k+1}=\mathcal{G} q_{k}\right)$:

$$
\begin{aligned}
\left\|q_{*}-q_{\pi_{k+1}}\right\|_{\infty} & \leq\left\|T q_{*}-T_{\pi_{k+1}} q_{k}\right\|_{\infty}+\left\|T_{\pi_{k+1}} q_{k}-T_{\pi_{k+1}} q_{\pi_{k+1}}\right\|_{\infty} \\
& \leq\left\|T q_{*}-T q_{k}\right\|_{\infty}+\gamma\left\|q_{k}-q_{\pi_{k+1}}\right\|_{\infty} \\
& \leq \gamma\left\|q_{*}-q_{k}\right\|_{\infty}+\gamma\left(\left\|q_{k}-q_{*}\right\|_{\infty}+\left\|q_{*}-q_{\pi_{k+1}}\right\|_{\infty}\right) \\
& \leq \frac{2 \gamma}{1-\gamma}\left\|q_{*}-q_{k}\right\|_{\infty} .
\end{aligned}
$$

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: \{(R)eplace, (K)eep\}.
Cost:

- $c(x, R)=c$
- $c(x, K)=c(x)$ maintenance plus extra costs.

Dynamics:

- $p(y \mid x, R) \sim d(y)=\beta \exp ^{-\beta y} \mathbb{1}\{y \geq 0\}$,
- $p(y \mid x, K) \sim d(y-x)=\beta \exp ^{-\beta(y-x)} \mathbb{1}\{y \geq x\}$

Problem: Minimize the discounted expected cost over an infinite horizon.

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car). Action: \{(R)eplace, (K)eep $\}$.
Cost:

- $c(x, R)=C$
- $c(x, K)=c(x)$ maintenance plus extra costs.

Dynamics:

- $p(y \mid x, R) \sim d(y)=\beta \exp ^{-\beta y} \mathbb{1}\{y \geq 0\}$,
- $p(y \mid x, K) \sim d(y-x)=\beta \exp ^{-\beta(y-x)} \mathbb{1}\{y \geq x\}$

Problem: Minimize the discounted expected cost over an infinite horizon.

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car). Action: \{(R)eplace, (K)eep\}.
Cost:

- $c(x, R)=C$
- $c(x, K)=c(x)$ maintenance plus extra costs.

Dynamics:

- $p(y \mid x, R) \sim d(y)=\beta \exp ^{-\beta y} \mathbb{1}\{y \geq 0\}$,
- $p(y \mid x, K) \sim d(y-x)=\beta \exp ^{-\beta(y-x)} \mathbb{1}\{y \geq x\}$

Problem: Minimize the discounted expected cost over an infinite horizon.

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: \{(R)eplace, (K)eep\}.
Cost:

- $c(x, R)=C$
- $c(x, K)=c(x)$ maintenance plus extra costs.

Dynamics:

- $p(y \mid x, R) \sim d(y)=\beta \exp ^{-\beta y} \mathbb{1}\{y \geq 0\}$,
- $p(y \mid x, K) \sim d(y-x)=\beta \exp ^{-\beta(y-x)} \mathbb{1}\{y \geq x\}$.

Problem: Minimize the discounted expected cost over an infinite horizon.

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: \{(R)eplace, (K)eep\}.
Cost:

- $c(x, R)=C$
- $c(x, K)=c(x)$ maintenance plus extra costs.

Dynamics:

- $p(y \mid x, R) \sim d(y)=\beta \exp ^{-\beta y} \mathbb{1}\{y \geq 0\}$,
- $p(y \mid x, K) \sim d(y-x)=\beta \exp ^{-\beta(y-x)} \mathbb{1}\{y \geq x\}$.

Problem: Minimize the discounted expected cost over an infinite horizon.

Example: the Optimal Replacement Problem

The optimal value function satisfies

$$
v_{*}(x)=\min \{\underbrace{c(x)+\gamma \int_{0}^{\infty} d(y-x) v_{*}(y) d y}_{(K) \text { eep }}, \underbrace{C+\gamma \int_{0}^{\infty} d(y) v_{*}(y) d y}_{(R) \text { eplace }}\}
$$

Optimal policy: action that attains the minimum

Example: the Optimal Replacement Problem

Linear approximation space

$$
\mathcal{F}:=\left\{v_{n}(x)=\sum_{k=0}^{19} \alpha_{k} \cos \left(k \pi \frac{x}{x_{\max }}\right)\right\} .
$$

Collect N samples on a uniform grid:

Figure: Left: the target values computed as $\left\{T v_{0}\left(x_{n}\right)\right\}_{1 \leq n \leq N}$.

Example: the Optimal Replacement Problem

Linear approximation space

$$
\mathcal{F}:=\left\{v_{n}(x)=\sum_{k=0}^{19} \alpha_{k} \cos \left(k \pi \frac{x}{x_{\max }}\right)\right\} .
$$

Collect N samples on a uniform grid:

Figure: Left: the target values computed as $\left\{T v_{0}\left(x_{n}\right)\right\}_{1 \leq n \leq N}$. Right: the approximation $v_{1} \in \mathcal{F}$ of the target function $T v_{0}$.

Example: the Optimal Replacement Problem

One more step:

Figure: Left: the target values computed as $\left\{T v_{1}\left(x_{n}\right)\right\}_{1 \leq n \leq N}$. Right: the approximation $v_{2} \in \mathcal{F}$ of $T v_{1}$.

Example: the Optimal Replacement Problem

Figure: The approximation $v_{20} \in \mathcal{F}$.

Approximate MPI-Q

$\left(q_{k}\right)$ are represented in $\mathcal{F} \subseteq \mathbb{R}^{X \times A}$

- $\pi_{k+1} \leftarrow \mathcal{G} q_{k}$
- $q_{k+1} \leftarrow\left(T_{\pi_{k+1}}\right)^{m} q_{k}$
- Policy update ■

In state x, the greedv action is estimated by:

$$
\pi_{k+1}(x)=\arg \max _{a \in A} q_{k}(x, a)
$$

- Value function update
(1) Point-wise estimation through rollouts of length m: For N state-action pairs $\left(x^{(i)}, a^{(i)}\right) \sim \mu$, compute an unbiased estimate of $\left[\left(T_{\pi_{k+1}}\right)^{m} q_{k}\right]\left(x^{(i)}, a^{(i)}\right) \quad$ (using $a^{(i)}$, then $\pi_{k+1} m$ times)

$$
\hat{q}_{k+1}\left(x^{(i)}, a^{(i)}\right)=\sum_{t=0}^{m-1} \gamma^{+(i)}+\gamma_{t}^{m} q_{k}\left(x_{m}^{(i)}, \pi_{k+1}\left(x^{(i)}\right)\right)
$$

(2) Generalisation through regression: q_{k+1} is computed as the best fit of these estimates in \mathcal{F}

Approximate MPI-Q

$\left(q_{k}\right)$ are represented in $\mathcal{F} \subseteq \mathbb{R}^{X \times A}$
$■ \pi_{k+1} \leftarrow \mathcal{G} q_{k}$
$■ q_{k+1} \leftarrow\left(T_{\pi_{k+1}}\right)^{m} q_{k}$

- Policy update

In state x, the greedy action is estimated by:

$$
\pi_{k+1}(x)=\arg \max _{a \in A} q_{k}(x, a)
$$

- Value function update
(1) Point-wise estimation through rollouts of length m :

For N state-action pairs $\left(x^{(i)}, a^{(i)}\right) \sim \mu$, compute an unbiased estimate of $\left[\left(T_{\pi_{k+1}}\right)^{m} q_{k}\right]\left(x^{(i)}, a^{(i)}\right) \quad$ (using $a^{(i)}$, then $\pi_{k+1} m$ times)

$$
\widehat{q}_{k+1}\left(x^{(i)}, a^{(i)}\right)=\sum_{t=0}^{m-1} \gamma^{t} r_{t}^{(i)}+\gamma^{m} q_{k}\left(x_{m}^{(i)}, \pi_{k+1}\left(x^{(i)}\right)\right)
$$

(2) Generalisation through regression:
q_{k+1} is computed as the best fit of these estimates in \mathcal{F}

$$
q_{k+1}=\arg \min _{q \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N}\left(q\left(x^{(i)}, a^{(i)}\right)-\widehat{q}_{k+1}\left(x^{(i)}, a^{(i)}\right)\right)^{2}
$$

Approximate Modified Policy Iteration

AMPI-Q is an instance of:

$$
\begin{aligned}
\pi_{k+1} & =\mathcal{G} q_{k} \\
q_{k+1} & =\left(T_{\pi_{k+1}}\right)^{m} q_{k}+\epsilon_{k+1}
\end{aligned}
$$

where (regression literature):
$\left\|\epsilon_{k+1}\right\|_{2, \mu}=\left\|q_{k+1}-\left(T_{\pi_{k+1}}\right)^{m} q_{k}\right\|_{2, \mu} \leq O(\underbrace{\sup _{g, \pi \in \mathcal{F}} \inf _{f \in \mathcal{F}}\left\|f-\left(T_{\pi}\right)^{m} g\right\|_{2, \mu}}_{\text {Approx.error }}+\underbrace{\frac{1}{\sqrt{n}}}_{\text {Estim.error }})$

Theorem (Scherrer et al., 2014)
Assume $\left\|_{\epsilon}\right\|_{\infty} \leq \epsilon$. The loss due to running policy π_{k} instead of the
optimal policy π_{*} satisfies

Approximate Modified Policy Iteration

AMPI-Q is an instance of:

$$
\begin{aligned}
\pi_{k+1} & =\mathcal{G} q_{k} \\
q_{k+1} & =\left(T_{\pi_{k+1}}\right)^{m} q_{k}+\epsilon_{k+1}
\end{aligned}
$$

where (regression literature):
$\left\|\epsilon_{k+1}\right\|_{2, \mu}=\left\|q_{k+1}-\left(T_{\pi_{k+1}}\right)^{m} q_{k}\right\|_{2, \mu} \leq O(\underbrace{\sup _{g, \pi \in \mathcal{F}} \inf _{f \in \mathcal{F}}\left\|f-\left(T_{\pi}\right)^{m} g\right\|_{2, \mu}}_{\text {Approx.error }}+\underbrace{\frac{1}{\sqrt{n}}}_{\text {Estim.error }})$

Theorem (Scherrer et al., 2014)

Assume $\left\|\epsilon_{k}\right\|_{\infty} \leq \epsilon$. The loss due to running policy π_{k} instead of the optimal policy π_{*} satisfies

$$
\limsup _{k \rightarrow \infty}\left\|q_{*}-q_{\pi_{k}}\right\|_{\infty} \leq \frac{2 \gamma}{(1-\gamma)^{2}} \epsilon
$$

Classification-based MPI

$\left(v_{k}\right)$ represented in $\mathcal{F} \subseteq \mathbb{R}^{X}$
■ $v_{k} \leftarrow\left(T_{\pi_{k}}\right)^{m} v_{k-1}$
$\left(\pi_{k}\right)$ represented in $\Pi \subseteq A^{X}$

- $\pi_{k+1} \leftarrow \mathcal{G}\left[\left(T_{\pi_{k}}\right)^{m} v_{k-1}\right]$
- Value function update

Similar to AMPI-Q:
(1) Point-wise estimation through rollouts of length m :

Draw N states $x^{(i)} \sim \mu$

$$
\widehat{v}_{k+1}\left(x^{(i)}\right)=\sum_{t=0}^{m-1} \gamma^{t} r_{t}^{(i)}+\gamma^{m} v_{k-1}\left(x_{m}^{(i)}\right)
$$

(2) Generalisation through regression

$$
v_{k}=\arg \min _{v \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N}\left(v\left(x^{(i)}\right)-\widehat{v}_{k}\left(x^{(i)}\right)^{2}\right.
$$

Classification-based MPI

- Policy update

When $\pi=\mathcal{G}\left[\left(T_{\pi_{k}}\right)^{m} v_{k-1}\right]$, for each $x \in \mathcal{X}$, we have

$$
\underbrace{\left[T_{\pi}\left(T_{\pi_{k}}\right)^{m} v_{k-1}\right](x)}_{Q_{k}(x, \pi(x))}=\max _{a \in A} \underbrace{\left[T_{a}\left(T_{\pi_{k}}\right)^{m} v_{k-1}\right](x)}_{Q_{k}(x, a)}
$$

(1) For N states $x^{(i)} \sim \mu$, for all actions a, compute an unbiased estimate of [$\left.T_{a}\left(T_{\pi_{k}}\right)^{m} v_{k-1}\right]\left(x^{(i)}\right)$ from M rollouts (using a, then $\pi_{k+1} m$ times):

$$
\widehat{Q}_{k}\left(x^{(i)}, a\right)=\frac{1}{M} \sum_{j=1}^{M} \sum_{t=0}^{m} \gamma^{t} r_{t}^{(i, j)}+\gamma^{m+1} v_{k-1}\left(x_{m+1}^{(i, j)}\right)
$$

(2) π_{k+1} is the result of the (cost-sensitive) classifier:

$$
\pi_{k+1}=\arg \min _{\pi \in \Pi} \frac{1}{N} \sum_{i=1}^{N}\left[\max _{a \in A} \widehat{Q}_{k}\left(x^{(i)}, a\right)-\widehat{Q}_{k}\left(x^{(i)}, \pi\left(x^{(i)}\right)\right)\right]
$$

CBMPI

CBMPI is an instance of:

$$
\begin{aligned}
v_{k} & =\left(T_{\pi_{k}}\right)^{m} v_{k-1}+\epsilon_{k} \\
\pi_{k+1} & =\hat{\mathcal{G}}_{\epsilon_{k+1}^{\prime}}\left(T_{\pi_{k}}\right)^{m} v_{k-1}
\end{aligned}
$$

where (regression \& classification literature):
$\left\|\epsilon_{k}\right\|_{2, \mu}=\left\|v_{k}-\left(T_{\pi_{k}}\right)^{m} v_{k-1}\right\|_{2, \mu} \leq O\left(\sup _{g, \pi \in \mathcal{F}} \inf _{f \in \mathcal{F}}\left\|f-\left(T_{\pi}\right)^{m} g\right\|_{2, \mu}+\frac{1}{\sqrt{n}}\right)$
$\left\|\epsilon^{\prime}{ }_{k}\right\|_{1, \mu}=O\left(\sup _{v \in \mathcal{F}, \pi^{\prime}} \inf _{\pi \in \Pi} \sum_{x \in X}\left[\max _{a} Q_{\pi^{\prime}, v}(x, a)-Q_{\pi^{\prime}, v}(x, \pi(x))\right] \mu(x)+\frac{1}{\sqrt{N}}\right)$
Theorem (Scherrer et al., 2014)
Assume $\left\|\epsilon_{k}\right\|_{\infty} \leq \epsilon$. The loss due to running policy π_{k} instead of the
optimal policy π_{*} satisfies

CBMPI

CBMPI is an instance of:

$$
\begin{aligned}
v_{k} & =\left(T_{\pi_{k}}\right)^{m} v_{k-1}+\epsilon_{k} \\
\pi_{k+1} & =\hat{\mathcal{G}}_{\epsilon_{k+1}^{\prime}}\left(T_{\pi_{k}}\right)^{m} v_{k-1}
\end{aligned}
$$

where (regression \& classification literature):

$$
\begin{aligned}
& \left\|\epsilon_{k}\right\|_{2, \mu}=\left\|v_{k}-\left(T_{\pi_{k}}\right)^{m} v_{k-1}\right\|_{2, \mu} \leq O\left(\sup _{g, \pi \in \mathcal{F}} \inf _{f \in \mathcal{F}}\left\|f-\left(T_{\pi}\right)^{m} g\right\|_{2, \mu}+\frac{1}{\sqrt{n}}\right) \\
& \left\|\epsilon_{k}^{\prime}\right\|_{1, \mu}=O\left(\sup _{v \in \mathcal{F}, \pi^{\prime}} \inf _{\pi \in \Pi} \sum_{x \in X}\left[\max _{a} Q_{\pi^{\prime}, v}(x, a)-Q_{\pi^{\prime}, v}(x, \pi(x))\right] \mu(x)+\frac{1}{\sqrt{N}}\right)
\end{aligned}
$$

Theorem (Scherrer et al., 2014)

Assume $\left\|\epsilon_{k}\right\|_{\infty} \leq \epsilon$. The loss due to running policy π_{k} instead of the optimal policy π_{*} satisfies

$$
\limsup _{k \rightarrow \infty}\left\|q_{*}-q_{\pi_{k}}\right\|_{\infty} \leq \frac{2 \gamma}{(1-\gamma)^{2}}\left(2 \gamma^{m+1} \epsilon+\epsilon^{\prime}\right) .
$$

Illustration of approximation on Tetris

(1) Approximation architecture for v :
"An expert says that" for all state x,

$$
\begin{array}{rlr}
v(x) & \simeq v_{\theta}(x) & \text { Constant } \\
& =\theta_{0} & \text { column height } \\
& +\theta_{1} h_{1}(x)+\theta_{2} h_{2}(x)+\cdots+\theta_{10} h_{10}(x) & \text { height variation } \\
& +\theta_{11} \Delta h_{1}(x)+\theta_{12} \Delta h_{2}(x)+\cdots+\theta_{19} \Delta h_{9}(x) & \text { max height } \\
& +\theta_{20} \max _{k} h_{k}(x) & \# \text { holes } \\
& +\theta_{21} L(x) & \\
& +\ldots &
\end{array}
$$

(2) The classifier is based on the same features to compute a score function for the (deterministic) next state.
(3) Sampling Scheme: play
"Small" Tetris (10×10)

Learning curves of CBMPI algorithm on the small 10×10 board. The results are averaged over 100 runs of the algorithms. $B=8.10^{6}$ samples per iteration.

Tetris (10×20)

Learning curves of CE, DPI, and CBMPI algorithms on the large 10×20 board. The results are averaged over 100 runs of the algorithms. $B_{\text {DPI/CBMPI }}=16.10^{6}$ samples per iteration. $B_{C E}=1700.10^{6}$.

Topics not covered (1/2)

"Small problems":

- Unkwown model, stochastic approximation (TD, Q-Learning, Sarsa), Exploration vs Exploitation
- Complexity of PI (independent of γ) ? open problem even when the dynamics is deterministic (n^{2} or $\frac{m^{n}}{n}$?)
- LSPI (Policy Iteration with linear approximation of the value)
- Analysis in L_{2}-norm, concentrability coefficients / where to sample?
- Sensitivity of finite-horizon vs infinite-horizon problems (non-stationary policies)
- Algorithms: Conservative Policy Iteration (Kakade and Langford, 2002), Policy Search by Dynamic Programming (Bagnell et al., 2003)

Topics not covered (1/2)

"Small problems":

- Unkwown model, stochastic approximation (TD, Q-Learning, Sarsa), Exploration vs Exploitation
- Complexity of PI (independent of γ) ? open problem even when the dynamics is deterministic (n^{2} or $\frac{m^{n}}{n}$?)
"Large problems":
- LSPI (Policy Iteration with linear approximation of the value)
- Analysis in L_{2}-norm, concentrability coefficients / where to sample?
- Sensitivity of finite-horizon vs infinite-horizon problems (non-stationary policies)
- Algorithms: Conservative Policy Iteration (Kakade and Langford, 2002), Policy Search by Dynamic Programming (Bagnell et al., 2003)

Topics not covered (2/2)

Variations of Dynamic Programming:

- Variations of Dynamic Programming: deeper greedy operator (tree search / AlphaZero), regularized operators
- Two-player Zero-sum games (min max)
- General-sum games...

Topics not covered (2/2)

Variations of Dynamic Programming:

- Variations of Dynamic Programming: deeper greedy operator (tree search / AlphaZero), regularized operators
- Two-player Zero-sum games (min max)
- General-sum games...

Thank you for your attention!

