Markov Decision Processes

Bruno Scherrer

INRIA (Institut National de Recherche en Informatique et ses Applications)
IECL (Institut Elie Cartan de Lorraine)

Reinforcement Learning Summer SCOOL
Lille - July 3rd

1/64

Credits for this lecture

Based on some material (slides, code, etc...) from:

® Alessandro Lazaric, “Introduction to Reinforcement learning”,
Toulouse, 2015

® Dimitri Bertsekas, “A series of lectures given at Tsinghua
University”, Jue 2014,

http://web.mit.edu/dimitrib/www/publ.html

References:

® “Neuro-Dynamic Programming” by D. P. Bertsekas and J. N.
Tsitsiklis, Athena Scientific, 1996

® “Markov Decision Processes, Discrete Stochastic Dynamic
Programming”, by M. L. Puterman

2/64

http://web.mit.edu/dimitrib/www/publ.html

Markov Decision Processes

® Research area initiated in the 1950s (Bellman), known under
various names (in various communities)
® Reinforcement learning (Artificial Intelligence, Machine
Learning)
® Stochastic optimal control (Control theory)
® Stochastic shortest path (Operations research)
® Sequential decision making under uncertainty (Economics)

= Markov decision processes, dynamic programming

3/64

Markov Decision Processes

® Research area initiated in the 1950s (Bellman), known under
various names (in various communities)
® Reinforcement learning (Artificial Intelligence, Machine
Learning)
® Stochastic optimal control (Control theory)
® Stochastic shortest path (Operations research)
® Sequential decision making under uncertainty (Economics)

= Markov decision processes, dynamic programming
e Control of dynamical systems (under uncertainty)

® A rich variety of (accessible & elegant) theory/math,
algorithms, and applications/illustrations

3/64

Markov Decision Processes

® Research area initiated in the 1950s (Bellman), known under
various names (in various communities)
® Reinforcement learning (Artificial Intelligence, Machine
Learning)
® Stochastic optimal control (Control theory)
® Stochastic shortest path (Operations research)
® Sequential decision making under uncertainty (Economics)

= Markov decision processes, dynamic programming
e Control of dynamical systems (under uncertainty)

® A rich variety of (accessible & elegant) theory/math,
algorithms, and applications/illustrations

e | will not cover the exploration/exploitation issues of RL

3/64

Brief Qutline

® Part 1: “Small” problems

® Optimal control problem definitions
® Dynamic Programming (DP) principles, standard algorithms

® Part 2: “Large” problems

® Approximate DP Algorithms
® Theoretical guarantees

4/64

QOutline for Part 1

® Finite-Horizon Optimal Control

Problem definition
Policy evaluation: Value lteration!
Policy optimization: Value Iteration?

® Stationary Infinite-Horizon Optimal Control

Bellman operators

Contraction Mappings

Stationary policies

Policy evaluation

Policy optimization: Value Iteration3, Policy Iteration,
Modified /Optimistic Policy Iteration

5/64

The Finite-Horizon Optimal Control Problem
® Discrete-time dynamical system

Xt+1:f-t-(Xt,at,Wt), t:0,1,,H—1
® t: Discrete time
® x,: State: summarizes past information for predicting future
optimization
® 3,: Control/Action: decision to be selected at time t from a
given set A
® w;: Random parameter: disturbance/noise
® H: Horizon: number of times control is applied
® Reward (or Cost) function that is additive over time
H-1
E Z re(xe, ae, we) + R(xn)
t=0
® Goal: optimize over policies (feedback control law):

atNﬂ't("ft), tZO,l,...,H—l

where]:t = {XO) a0, 0, X15 - - -y Xt—1, dt—1, rtflaxt}-
6/64

The

Important assumptions

The distribution of the noise w; does not depend on past
values wy_1, ..., wpy. Equivalently:

P(xer1 = X'|xt = x,ar = a) = P(xe11 = X'|F;) (Markov)
Optimization over policies g, ..., mTH_1, i.e. functions/rules
ag ~ Wt("ft).

This (closed-loop control) is DIFFERENT FROM optimizing
over sequences of actions ag, ..., ay_1 (open-loop)!

Optimization is in expectation (no risk measure)

model is called: Markov Decision Process (MDP)

7/64

Policy Spaces

Policies can be:
e history-dependent (m¢(-|F¢)) vs Markov (7¢(+|x¢))
e stationary (7(+|)) vs non-stationary (7:(:|-))

¢ random (7¢(a; = al-)) vs deterministic (7m¢(x:) € A(x¢))

8/64

Policy Spaces

Policies can be:
e history-dependent (m¢(-|F¢)) vs Markov (7¢(+|x¢))
e stationary (7(+|)) vs non-stationary (7:(:|-))
¢ random (7¢(a; = al-)) vs deterministic (7m¢(x:) € A(x¢))

Which type of policy should be considered depends on the the
model/objective. In MDPs, we shall see that we only need to
consider Markov deterministic policies.

8/64

Policy Spaces

Policies can be:
e history-dependent (m¢(-|F¢)) vs Markov (7¢(+|x¢))
e stationary (7(+|)) vs non-stationary (7:(:|-))

¢ random (7¢(a; = al-)) vs deterministic (7m¢(x:) € A(x¢))

Which type of policy should be considered depends on the the
model/objective. In MDPs, we shall see that we only need to
consider Markov deterministic policies.

Theorem

Let m be some history-dependent policy. Then for each initial state
Xo = y, there exists a Markov policy that induces the same
distributions (x; = -, a; =) for all time t > 0.

8/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|F%¢)).

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

m(ar = alxe = x) =P (ar = a|xe = x,x0 = y).

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|F%¢)).
Let 7’ be defined as
mi(ar = alxy = x) = P"(ar = a|xt = x,x0 = y).

Then, by induction on t, one can prove that

Vt Z O,Pw,(xt = X’XO = y) = Pﬂ(xt = X’XO = y)

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

7T/t(at = a|xy = x) =P"(ar = alx = x, x0 = y).
Then, by induction on t, one can prove that
Vt 2 O,Pw,(xt = X’XO = y) = Pﬂ(xt = X’XO = y)

’ ,,\./
P (xe = xbo = y) = 3 S Blxe = xlxo =y, xe—1 = 2, ar—1 = AP” (xe—1 = 2,31 = alx0 =)
zEX a€A

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|F%¢)).
Let 7’ be defined as
mi(ar = alxy = x) = P"(ar = a|xt = x,x0 = y).

Then, by induction on t, one can prove that

Vt Z O,Pw,(xt = X’XO = y) = Pﬂ(xt = X’XO = y)

’ ,,\./
P (e =xbo=y) = 3 3 Blxe =x X—1 =2, a1 = AP (xe—1 = 2,31 = alxg = ¥)
zEX a€A

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|F%¢)).
Let 7’ be defined as
mi(ar = alxy = x) = P"(ar = a|xt = x,x0 = y).
Then, by induction on t, one can prove that

Vt 2 O,Pw,(xt = X’XO = y) = Pﬂ(xt = X’XO = y)

/

”_/
P™ (xe=xlxo=y)= > > Plx =x] xt—1=2z,a—1 = a)P" (xp—1=2z,a3_1=alxg=y)
zeX acA
=3 > Pl =x| xt—1 =2 a1 = a)P " (xt—1 =2z,3_1 = alxo = y)
2EX a€A

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

7T/t(at = a|xy = x) =P"(ar = alx = x, x0 = y).
Then, by induction on t, one can prove that
Vt 2 O,Pw,(xt = X’XO = y) = Pﬂ(xt = X’XO = y)

/

”_/
P™ (xe=xlxo=y)= > > Plx =x] xt—1=2z,a—1 = a)P" (xp—1=2z,a3_1=alxg=y)
zeX acA
=3 S P =xlx0 =y, xe—1 =231 = a)P" (xe—1 = z,3;_1 = a|xg = y)
2EX a€A

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

7T/t(at = a|xy = x) =P"(ar = alx = x, x0 = y).
Then, by induction on t, one can prove that
Vt 2 O,Pw,(xt = X’XO = y) = Pﬂ(xt = X’XO = y)

/

,,\./
P (e =xbo=y) = 3 3 Blx = x| X—1= 2,31 =P (x_1 =23 1=alx=y)
zEX a€A

=3 S P =xlx0 =y, xe—1 =231 = a)P" (xe—1 = z,3;_1 = a|xg = y)
2EX 2€A

=P"(xt = x|xp = y).

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

mi(ar = alxy = x) = P"(ar = a|xt = x,x0 = y).
Then, by induction on t, one can prove that
Yt > O,IP’W,(xt =x|xo =y) =P (xt = x|x0 = y).

P (e = xlo = y) = 50 5 Blxe

zEX a€A

x|

”_/
xt—1=2z,a—1=2aP" (xx—1=2z,31_1 =alxg =y)

=3 S P =xlx0 =y, xe—1 =231 = a)P" (xe—1 = z,3;_1 = a|xg = y)
2EX 2€A
=P"(x = x|x = y).

’ ’ 7
P™ (x¢ = x,ar = alxg = y) =P" (ar = alxt = x,x0 = y)P" (xt = x|x0 = y)

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

m(ar = alxe = x) =P (ar = a|xe = x,x0 = y).
Then, by induction on t, one can prove that

Vt 2 O,Pﬂ—,(Xt = X’XO = y) = Pﬂ(xt = X’XO = y)

/

”_/
P™ (xe=xlxo=y)= > > Plx =x] xt—1=2z,a—1 = a)P" (xp—1=2z,a3_1=alxg=y)
zeX acA
=3 S P =xlx0 =y, xe—1 =231 = a)P" (xe—1 = z,3;_1 = a|xg = y)
2EX a€A

=P"(xt = x|xp = y).

’ ’ 7
P™ (x¢ = x,ar = a|xo = y) = P" (ar = alxt = x P (xe = x|x0 = y)

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

mi(ar = alxy = x) = P"(ar = a|xt = x,x0 = y).
Then, by induction on t, one can prove that
Yt > O,IP’W,(xt =x|xo =y) =P (xt = x|x0 = y).

/

P (e = xlo = y) = 50 5 Blxe

zEX a€A

x|

”_/
xt—1=2z,a—1=2aP" (xx—1=2z,31_1 =alxg =y)

=3 S P =xlx0 =y, xe—1 =231 = a)P" (xe—1 = z,3;_1 = a|xg = y)
2EX 2€A

=P (x = xlx0 = y)-

/

’ 7
P™ (x¢ = x,ar = a|xo = y) = P" (ar = alxt = x P (xe = x|x0 = y)

=P (ar = alxe = x, x0 = y)P" (xt = x|x0 = y)

9/64

Proof
xo =y. ar ~ m¢(a¢|Ft). Write P7(-) for the probabilities induced
by the fact of following (7¢(:|.F¢)).
Let 7" be defined as

mi(ar = alxy = x) = P"(ar = a|xt = x,x0 = y).
Then, by induction on t, one can prove that
Yt > O,IP’W,(xt =x|xo =y) =P (xt = x|x0 = y).

/

P (e = xlo = y) = 50 5 Blxe

zEX a€A

x|

”_/
xt—1=2z,a—1=2aP" (xx—1=2z,31_1 =alxg =y)

=3 S P =xlx0 =y, xe—1 =231 = a)P" (xe—1 = z,3;_1 = a|xg = y)
2EX 2€A

=P (x = xlx0 = y)-

’ ’ 7
P™ (x¢ = x,ar = a|xo = y) = P" (ar = alxt = x P (xe = x|x0 = y)
=P (ar = alxe = x,x0 = Y)P" (x¢ = x|x0 = y)

=P (xt =x,ar = a|lxg = y)

9/64

Example: The Retail Store Management Problem
Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is f(q). If the
demand w is bigger than the available inventory x, customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E

10/ 64

Example: The Retail Store Management Problem
Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is f(q). If the
demand w is bigger than the available inventory x, customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E

e t=0,1,...,11, H=12

10/ 64

Example: The Retail Store Management Problem
Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is f(q). If the
demand w is bigger than the available inventory x, customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E

e t=0,1,...,11, H=12
® State space: x € X ={0,1,..., M}

10/64

Example: The Retail Store Management Problem
Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is f(q). If the
demand w is bigger than the available inventory x, customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E

e t=0,1,...,11, H=12
® State space: x € X ={0,1,..., M}
e Action space: At state x, a € A(x) ={0,1,...,M — x}

10/64

Example: The Retail Store Management Problem
Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is f(q). If the
demand w is bigger than the available inventory x, customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E

e t=0,1,...,11, H=12
® State space: x € X ={0,1,..., M}
e Action space: At state x, a € A(x) ={0,1,...,M — x}

® Dynamics: x¢41 = max(x; + ar — w; , 0)

10/ 64

Example: The Retail Store Management Problem
Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the beginning of
each month t, the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is f(q). If the
demand w is bigger than the available inventory x, customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,50, w ~ E

e t=0,1,...,11, H=12
® State space: x € X ={0,1,..., M}
e Action space: At state x, a € A(x) ={0,1,...,M — x}

® Dynamics: x¢41 = max(x; + ar — w; , 0)

Reward: r(x, ar, we) = —C(ar) — h(xe + a¢) + f(min(we, x¢ + ar))
and R(x) = g(x).

10/ 64

Example: The Retail Store Management Problem
stationary det. policies and 1 non-stationary det. policy:

20

18

&

H

B g P
2 b 2
128 128 122
5 g 5 H y g
8 105 8 105 8 105
& g @ £ @ E
2 2]
8 3 8 3 8 C
5 5 5
* » »

6 6 6

a4 4 a

2 2 2

0 0 0

01234567 8091011 01234567 8091011
time time time

7®(x) = max{(M—x)/2—x; 0}

M—x ifx<M/4 O = [M—x ift<6
m(x) =
0 otherwise t [(M —x)/5] otherwise

11/64

Example: The Retail Store Management Problem
2 stationary det. policies and 1 non-stationary det. policy:

20

18

&

H

stock
s
of items purchased
stock
stock

> o
of items purchased
of items purchased

012345678 091011 012345678 91011
time time time

7®(x) = max{(M—x)/2—x; 0}

2(x) = M — x IfX<M/4 71'53)(x): M — x |ft<§
0 otherwise [(M —x)/5] otherwise

Remark. MDP + policy = Markov chain on X.

11/64

The Finite-Horizon Optimal Control Problem

® System: x¢41 = fr(xt, at, wt), t=0,1,...,H-1

® Policy m = (mo,...,mTH—1), such that a; ~ m¢(-|x¢)

The expected return of 7 starting at x at time s (the value of 7 in
x at time s) is:

H—1
Vres(x) = Eq Z re(xe, ag, we) + R(xH) | xs = x

t=s

How can we evaluate v, o(x) for some x ?

12/64

The Finite-Horizon Optimal Control Problem

® System: x¢41 = fr(xt, at, wt), t=0,1,...,H-1

® Policy m = (mo,...,mTH—1), such that a; ~ m¢(-|x¢)

The expected return of 7 starting at x at time s (the value of 7 in
x at time s) is:

H—1
Vres(x) = Eq Z re(xe, ag, we) + R(xH) | xs = x

t=s

How can we evaluate v, o(x) for some x ?

e Estimate by simulation and Monte-Carlo ®: approximate

12/64

The Finite-Horizon Optimal Control Problem

® System: x¢41 = fr(xt, at, wt), t=0,1,...,H-1

® Policy m = (mo,...,mTH—1), such that a; ~ m¢(-|x¢)
The expected return of 7 starting at x at time s (the value of 7 in

x at time s) is:

H—1
Vres(x) = Eq Z re(xe, ag, we) + R(xH) | xs = x

t=s

How can we evaluate v, o(x) for some x ?
e Estimate by simulation and Monte-Carlo ®: approximate

® Develop the tree of all possible realizations @: time=0(e")

12/64

Policy evaluation by Value lteration
H—1

vr,s(x) = Ex Z re(xe, ar, we) + R(xp) | xs = x

t=s

13/64

Policy evaluation by Value lteration

H-1
Vi,s(x) =Ex [re(xe, ae, we) + R(xy) | xs = x:|

t=s
H-1

= Er[rs(xs,as, ws) | xs = x] + Ex Z re(xe, ae, we) + R(xy) | xs = x
t=s+1

13/64

Policy evaluation by Value lteration

H-1
Vi,s(x) =Ex [re(xe, ae, we) + R(xy) | xs = x:|

t=s
H-1

= Er[rs(xs,as, ws) | xs = x] + Ex Z re(xe, ae, we) + R(xn) | xs = x]
t=s+1

=) ms(as = alxs = x) X (E[rs(x, a, ws)]

y t=s+1

H-1
+ ZP(XsH =ylxs =x,as = a) Ex |: Z re(xe, ae, we) + R(xp) | xs = X, Xs41 =y

)

13/64

Policy evaluation by Value lteration

H-1
Vi,s(x) =Ex [re(xe, ae, we) + R(xy) | xs = x:|

t=s
H-1

= Er[rs(xs,as, ws) | xs = x] + Ex Z re(xe, ae, we) + R(xn) | xs = x]
t=s+1

=) ms(as = alxs = x) X (E[rs(x, a, ws)]

y t=s+1

H-1
+ ZP(XsH =ylxs =x,as = a) Ex |: Z re(xe, ae, we) + R(xp) | Xs+1 = y])

13/64

Policy evaluation by Value lteration

H-1
Vi,s(x) =Ex [re(xe, ae, we) + R(xy) | xs = x:l

t=s
H-1

= Er[rs(xs,as, ws) | xs = x] + Ex Z re(xe, ae, we) + R(xn) | xs = x]
t=s+1

=) ms(as = alxs = x) X (E[rs(x, a, ws)]

+ ZIP’(XS_H =ylxs = x,as = a) Ex
y

H-1
> relxes ae, we) + R(xu) | Xs+1)’] >
t=s+1

= Z ms(as = alxs = x) (E[rs(x,ﬂ(x), ws)] + Z]P’(st = ylxs = x,as = a) v7r$5+1(y).>

y

13/64

Policy evaluation by Value lteration

H-1
Vr,s(x) = Ex Z re(xe, ae, we) + R(xu) | xs = X:l
t=s
H-1

Z re(xe, ag, we) + R(xp) | xs = x]

t=s+1

= Er[rs(xs,as, ws) | xs = x] + Ex

=) ms(as = alxs = x) X (E[rs(x, a, ws)]
’ H-1
+ D Plxoi1 = ylxs = x,as = a) Er { D re(xe,ae, we) + R(x) | Xst1 = y} >
y t=s+1
= ZWs(as = alxs = x) (E[rs(x,ﬂ(x), ws)] + Z]P’(st = y|xs = x,as = a) vmsH(y).)
a y
The computation of v, 5(-) can be done from v, s;1(-), and
recurrently using v, 4(-) = R(:). ©: time=O(|X|2H), for all xp!
“Dynamic Programming is a method for solving a complex problem

by breaking it down into a collection of simpler subproblems.”

13/64

Policy evaluation by Value lteration

H-1
Vr,s(x) =Ex Z re(xe, ar, we) + R(xH) | xs = X:l
t=s

H—-1

Z rt(Xt,at, Wt) —+ R(XH) | Xs = X:|

t=s+1

=) ms(as = alxs = x) X (E[rs(x, a, ws)]

= Er[rs(xs,as, ws) | xs = x] + Ex

H-1
+ ZP(XSH =ylxs =x,as = a) Ex { Z re(xt, at, we) + R(xp) | Xs+1 = }’] >

y t=s+1
= ZWS(BS = alxs = x) (]E[I’S(X,T(‘(X), ws)] + Z]P’(st = ylxs = x,as = a) v7r$5+1(y).>
a y
The computation of v, 5(-) can be done from v, s;1(-), and
recurrently using v, 4(-) = R(:). ©: time=O(|X|2H), for all xp!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vrs = Tr Vrsy1 = rry + PrVrsyt.
13/64

Example: the Retail Store Management Problem

stock

012345678091011
time

012345678091011
time

20

of items purchased

15

value

01234567 8091011
time

20

16

1

1

5
of items purchased

1

value

stock

012345678091011
time

0123456789101
time

of items purchased

S
value

14 /64

Optimal value and policy

System: xry1 = fe(xe, at, we), t=0,1,..., H-1
Policy m = (mo, ..., mH—1), such that a; ~ m¢(+|x¢)

Value (expected return) of 7 if we start from x:

H—1
vro(x) =Ex {Z re(xe, ae, we) + R(xy) | xo = x}

t=|
Optimal value function v, o and optimal policy 7.:

vi0(x0) = max)Vw,o(Xo) and v, o(x0) = vi0(x0)

=705+, TH_1

15/ 64

Optimal value and policy

® System: x¢11 = fr(xt, ar, we), t=0,1,..., H-1
® Policy m = (mo,...,TH—1), such that a; ~ m¢(-|x¢)

® Value (expected return) of 7 if we start from x:

H—1
vro(x) =Ex {Z re(xe, ae, we) + R(xy) | xo = x}

t=l

Optimal value function v, o and optimal policy 7.:

vi0(x0) = max)Vw,o(Xo) and v, o(x0) = vi0(x0)

=705+, TH_1

Naive optimization: time: O(e/) @

15 /64

Policy optimization by Value lteration

Xs:X}

H—1
wﬁw)zgmempn{E:rdM,%NW)*RUH)

t=s

16 /64

Policy optimization by Value lteration

XSZX}

= max Er x4, {Z ms(as = a|xs = x)(rs(xs, a, ws)

sy Ms4lseee 3

H—1
Vi,s(x) = max Er,,... {Z re(xe, ar, we) + R(xn)

t=s

H—1
+ ZP(XsH =ylxs = x,as = a) (Z re(xe, ar, we) + R(XH)>
y

t=s+1

Xs =X, Xs41 =Y)}

16 /64

Policy optimization by Value lteration

XSZX}

max]E7"577Ts+17---{z7r5(35 = a‘XS = X)(rS(X$7 a, WS)
TssTs41yee-

a

H—1
Vi,s(x) = max Er,,... {Z re(xe, ar, we) + R(xn)

t=s

H—1
+ ZP(XsH =ylxs = x,as = a) (Z re(xe, ar, we) + R(XH)>
y

t=s+1

sy)|

max {E[rs(x, a, Ws)]

H—1
+ ZP(X5+1 = y|xs = x,as = a) 7rmlax Ergiq,... [Z re(xe, ar, we) + R(xnH)
y s t=s+1

16 /64

Policy optimization by Value lteration

xszx}

max]E7"577Ts+17---{z7r5(35 = a‘XS = X)(rS(X$7 a, WS)
TssTs41yee-

a

H—1
Vi,s(x) = max Er,,... {Z re(xe, ar, we) + R(xn)

t=s

H—1
+ ZP(X:—.H =ylxs = x,as = a) (Z re(xe, ar, we) + R(XH)>
y

t=s+1

sy)}

= max {E[rs(X7 a, WS)]

H—1
+ ZP(X5+1 = y|xs = x,as = a) L max Ergys,... [Z re(xe, at, we) + R(xp)
y s t=s+1

= max {E[rs(x, a,ws)] + ZP(X5+1 =y|xs = x,as = a) V*,sH(Y)}-
y

16 /64

Policy optimization by Value lteration

xszx}

max]EWSJHI’_,_{Z ms(as = a|xs = x)< rs(xs, a, ws)

sy Ms4lseee 3

H—1
Vie,s(x) = max Er,,... {Z re(xe, ar, we) + R(xn)

t=s

H-1
+) Pxsr1 = ylxs = x,35s = a) (> relxe ae, we) + R(XH)>
y

t=s+1

max {E[rs(x, a, Ws)]

H-1
+ E P(xs+1 = ¥|xs = x,as = a) _max Ergq,... [E re(xe, at, we) + R(xy)
S+1s---
y t=s+1

max {B[rs(x, 3, we)] + 30 P(xer1 = ylxs = x, 3 = 2) ve i1 () .
y

Dynamic Programming: The computation of v, (-) can be done from
Ve st1(+), and recurrently using: v. y(+) = R(-). @: time=O(|X|?|A|H),
for all xo. Then, 7, s(x) is any (deterministically chosen) action a that
minimizes the r.h.s.

sy)}

16 /64

Example: the Retail Store Management Problem

15 20
Optimal 2 "
value ’ *
6
and ;
policy O B
-3 E%
-6 6 *
-9 4
VS =12 2
01234567891011 -1 01234567891011
values of L : :
policies b - 5
7D, 7 7 - -

17 /64

Bellman’s principle of optimality

® The recurrent identities (recall that v, () = v, o(+))

Vi,s(x) = max {]E[rs(xs, as, ws) | as = 3] + ZP(XS-H =y|xs = x,as = a) V*,S+1(Y)}
y

= E[rs(X&Qa Ws) ‘ as = ﬂ'*,s(Xs)] + ZIP(XS+1 = }’|Xs = X,as = W*,S(Xs)) v*,s+1(y)
y
are called Bellman equations.
® Notations:
Vi,s = TSV*,s = nJTaX T7r5 Vi, s4+1
s

= max T7{'5V*,S+1 = Tw*.sv*,s—o—l
Ts det. ’

® At each step, Dyn. Prog. solves ALL the tail subroblems tail
subproblems of a given time length, using the solution of the
tail subproblems of shorter time length

18 /64

QOutline for Part 1

® Finite-Horizon Optimal Control

Problem definition
Policy evaluation: Value lteration!
Policy optimization: Value Iteration?

® Stationary Infinite-Horizon Optimal Control

Bellman operators

Contraction Mappings

Stationary policies

Policy evaluation

Policy optimization: Value Iteration3, Policy Iteration,
Modified /Optimistic Policy Iteration

19/64

Infinite-Horizon Optimal Control Problem

® Same as finite-horizon (Markov Decision Process), but:

® the number of stages is infinite
® the system is stationary (f =f, wg ~w, rr =r)

Xe41 = F(x, ar, W) [@ P(xer1 = X'|xe = x,ar = a) = p(x, a,x’)}

® Find a policy m3° = (o, 71, ...) that maximizes (for all x)

H-1
Vrge (x) = JinwE {Z Yor(xe, ar, we) | xo = x}

t=0

® v €(0,1) is called the discount factor

20/ 64

Infinite-Horizon Optimal Control Problem

® Same as finite-horizon (Markov Decision Process), but:

® the number of stages is infinite
® the system is stationary (f =f, wg ~w, rr =r)

Xe41 = F(x, ar, W) [@ P(xer1 = X'|xe = x,ar = a) = p(x, a,x’)}

® Find a policy m3° = (o, 71, ...) that maximizes (for all x)
H—1
Vage(x) = lim E D A (e anwe) | X0 = x
t=0

® v €(0,1) is called the discount factor
® Discounted problems (v < 1, |[r| < M < o0, v < %)

® Stochastic shortest path problems (v = 1 with a termination state

reached with probability 1) (sparingly covered)
® Det. Stationary policies m = (7, m,...) play a central role
We will not cover the average reward criterion limy_, o %]E {E:’:Bl re(xe, at, wt)} nor unbounded rewards...

20/64

Example: Student Dilemma
Stationary MDPs naturaIIy represented as a graph:

Rest —

Rest G r==-10

=0 Work / 5
o j

0.6

0.7

Rest =100
r=—1

ork e“&

Work

r=—1000

r=—10
7

States x5, Xg, X7 are terminal. Whatever the policy, they are reached in finite

time with probability 1 so we can take v = 1.
21 /64

Example: Tetris

% State
Possible :

actions
Chosen \
action

.

Rewa rd

Possible
next states

22/64

Example: the Retail Store Management Problem

Each month t, a store contains x; items (maximum capacity M) of a
specific goods and the demand for that goods is w;. At the end of each
month the manager of the store can order a; more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C(a). The income for selling g items is (q). If the
demand w is bigger than the available inventory x, customers that

cannot be served leave. Fhe-value-of-therematning-inventeryat-theend
of-the-yearisg{x). ‘The rate of inflation is v = 3% = 0.03.‘

M =20, f(x) = x, g(x) = 0.25x, h(x) = 0.25x, C(a) = (14 0.5a)1,%¢

we ~ U({5,6, ..., 15}), v =

1
I+

t=0,1,...
® State space: x € X ={0,1,..., M}

Action space: At state x, a € A(x) ={0,1,...,M — x}
® Dynamics: xpy1 = max(x; + a; — wy , 0)

® Reward: r(x¢, ae, wy) = —C(ar) — h(x¢ + a¢) + F(min(we, x¢ + a¢)).

23/64

Bellman operators (1)
® For any function v of x, denote,
Vx, (Tv)(x)=maxE|[r(x,a, w)| +E[yv(f(x,a w))]
a

=max r(x,a) +7) Pylx,a)v(y)
y
® Tv is the optimal value for the one-stage problem with stage
reward r and terminal reward R = vv.
® T operates on bounded functions of x to produce other
bounded functions of x.

24 /64

Bellman operators (1)
For any function v of x, denote,
Vx, (Tv)(x)=maxE|[r(x,a, w)| +E[yv(f(x,a w))]
a

=max r(x,a) +7) Pylx,a)v(y)
y
Tv is the optimal value for the one-stage problem with stage
reward r and terminal reward R = vv.
T operates on bounded functions of x to produce other
bounded functions of x.
For any stationary policy m and v, denote

(Tev)(x) = r(x7(x) + 7 D Blylx, w(x)v(y), Vx
y
T, v is the value of 7 for the same one-stage problem

24 /64

Bellman operators (1)
For any function v of x, denote,
Vx, (Tv)(x)=maxE|[r(x,a, w)| +E[yv(f(x,a w))]
a

= max r(x, a) +’7/ZP(Y|X-/ a)v(y)

Tv is the optimal value for the one-stage problem with stage
reward r and terminal reward R = vv.

T operates on bounded functions of x to produce other
bounded functions of x.

For any stationary policy m and v, denote

(To)(x) = rlx 7)) + 7 3 B, n(0)v(y), ¥x
y
® T,.v is the value of 7 for the same one-stage problem
® The critical structure of the problem is captured in T and T
and most of the theory of discounted problems can be

developed using these two (Bellman) operators.
24 /64

Bellman operators (I1)

® Given 7§° = (m, 71, ...), consider the H-stage policy

75! = (7o, m1,. .., mH_1) with terminal reward R =0
® For 0 < s < H, consider the (H — s)-stage “tail” policy
7 = (76, Msr1, .-, TH_1) With R =0

v H(X E.=x Z'y r(xe, me(xe), we)

t=0

25 /64

Bellman operators (I1)

® Given 7§° = (m, 71, ...), consider the H-stage policy

75! = (7o, m1,. .., mH_1) with terminal reward R =0
® For 0 < s < H, consider the (H — s)-stage “tail” policy
H ; _
70 = (s, Msx1, ..., TH—1) With R =10
v H(X Exo=x Z’Y r(xe, me(xe), Wt)}
t=0

= E,y=x | r(x0, mo(x0), wo) + (Z A (e, (), wt))]

t=1

25 /64

® Given 7g°

Bellman operators (I1)

= (mo, m1,...), consider the H-stage policy

75! = (7o, m1,. .., mH_1) with terminal reward R =0

® For 0 < s < H, consider the (H — s)-stage “tail” policy
(71'5 Tstlye--s , TH— 1)With R=0

™

H
s

v H(X

xox

Z'y r(xe, me(xe), Wt):|

0, mo(x0)s wo) + (Z 3 o (), wt))]

= Eqx [r(xo, mo(%0), Wo) + Y.y (Xl)]

=]Exo =x

25 /64

Bellman operators (I1)

® Given 7§° = (m, 71, ...), consider the H-stage policy

75! = (7o, m1,. .., mH_1) with terminal reward R =0
® For 0 < s < H, consider the (H — s)-stage “tail” policy
H ; _
70 = (s, Msx1, ..., TH—1) With R =10
v H(X Exo=x Z’Y r(xe, me(xe), Wt)}
t=0

= E,y=x | r(x0, mo(x0), wo) + (Z A (e, (), wt))]

= Eqx [r(xo, mo(%0), Wo) + Y.y (Xl)]
= (Trover) ()

25 /64

Bellman operators (I1)

® Given 7§° = (m, 71, ...), consider the H-stage policy

75! = (7o, m1,. .., mH_1) with terminal reward R =0
® For 0 < s < H, consider the (H — s)-stage “tail” policy
H : _
m = (T, M1y -+, TH—1) With R =10
v H(X E.=x Z'y r(xe, me(xe), Wt):|
t=0

0, mo(x0)s wo) + (Z 3 o (), wt))]

= Eqx [r(xo, mo(%0), Wo) + Y.y (Xl)]
= (Trover) ()

=]Exo =x

® By induction (v, = 0), we get for all x,
Vort(X) = (Trg Ty - - - Ty, 0)(x)

o

25 /64

Bellman operators (I1)

® Given 7§° = (m, 71, ...), consider the H-stage policy

75! = (7o, m1,. .., mH_1) with terminal reward R =0
® For 0 < s < H, consider the (H — s)-stage “tail” policy
7 = (76, Msr1, .-, TH_1) With R =0
v H(X E.=x Z'y r(xe, me(xe), Wt):|
t=0
H—-1
= Exy=x | r(x0, m0(x0), wo) + <Z 7 (ke e (), Wt))]
t=1
= Expmx | rlx0, m0(30), w0) + 70,1
= (T ver)(x)
® By induction (v, = 0), we get for all x,
Vot (}) = (T Ty - Ty 10)(}) 22555 Ve (x)

o

25 /64

Bellman operators (l11)

e Similarly, the optimal H-stage value function with terminal
reward R =0 is TH0.

26 /64

Bellman operators (l11)

® Similarly, the optimal H-stage value function with terminal
reward R =0 is TH0.

® Fortunately, it can be shown that

_ _ : G o H
Ve = MaX Voo = max lim vyp = lim maxvw = lim 770,
o o 75 H—oo 70 H—o0 rff 0 H—o0

i.e, the infinite-horizon problem is the limit of the H-horizon problem
when the horizon H tends to oo

26 /64

Bellman operators (l11)

e Similarly, the optimal H-stage value function with terminal
reward R =0 is TH0.
® Fortunately, it can be shown that

. (= . .
Vi = Max vyee = max lim v,u = lim maxv,s = lim TH0,
e 0 75 H—oo 70 H—o0 rff 0 H— oo

i.e, the infinite-horizon problem is the limit of the H-horizon problem

when the horizon H tends to co

*) For any policy 75° = (7, 71, ...), and any initial state x,
y policy mq

Zytr(xt,m(xt), Wt)]

Vg (X) = Exp=x

H-1 i

. ’ytr(Xn Te(Xe), Wt) | + Expex [Z ’Yfr(Xn Te(Xe), We)
—0 t=H
Tog Ty oo Ty, 0 | : |§Z?§H7tMSYig

26 /64

Bellman operators (l11)

e Similarly, the optimal H-stage value function with terminal
reward R =0 is TH0.
® Fortunately, it can be shown that

. (= . .
Vi = Max vyee = max lim v,u = lim maxv,s = lim TH0,
e 0 75 H—oo 70 H—o0 rff 0 H— oo

i.e, the infinite-horizon problem is the limit of the H-horizon problem

when the horizon H tends to co

*) For any policy 75° = (7, 71, ...), and any initial state x,
y policy mq

Zytr(xt,m(xt), Wt)]

t=0

Vg (X) = Exp=x

H-1 i

. ’ytr(Xn Te(Xe), Wt) | + Expex [Z ’Yfr(Xn Te(Xe), We)
—0 t=H
Tog Ty oo Ty, 0 | : |§Z?§H7tMSYig

= v(x) = (TH0)(x) + 0(+")

26 /64

The contraction property

Theorem

T and T, are y-contraction mappings for the max norm || - |-

where for all function v, ||v||cc = max, |v(x)|, and an operator F is a
~-contraction mapping for that norm iff:

Vv, v2, |[Fvi — Fv2lleo < 9llvi — V2|0

27 /64

The contraction property

Theorem

T and T are ~y-contraction mappings for the max norm || - ||co-

where for all function v, ||v||cc = max, |v(x)|, and an operator F is a
~-contraction mapping for that norm iff:

Vvi,v2, [[Fvi = Fvalloe < ¥llvi — v2loo.
Proof (for T): By using | max, f(a) — max, g(a)| < max, |f(a) — g(a)],
(Tv1)(x) (Tv2)(x)

max {r(x, a) + A/Z]P’(y|x, a)vl(x)} — max {r(x, a)+ W’ZP(HX, a)vz(y)} ‘

y

max
X

< max | maxy S P(ylx, a)(u (x) = v (x)|
y

27 /64

The contraction property

Theorem

T and T are ~y-contraction mappings for the max norm || - ||co-

where for all function v, ||v||cc = max, |v(x)|, and an operator F is a
~-contraction mapping for that norm iff:

Vv, v2, |[Fvi — Fv2lleo < 9llvi — V2|0
Proof (for T): By using | max, f(a) — max, g(a)| < max, |f(a) — g(a)],

(Tv1)(x) (Tv2)(x)

max {r(x, a) + A/Z]P’(y|x, a)vl(x)} — max {r(x, a)+ W’ZP(HX, a)vz(y)} ‘

max
X
y

< max ’ max~y _ P(y|x, a)(vi(x) - VQ(X))‘ < maxmaxy Y _P(ylx, a)[[vi = valloo = 7[[vi — valloo-
y y

27 /64

The contraction property

Theorem

T and T are ~y-contraction mappings for the max norm || - ||co-

where for all function v, ||v||cc = max, |v(x)|, and an operator F is a
~-contraction mapping for that norm iff:

Vvi,v2, [[Fvi = Fvalloe < ¥llvi — v2loo.
Proof (for T): By using | max, f(a) — max, g(a)| < max, |f(a) — g(a)],
(Tv1)(x) (Tv2)(x)

max {r(x, a) + A/Z]P’(y|x, a)vl(x)} — max {r(x, a)+ W’ZP(HX, a)vz(y)} ‘

y

max
X

< max ’ max~y _ P(y|x, a)(vi(x) - VQ(X))‘ < maxmaxy Y _P(ylx, a)[[vi = valloo = 7[[vi — valloo-
y y

® By Banach fixed point theorem, F has one and only one fixed point
f* to which the sequence f, = Ff,_1 = F"fy converges for any fg.

27 /64

The contraction property

Theorem

T and T are ~y-contraction mappings for the max norm || - ||co-

where for all function v, ||v||cc = max, |v(x)|, and an operator F is a
~-contraction mapping for that norm iff:

Vvi,v2, [[Fvi = Fvalloe < ¥llvi — v2loo.
Proof (for T): By using | max, f(a) — max, g(a)| < max, |f(a) — g(a)],
(Tv1)(x) (Tv2)(x)

max {r(x, a) + A/Z]P’(y|x, a)vl(x)} — max {r(x, a)+ W’ZP(HX, a)vz(y)} ‘

y

max
X

< max ’ max~y _ P(y|x, a)(vi(x) - VQ(X))‘ < maxmaxy Y _P(ylx, a)[[vi = valloo = 7[[vi — valloo-
y y

® By Banach fixed point theorem, F has one and only one fixed point
f* to which the sequence f, = Ff,_1 = F"fy converges for any fg.

® v, = Tv,, and for any stationary policy 7, v = T, Vy.

27 /64

There exists an optimal stationary policy
Theorem

A stationary policy 7 is optimal if and only if for all x, 7(x) attains
the maximum in Bellman's optimality equation v, = T, i.e.

Vx, m(x) € argmaxy r(x,a)+ g P(y|x, a)vi(y)
a
y

or equivalently T v, = Ty,

In the sequel, for any function v (not necessarily v.!), we shall say that « is
greedy with respect to v when T.v = Tv, and write 7 = Gv.
= A policy 7. is optimal iff 7, = Gv,.

28 /64

There exists an optimal stationary policy
Theorem

A stationary policy 7 is optimal if and only if for all x, 7(x) attains
the maximum in Bellman's optimality equation v, = T, i.e.

Vx, m(x) € argmax < r(x,a) + g P(y|x, a)vi(y)
a
y

or equivalently T v, = Ty,

In the sequel, for any function v (not necessarily v.!), we shall say that « is
greedy with respect to v when T.v = Tv, and write 7 = Gv.
= A policy 7. is optimal iff 7, = Gv,.

Proof: (1) Let 7 be such that T,v, = Tv,. Since v, = Tv,, we have
Vi = TrVs, and by the uniqueness of the fixed point of T, (which is v;),
then v, = v,.

28 /64

There exists an optimal stationary policy
Theorem

A stationary policy 7 is optimal if and only if for all x, 7(x) attains
the maximum in Bellman's optimality equation v, = T, i.e.

Vx, m(x) € argmax < r(x,a) + g P(y|x, a)vi(y)
a
y

or equivalently T v, = Ty,

In the sequel, for any function v (not necessarily v.!), we shall say that « is
greedy with respect to v when T.v = Tv, and write 7 = Gv.
= A policy 7. is optimal iff 7, = Gv,.

Proof: (1) Let 7 be such that T,v, = Tv,. Since v, = Tv,, we have
Vi = TrVs, and by the uniqueness of the fixed point of T, (which is v;),
then v, = v,.

(2) Let 7 be optimal. This means v, = v,. Since v, = T,v,, we have
V. = T,v, and the result follows from v, = Tv,.

28 /64

A few comments

® The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A[X!).

29 /64

A few comments

® The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A[X!).

® Solving an infinite-horizon problem essentially amounts to find
the optimal value function v, i.e. to solve the fixed point
equation v, = Tv, (then take any policy m € Gv,)

29 /64

A few comments

® The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A[X!).

® Solving an infinite-horizon problem essentially amounts to find
the optimal value function v, i.e. to solve the fixed point
equation v, = Tv, (then take any policy m € Gv,)

® We already have an algorithm: for any vy,
Vi1 < Tk (Value Iteration)

converges asymptotically to the optimal value v,

29 /64

A few comments

The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A[X!).

Solving an infinite-horizon problem essentially amounts to find
the optimal value function v, i.e. to solve the fixed point
equation v, = Tv, (then take any policy m € Gv,)

We already have an algorithm: for any vy,
Vi1 < Tk (Value Iteration)

converges asymptotically to the optimal value v,

Convergence rate is at least linear:

HV,,< — Vk+1HOO = H Tvy, — TVkHoo < 7‘|V* - VkHOO'

29 /64

stock

stock

Example: the Retail Store Management Problem

34
36 32
32
E,
2 30
208 °*
16 ®
12 g 28
8
40 60 8 2
iteration
5 10 15 20
stock
1
10
ny 1
0 68 ¢
5 145 2
25 &
10 02§
15 6 £ w4
20 48
20 40 60 80 5 % 2
iteration
5 10 15 20

stock

Mini-Tetris
Assume we play on a small 5 x 5 board.

We can enumerate the 225 ~ 3.10° possible boards and run Value
Iteration. The optimal value from the start of the game is ~ 13,7
lines on average per game.

[simulation]
31/64

Example: the student dilemma

Evaluation of v; with m = {rest, work, work, rest}
v, = 88.3

Rest
04 .

32/64

Example: the student dilemma

Evaluation of v; with m = {rest, work, work, rest}
V,=883

Rest 0 =10

This can be done by Value lteration: vg41 < Trvk...

32/64

Example: the student dilemma

Ve = T7r Vr

(3
Ve (%) = r(x,m(x)) + 7 Y p(yIx, 7(x)) v (y)
y

=-1000

v, =-100(

33/64

Example: the student dilemm

e V,=88.3
v, =883 00 [] “"”
Vs=-10

=100

Vg =100

Ve = T7r Vr

(3
Ve (%) = r(x,m(x)) + 7 Y p(yIx, 7(x)) v (y)

r=-1000

v, =-100(

Linear system of equations with unknowns V; = v (x;)

Vi =04+05V, +05V,
Vo =1403V4+0.7V4
Vs =—1+05V,+0.5V;
Ve =-10+40.9Vs+0.1V,
Vs =-10

Vs =100

Vo = —1000

33/64

Example: the student dilemm

V,=883
est =10
Vs=-10
4

=100

Vg =100

Ve = T7r Vr

(3
Ve (%) = r(x,m(x)) + 7 Y p(yIx, 7(x)) v (y)

r=-1000

v, =-100(

Linear system of equations with unknowns V; = v (x;)

Vi =0+05V;+05V (vo,re € RT, P, € RT¥T)
Vo =1+03V;+07Vs

Va =-1+05V,+0.5V; Ve = Ir +YPrvy
Vo =-10+09Vs+0.1V4 N

Vs =—10 ¢

Vs =100 ve = (I — 7P7T)_:lr7T
Vs = —1000

33/64

Example: the student dilemm

e v, =883
v, =88.3(OO |] o
Vs=-10

=100

Vg =100

e
A
x
A
=
.l
¥
S
<
x
2
=
5
S

vr(x) =

r=-1000

v, =-100(

Linear system of equations with unknowns V; = v (x;)

Vi =0+05V; +05V (vo.rs € BT, Py € RT¥T)
Vo =1+403V;+0.7Vs

Vs =-1+05V,+0.5V; Ve = Ir +YPrvy
Vi =-10+0.9V+0.1V, N

Vs =-—10 ¢

Vs =100 ve = (I — VPW)_lr7T
V; = —-1000

(I —yP) Y =1 +~vPy + (vPr)? + ... (always invertible)

33/64

Policy lteration

® For any initial stationary policy mg, for k =0,1,...
® Policy evaluation: compute the value v, of my:

Vg = TV, & vy, =(1— 7P7Tk)_1r7rk

® Policy improvement: pick i1 greedy wrt to v, (mii1 = Gvr,):
TV = T, & VX, mpa(x) € argmax {f(% a) +WZP(YX73)VWM(Y)}
y

® Stop when v;, | = vg,.

34/64

Policy lteration

® For any initial stationary policy mg, for k =0,1,...
® Policy evaluation: compute the value v, of my:

Vi, = Tave, & ve, = (I —7Pr,) tre,

® Policy improvement: pick i1 greedy wrt to v, (mii1 = Gvr,):

TV = T, & VX, mpa(x) € argmax {r(& a) +WZ]P(YX:3)VW1(}’)}
y
® Stop when v;, | = vg,.

Theorem

Policy Iteration generates a sequence of policies with
non-decreasing values (v, ., > vy,). When the MDP is finite,
convergence occurs in a finite number of iterations.

34/64

Policy lteration

Proof: (1) Monotonicity:

Vi — Vm, = (1 — 'VPTFkH) I = Vi

35/64

Policy lteration

Proof: (1) Monotonicity:

Vi — Vm, = (1 — 'VPTFkH) I = Vi

= (I = vPr1)” (rﬂ'k+1 +VPry Ve = V)

35/64

Policy lteration

Proof: (1) Monotonicity:

Vﬂ'k+1 - Vn, = (I /yPTl'k+1) rﬂ'k+1 — Vi
= (/- 7Pﬂk+1) (rﬂ'k+1 + 7P7Fk+1 VTFk)
=(I- '7'D7rk+1) (Tﬂ'k+l Ve — Vﬂk)

35/64

Policy lteration

Proof: (1) Monotonicity:

= (] — ’7P 1

Th+1 M = Vi
| —~P Y (rrpy + P — Vr,)
Y Tk+1 VPV Tk

()"
()"

=(/- 7Pﬂk+1) ' (Tha Ve — Vﬂk)
(/-) H(TV, = T Vi)

where we used (I —vPr,.,)t =14+ vPr .y + (VPr))> +-- >0

35/64

Policy lteration

Proof: (1) Monotonicity:

1
I = Vi

= = 7Prips
1
I — 7P7fk+1 (rﬂ’kﬂ + 7P7fk+1 Vﬂ'k)

()"
()"

=(I- 7Pﬂk+1) ' (Tha Ve — Vﬂk)
(/-) H(TV, = T Vi)

where we used (I —vPr,.,)t =14+ vPr .y + (VPr))> +-- >0

(2) Optimality: Assume vy, ., = Vg,. Then
Ve = Trp Vi = T Vg = Tvmy, and thus vy, = v, (by the
uniqueness of the fixed point of T).

35/64

Value lteration vs Policy Iteration

® Policy Iteration (PI)

® Convergence in finite time (in practice very fast)(*)

® Each iteration has complexity O(|X|?|A|) + O(|X[®) (G + inv.)
® Value Iteration (VI)

® Asymptotic convergence (in practice may be long for 7 to

converge)
® Each iteration has complexity O(|X|?|A]) (T)

(*) Theorem (Ye, 2010, Hansen 2011, Scherrer 2013)

IX]1Al

Policy Iteration converges in at most O(i log ﬁ) iterations.

36 /64

Proof of the complexity of Pl

37/64

Proof of the complexity of Pl

Lemma

For all pairs of policies @ and @', v — v = (I = YP/)Y (Tr/ Ve — Vir).

37/64

Proof of the complexity of Pl

Lemma

For all pairs of policies @ and @', v — v = (I = YP/)Y (Tr/ Ve — Vir).

Ive = Toy vl
<livee = vy lloo

< Vk”Vﬂ* — Vrglloo

=N = 7Prg) (v = Trgv)lloo

[lve — Torg V|| oo

{Lemma}
{~-contraction}
{Lemma}

1

U = 7Prg) Moo = m}

37/64

Proof of the complexity of Pl

Lemma

For all pairs of policies @ and @', v — v = (I = YP/)Y (Tr/ Ve — Vir).

For some state sp, (the “worst” state of mg)

< HV* - Tm—kV*Hoo

< lve = vy lloo {Lemma}
<M Ivr, = Vg lloo {~-contraction}
= A9 = YPrg) " H(vee — Tomgva) [l oo {Lemma}
k
Y _ 1
S T lve = Trpvalloo {10 = 7Pro) Moo = 57—}
- 11—~
K
=1 (ve(s0) = Trp v (50))-
—

37/64

Proof of the complexity of Pl

Lemma

For all pairs of policies @ and @', v — v = (I = YP/)Y (Tr/ Ve — Vir).

For some state sp, (the “worst” state of mg)
Vi(0) = T vie(50) < llvee = T villoo
S HV* - V7'l'kHOO
<K lve, — Vo lloo
TN = 7Prg) "M (ve = Trg) lloo
,Yk
1—v
k

- 17_7("*(50) = Trova(50))-

[lve — Torg V|| oo

{Lemma}
{~-contraction}
{Lemma}

1

U = 7Prg) Moo = m}

37/64

Proof of the complexity of Pl

Lemma

For all pairs of policies @ and @', v — v = (I = YP/)Y (Tr/ Ve — Vir).

For some state sp, (the “worst” state of mg)

Vie(50) — Ty vi(s0) < [lve — T vie|loo

< lve = vy lloo {Lemma}
<M Ivr, = Vg lloo {~-contraction}
= A9 = YPrg) " H(vee — Tomgva) [l oo {Lemma}
k
Y _ 1
S T lve = Trpvalloo {10 = 7Pro) Moo = 57—}
- 11—~
K
=1 (ve(s0) = Trp v (50))-
—

Elimination of a non-optimal action:
For all “sufficiently big” k, mx(so) must differ from mo(sp).

sufficiently big": = <1 & k2> i |~ T |-
5

37/64

Proof of the complexity of Pl

Lemma

For all pairs of policies @ and @', v — v = (I = YP/)Y (Tr/ Ve — Vir).

For some state sp, (the “worst” state of mg)

Va(0) = T va(s0) < [[ve = T v oo

< lve = vy lloo {Lemma}
<M Ivr, = Vg lloo {~-contraction}
= ”/k”(/ - "/Pro)il(v* — Trove)|loo {Lemma}
k
Y _ 1
S T lve = Trpvalloo {10 = 7Pro) Moo = 57—}
- 11—~
K
=1 (ve(s0) = Trp v (50))-
—

Elimination of a non-optimal action:

For all “sufficiently big” k, mx(so) must differ from mo(sp).
sufficiently big”: i < 1 & k> " — -‘ > " Iog% -‘

There are at most n(m — 1) non-optimal actions to eliminate.

37/64

Example: Grid-World

[simulation]

38/64

Modified /Optimistic Policy Iteration (I)

Value lteration Policy Iteration
The1 Gk
Vi1 < Tvg Vk+1 $ Vi

39/64

Modified /Optimistic Policy Iteration (I)

Value lteration Policy Iteration
The1 + Gk The1 Gvi
Vel < Tvie = Ty i Vil & Vg = (Torp) > vk

39/64

Modified /Optimistic Policy Iteration (I)

Value lteration Policy Iteration
The1 + Gk The1 Gvi
Vel < Tvie = Ty i Vit & Vg = (T) vk

Modified Policy lteration (Puterman and Shin, 1978)

Tkl < (jvk
Vil < (TWkJrl)ka meN

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

39/64

Modified /Optimistic Policy Iteration (I)

Value lteration Policy Iteration
The1 + Gk The1 Gvi
Vel < Tvie = Ty i Vit & Vg = (T) vk

Modified Policy lteration (Puterman and Shin, 1978)

Tht1 < GV
V41 (TWkJrl)ka meN

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

A-Policy lteration (loffe and Bertsekas, 1996)

Tht1 < GV))
Viert < (1= A) S22 A (T)+ v A€ 0,1]

39/64

Modified /Optimistic Policy Iteration (I)

Value lteration Policy Iteration
The1 + Gk The1 Gvi
Vel < Tvie = Ty i Vit & Vg = (T) vk

Modified Policy lteration (Puterman and Shin, 1978)

Tht1 < GV
V41 (TWkJrl)ka meN

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

A-Policy lteration (loffe and Bertsekas, 1996)

Tht1 < GV))
Viert < (1= A) S22 A (T)+ v A€ 0,1]

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

Tk+1 GV)
Vi1 = 2020 A Ty) v i >0, i Ai=1

39/64

Modified/Optimistic Policy Iteration (1)

Theorem (Puterman and Shin, 1978)

For any m, Modified Policy Iteration converges asymptotically to an
optimal value-policy pair v,, 7,.

40 /64

Modified/Optimistic Policy Iteration (1)

Theorem (Puterman and Shin, 1978)

For any m, Modified Policy Iteration converges asymptotically to an
optimal value-policy pair v,, 7,.
Theorem (loffe and Bertsekas, 1996)

For any A\, A\-Policy Iteration converges asymptotically to an optimal
value-policy pair vy, m,.

40 /64

Modified/Optimistic Policy Iteration (1)

Theorem (Puterman and Shin, 1978)

For any m, Modified Policy Iteration converges asymptotically to an
optimal value-policy pair v,, 7,.

Theorem (loffe and Bertsekas, 1996)

For any A\, A\-Policy Iteration converges asymptotically to an optimal
value-policy pair vy, m,.

Theorem (Thiéry and Scherrer, 2009)

For any set of weights A;, Optimistic Policy Iteration converges
asymptotically to an optimal value-policy pair v,, m,.

40 /64

Optimism in the greedy partition

Y

41/64

Optimism in the greedy partition

__ Policy Iteration

Vg

Y

41/64

Optimism in the greedy partition

__ Policy Iteration

.......... Value Iteration

Vg

Y

41/64

Optimism in the greedy partition

__ Policy Iteration

.......... Value Iteration
AAAAA Opt. PI

41/64

The “g-value” variation (1)

® The g-value of policy 7 at (x, a) is the value if one first takes
action a and then follows policy 7:

gn(x,2) = E [ZWtr(Xtv ar)

t=0

Xo=X,30 = a,{Vt > 1, a =7(x)}

42 /64

The “g-value” variation (1)

® The g-value of policy 7 at (x, a) is the value if one first takes
action a and then follows policy 7:

gn(x,2) = E [ZWtr(Xtv ar)

t=0

Xo=X,30 = a,{Vt > 1, a =7(x)}

® g. and g, satisfy the following Bellman equations

VX, qW(Xv a) = r(X7 a) +’YZP(Y|Xa a)qfr(Y77T(y)) < 4r = Ixqr

Vx, g.«(x,a) = r(x,a) + ’yZp(y|x, a) max g:(y,a) & q.=Taq.
y

Vx, m(x) € argmaxgq(x,a) < w=0gq

42 /64

The “g-value” variation (1)

® The g-value of policy 7 at (x, a) is the value if one first takes
action a and then follows policy 7:

gn(x,2) = E [ZWtr(Xtv ar)

t=0

® g. and g, satisfy the following Bellman equations

VX, gr(x,a) = r(x,a) +7Y_ plylx, a)a-(y, 7(y))

Vx, qu(x,3) = r(x,2) +7) plylx,) maxq.(y, &)

Vx, m(x) € argmaxq(x, a)

® The following relations hold:

Vv (x) = g=(x, 7(x)),

v.(x) = max q.(x, a),

y

y

=

=

Xo=X,30 = a,{Vt > 1, a =7(x)}

qr = I'zqr
q. = Tq.
™ =4q

G-(x,3) = r(x,3) +7 3 p(yIx, a)va (y)

y

q.(x,a) = r(x,a) +7 > p(ylx, a)vi(y)

y

42 /64

The “g-value” variation (1)

® “g-values” are values in an “augmented problem” where
states are X x A:

uncontrolled /stochastic controlled /deterministic

(xt, at)

® VI, Pl and MPI with g — values are mathematically equivalent
to their v-counterparts

(xt+1) (Xe+1, At41)

43 /64

The “g-value” variation (1)

® “g-values” are values in an “augmented problem” where
states are X x A:

uncontrolled /stochastic controlled /deterministic

(xt, at)

® VI, Pl and MPI with g — values are mathematically equivalent
to their v-counterparts

¢ Requires more memory (O(|X||A]) instead of O(|X]))

® The computation of Gq is lighter (O(]A|) instead of
O(|X[?|Al)) and model-free:

(xt+1) (Xe+1, At41)

Vx, m(x) € argmaxq(x,a) < w=0q
a

Vx, m«(x) € argmax g.(x, a)
a

43 /64

QOutline for Part 1

® Finite-Horizon Optimal Control

Problem definition
Policy evaluation: Value lteration!
Policy optimization: Value Iteration?

® Stationary Infinite-Horizon Optimal Control

Bellman operators

Contraction Mappings

Stationary policies

Policy evaluation

Policy optimization: Value Iteration3, Policy Iteration,
Modified /Optimistic Policy Iteration

44 /64

Brief Qutline

® Part 1: “Small” problems

® Optimal control problem definitions
® Dynamic Programming (DP) principles, standard algorithms

® Part 2: “Large” problems

® Approximate DP Algorithms
® Theoretical guarantees

45 /64

QOutline for Part 2

® Approximate Dynamic Programming

® Approximate VI: Fitted-Q lteration
® Approximate MPI: AMPI-Q, CBMPI

46 /64

Value lteration

Th+1 < Gvk
Vka1 < Tvi =T,

mt1 Vk

Modified Policy Iteration

The1 < Gk
Vi+1 < (Tﬂk+1)mvk

Algorithms

Policy Iteration

The1 < GV
Vk+1 < Vi = (Tﬂ'kA)ooVk

meN

47 /64

Value lteration

Tit1 < Gk

Vi1 < TVk = 1.

i1 Vk

Modified Policy Iteration

The1 < Gk
Vk+1 < (Tﬂk+1)mvk

Algorithms

Policy Iteration

Tht1 < GVi
Vk+1 — V7'l'k+1 = (Tﬂ'kAl)ooVk

When the problem is big (ex: Tetris, ~ 210x20 ~, ()60 states!), even

applying once T,

k+1

or storing the value function is infeasible. ®

47 /64

Approximate VI: Fitted Q-lteration

[(qk) are represented in F C RXXA} BT < Gqk
B gk+1 ¢ Tr Gk

48 /64

Approximate VI: Fitted Q-lteration

[(qk) are represented in F C RXXA) BT — Gg
B gk+1 ¢ Tr Gk

m Policy update =
In state x, the greedy action is estimated by:

mrt1(Xx) = arg max gi(x, a)
acA

m Value function update =

@ Point-wise estimation through samples: ')
For N state-action pairs (x”, a)) ~ u, simulate a transition (r(‘),x/('))
and compute an unbiased estimate of [T,rk“qk] (x(’),a(’))

G (<7, a7) = i + (', men (1)

@ Generalisation through regression:
gk+1 is computed as the best fit of these estimates in F

. . . N2
(q(x('), a(')) _ ak_H(X(l)7 a(')))

i=1 48 /64

M=

.1
Qe = argmin

Approximate Value lteration
Fitted Q-lteration is an instance of Approximate VI:
Gk+1 = T q + €t

where (regression literature):

1

= -T <O|supinfl|[f—=T —
leksallz,n = lgr+1—Tqkll2,u < g:gflgl\ gl2p+ N
~—

Approx.error Estim.error

49 /64

Approximate Value lteration
Fitted Q-lteration is an instance of Approximate VI:
Gk+1 = T q + €t

where (regression literature):

1

= -T <O|supinfl|[f—=T —
leksallz,n = lgr+1—Tqkll2,u < g:gflgl\ gl2p+ N
~—

Approx.error Estim.error

Theorem

Assume ||éx|lco < €. The loss due to running policy 7 instead of
the optimal policy m, satisfies

lim su . — <
k—)oop”q qu'kHOO (17,}/)2

49 /64

Error propagation for AVI

@ Bounding: ||gx — gk||oo:

lg« — qlloo = lgx — Tqr—1 — €kl
S || Tq* - qu—1||oo + €

< ’YHC]* - qk—1||oo + €

€
<

1’}/'

50 /64

Error propagation for AVI

@ Bounding: ||gx — gk||oo:

lg« — qlloo = lgx — Tqr—1 — €kl
S || Tq* - qu—1||oo +e€
< ’YHC]* - qk—1||oo + €
€
< .
ST

® From [|g. — gkl to [|q — Gy [l (Ths1 = Gau):

Hq* - q7TkA1||OC < H Tq* - T7Tk+1qk||00 + || T7Tk+1qk - Tﬂk+1qﬂ'k+1HOO
<7 — Taklloo + Y9k = Grys lo
< vllq* — qilloo + 7 (llgk — Gilloe + |G+ — Gmpalloc)

< 17”(7* = Gilfoo-

50 /64

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).

51/64

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.

51/64

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

* c(x,R)=C

® ¢(x,K) = c(x) maintenance plus extra costs.

51/64

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

* c(x,R)=C

® ¢(x,K) = c(x) maintenance plus extra costs.
Dynamics:

* plylx,R) ~ d(y) = Bexp~™ 1{y > 0},

* plylx, K) ~d(y —x) = Bexp~) 1{y > x}.

51/64

Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:
* c(x,R)=C
® ¢(x,K) = c(x) maintenance plus extra costs.
Dynamics:
* plylx,R) ~ d(y) = Bexp~™ 1{y > 0},
e p(y|x, K) ~d(y — x) = Bexp A=) 1{y > x}.
Problem: Minimize the discounted expected cost over an infinite
horizon.

51/64

Example: the Optimal Replacement Problem

The optimal value function satisfies

Vi(x) = min { c(x) —|—7/OOO d(y — x)vi(y)dy, C—l—v/ooo d(y)v*(y)dy}

(K)eep (R)eplace

Optimal policy: action that attains the minimum

o
Value function

Management cost
04

wear K R, K RK

52/64

Example: the Optimal Replacement Problem
Linear approximation space

= (k
F { Zak cos(ﬂ-Xmax)}

Collect N samples on a umform grld:

Figure: the target values computed as { Tvo(xn)}1<n<n-

53 /64

Example: the Optimal Replacement Problem
Linear approximation space
X

)

Xmax

19
F =4 va(x) = Zak cos(km
k=0

Collect N samples on a uniform grid:

Figure: Left: the target values computed as { T vo(xn) }1<n<n. Right:
the approximation vy € F of the target function T v.

53 /64

Example: the Optimal Replacement Problem

One more step:

Figure: Left: the target values computed as { Tvi(x,)}1<n<n. Right:
the approximation v, € F of Tv;.

54 /64

Example: the Optimal Replacement Problem

70

607

507

407

307

207

Figure: The approximation v € F.

54 /64

Approximate MPI-Q

[(qk) are represented in F C RXXA) BT — Gk
® g1 (o) 0k

55 /64

Approximate MPI-Q

[(qk) are represented in F C RXXA) BT — Gk
® g1 (o) 0k

m Policy update =
In state x, the greedy action is estimated by:
1 (x) = arg max qi(x; a)

m Value function update =

@ Point-wise estimation through rollouts of length m:

For N state-action pairs (x(') ~ p, compute an unbiased estimate of

[(Tro)"™ qi] (x,27) (using 2, then mis1 m times)

a5, &) = Zt 5 fr +’Y qk(Xm , a1 (x7))

@® Generalisation through regression:
gk+1 is computed as the best fit of these estimates in F

2

(462,27 = G (<, 4))

M=

1
k+1 = arg min —
q gqe}'N =

i=

55 /64

Approximate Modified Policy Iteration
AMPI-Q is an instance of:

Trr1 = Gqk
Gkt1 = (T)" Gk + €kt

where (regression literature):

m . m 1
llek+allz,e = gkt —(Trpy) " qicll2, < O g’srluepf;gffllf*(ﬂ) gll2,u + 7
—~

Approx.error Estim.error

56 /64

Approximate Modified Policy Iteration
AMPI-Q is an instance of:

Trr1 = Gqk
Gkt1 = (T)" Gk + €kt

where (regression literature):

. 1
llexrillzn = Nlakr1i—(Trpn) " il < O | sup inf |f —(Tx)"gllan+ —=
gmeFfeFr n
~—
Approx.error Estim.error

Theorem (Scherrer et al., 2014)
Assume ||ex|lco < €. The loss due to running policy 7y instead of the

optimal policy 7, satisfies

2y
li — < ——e.
imsup |G« — Gr,lloo < = 7)26

k— o0

56 /64

Classification-based MPI

(vk) represented in F C RX m Vk “ (Tr)"vk—1
(mk) represented in 1 C AX w1 — G[(Tr)" vi-1]

m Value function update =
Similar to AMPI-Q:

@ Point-wise estimation through rollouts of length m:
Draw N states x) ~

Ui (x0) =3 0 ’tht(l)+’ymvk—1(x,(ri))

@ Generalisation through regression

N
o1 i PN i 2
vi = argmin E (v(x()) = Vi (x!))

i=1

57 /64

Classification-based MPI

m Policy update =

When 7 = G[(Tx,)"vk—1], for each x € X, we have
[T (T2)"vies] () = mae [Ta(T2,)"vit] (4)

Qi (X,ﬂ'(x)) Qi (x,a)

@ For N states x1 K for all actions a, compute an unbiased estimate of
[To(Tx,)™ vi_1] (x') from M rollouts (using a, then 7x.1 m times):

m

M

P~ i 1 i m i

Q™ a) = 2373 A R + 4" v ()

j=1 t=0
@ 711 is the result of the (cost-sensitive) classifier:
1
_ : (7)
o= 35 86,0~ .02

acA

i=

58 /64

CBMPI
CBMPI is an instance of:

Vik = (Tr,)"vi—1 + €
M1 =G (T,) "Vieo

where (regression & classification literature):

. 1
lexll2,e = vk = (T,)" Vi—1l2,0 < O (;:EPF Jnf I — (Tx)"gll2,n + %>

=0 <;’° iy [max Q.1 (x,2) — @ui 7)) () + ﬁ)

ll€'x

59 /64

CBMPI
CBMPI is an instance of:

Vie = (T,)" Vi—1 + €k
(T)" Vi—1

where (regression & classification literature):

The1 =G

!
€h+1

. 1
lexll2,e = vk = (T,)" Vi—1l2,0 < O (sup_inf ||f — (Tx)"gll2,n + %>

g, mEF

, _ : 1
€ kll1u = O <€sgpﬂ er;fn;e; [mgx Qrrv(x,a) — Qn/,v(x,W(X))]u(X) + W)

Theorem (Scherrer et al., 2014)

Assume ||éx]|loo < €. The loss due to running policy 7y instead of the
optimal policy 7, satisfies

2~
limsup||g« — Gr,lloo < W(zvmue +€).

k—o00

59 /64

lllustration of approximation on Tetris

@ Approximation architecture for v:

“An expert says that” for all state x,

v(x) =~ vp(x)

= 0y Constant
+ 01h1(x) + O2ha(x) + - - - + G10h10(x) column height
+ 611 Ah1(x) 4+ 012Ahy(x) + - - - + O19Ahg(x) height variation
+ O max hi(x) max height
+ 61 L(x) # holes
+ ...

@ The classifier is based on the same features to compute a
score function for the (deterministic) next state.

© Sampling Scheme: play

60 /64

“Small” Tetris (10 x 10)

o
o |
g
i)
o
3
o
£ S R T
O ® // S - -
%)
GCJ ° 7/ Rollout size m of DPI
=07 * - - -
S S 1 20
) _——- 2 =— 10
)]
]
- e —————
zZ S I/ —_—— R
Oi/’_..
T T T T T
2 4 6 8 10

Iterations

Learning curves of CBMPI algorithm on the small 10 x 10 board. The results are

averaged over 100 runs of the algorithms. B = 8.10° samples per iteration.
61/64

Tetris (10 x 20)

—~ Rollout size m of CBMPI Rollout size m of DPI
© - =5 — =10 c=. 5 == 10
—
X
~ 8 |
heo]
7}
>
[}
€
o
3
£ S
ho]
[0}
o)
®
9]
>
<

o

T T T T T T T T
1 2 3 4 5 6 7 8
Iterations

Learning curves of CE, DPI, and CBMPI algorithms on the large 10 x 20 board. The
results are averaged over 100 runs of the algorithms. Bpp;,/campr = 16.108 samples

. . - 5
per iteration. Bcg = 1700.10°. 62/64

Topics not covered (1/2)

“Small problems”:
¢ Unkwown model, stochastic approximation (TD, Q-Learning,
Sarsa), Exploration vs Exploitation
e Complexity of Pl (independent of) ? open problem even
when the dynamics is deterministic (n? or - ?)

63 /64

Topics not covered (1/2)

“Small problems”:

¢ Unkwown model, stochastic approximation (TD, Q-Learning,
Sarsa), Exploration vs Exploitation

e Complexity of Pl (independent of) ? open problem even
when the dynamics is deterministic (n? or - ?)

“Large problems”:
e LSPI (Policy lteration with linear approximation of the value)

® Analysis in Lp-norm, concentrability coefficients / where to
sample ?

® Sensitivity of finite-horizon vs infinite-horizon problems
(non-stationary policies)

e Algorithms: Conservative Policy Iteration (Kakade and
Langford, 2002), Policy Search by Dynamic
Programming (Bagnell et al., 2003)

63 /64

Topics not covered (2/2)

Variations of Dynamic Programming:

® Variations of Dynamic Programming: deeper greedy operator
(tree search / AlphaZero), regularized operators

¢ Two-player Zero-sum games (min max)

® General-sum games...

64 /64

Topics not covered (2/2)

Variations of Dynamic Programming:

® Variations of Dynamic Programming: deeper greedy operator
(tree search / AlphaZero), regularized operators

¢ Two-player Zero-sum games (min max)

® General-sum games...

Thank you for your attention!

64 /64

	Introduction
	Finite-Horizon Optimal Control
	Policy Evaluation
	Policy Optimization

	Infinite-Horizon Optimal Control
	Bellman operators
	Optimal stationary policy

	Approximate Dynamic Programming
	Fitted Q-Iteration
	AMPI-Q
	CBMPI

