
Markov Decision Processes

Bruno Scherrer

INRIA (Institut National de Recherche en Informatique et ses Applications)
IECL (Institut Elie Cartan de Lorraine)

Reinforcement Learning Summer SCOOL
Lille - July 3rd

1 / 64



Credits for this lecture

Based on some material (slides, code, etc...) from:

• Alessandro Lazaric, “Introduction to Reinforcement learning”,
Toulouse, 2015

• Dimitri Bertsekas, “A series of lectures given at Tsinghua
University”, Jue 2014,
http://web.mit.edu/dimitrib/www/publ.html

References:

• “Neuro-Dynamic Programming” by D. P. Bertsekas and J. N.
Tsitsiklis, Athena Scientific, 1996

• “Markov Decision Processes, Discrete Stochastic Dynamic
Programming”, by M. L. Puterman

2 / 64

http://web.mit.edu/dimitrib/www/publ.html


Markov Decision Processes

• Research area initiated in the 1950s (Bellman), known under
various names (in various communities)
• Reinforcement learning (Artificial Intelligence, Machine

Learning)
• Stochastic optimal control (Control theory)
• Stochastic shortest path (Operations research)
• Sequential decision making under uncertainty (Economics)

⇒ Markov decision processes, dynamic programming

• Control of dynamical systems (under uncertainty)

• A rich variety of (accessible & elegant) theory/math,
algorithms, and applications/illustrations

• I will not cover the exploration/exploitation issues of RL

3 / 64



Markov Decision Processes

• Research area initiated in the 1950s (Bellman), known under
various names (in various communities)
• Reinforcement learning (Artificial Intelligence, Machine

Learning)
• Stochastic optimal control (Control theory)
• Stochastic shortest path (Operations research)
• Sequential decision making under uncertainty (Economics)

⇒ Markov decision processes, dynamic programming

• Control of dynamical systems (under uncertainty)

• A rich variety of (accessible & elegant) theory/math,
algorithms, and applications/illustrations

• I will not cover the exploration/exploitation issues of RL

3 / 64



Markov Decision Processes

• Research area initiated in the 1950s (Bellman), known under
various names (in various communities)
• Reinforcement learning (Artificial Intelligence, Machine

Learning)
• Stochastic optimal control (Control theory)
• Stochastic shortest path (Operations research)
• Sequential decision making under uncertainty (Economics)

⇒ Markov decision processes, dynamic programming

• Control of dynamical systems (under uncertainty)

• A rich variety of (accessible & elegant) theory/math,
algorithms, and applications/illustrations

• I will not cover the exploration/exploitation issues of RL

3 / 64



Brief Outline

• Part 1: “Small” problems
• Optimal control problem definitions
• Dynamic Programming (DP) principles, standard algorithms

• Part 2: “Large” problems
• Approximate DP Algorithms
• Theoretical guarantees

4 / 64



Outline for Part 1

• Finite-Horizon Optimal Control
• Problem definition
• Policy evaluation: Value Iteration1

• Policy optimization: Value Iteration2

• Stationary Infinite-Horizon Optimal Control
• Bellman operators
• Contraction Mappings
• Stationary policies
• Policy evaluation
• Policy optimization: Value Iteration3, Policy Iteration,

Modified/Optimistic Policy Iteration

5 / 64



The Finite-Horizon Optimal Control Problem

• Discrete-time dynamical system

xt+1 = ft(xt , at ,wt), t = 0, 1, . . . ,H − 1
• t: Discrete time
• xt : State: summarizes past information for predicting future

optimization
• at : Control/Action: decision to be selected at time t from a

given set A
• wt : Random parameter: disturbance/noise
• H: Horizon: number of times control is applied

• Reward (or Cost) function that is additive over time

E

{
H−1∑
t=0

rt(xt , at ,wt) + R(xH)

}
• Goal: optimize over policies (feedback control law):

at ∼ πt(·|Ft), t = 0, 1, . . . ,H − 1

where Ft = {x0, a0, r0, x1, . . . , xt−1, at−1, rt−1, xt}.
6 / 64



Important assumptions

• The distribution of the noise wt does not depend on past
values wt−1, . . . ,w0. Equivalently:

P(xt+1 = x ′|xt = x , at = a) = P(xt+1 = x ′|Ft) (Markov)

• Optimization over policies π0, . . . , πH−1, i.e. functions/rules

at ∼ πt(·|Ft).

This (closed-loop control) is DIFFERENT FROM optimizing
over sequences of actions a0, . . . , aH−1 (open-loop)!

• Optimization is in expectation (no risk measure)

The model is called: Markov Decision Process (MDP)

7 / 64



Policy Spaces

Policies can be:

• history-dependent (πt(·|Ft)) vs Markov (πt(·|xt))

• stationary (π(·|·)) vs non-stationary (πt(·|·))

• random (πt(at = a|·)) vs deterministic (πt(xt) ∈ A(xt))

Which type of policy should be considered depends on the the
model/objective. In MDPs, we shall see that we only need to
consider Markov deterministic policies.

Theorem

Let π be some history-dependent policy. Then for each initial state
x0 = y , there exists a Markov policy that induces the same
distributions (xt = ·, at = ·) for all time t ≥ 0.

8 / 64



Policy Spaces

Policies can be:

• history-dependent (πt(·|Ft)) vs Markov (πt(·|xt))

• stationary (π(·|·)) vs non-stationary (πt(·|·))

• random (πt(at = a|·)) vs deterministic (πt(xt) ∈ A(xt))

Which type of policy should be considered depends on the the
model/objective. In MDPs, we shall see that we only need to
consider Markov deterministic policies.

Theorem

Let π be some history-dependent policy. Then for each initial state
x0 = y , there exists a Markov policy that induces the same
distributions (xt = ·, at = ·) for all time t ≥ 0.

8 / 64



Policy Spaces

Policies can be:

• history-dependent (πt(·|Ft)) vs Markov (πt(·|xt))

• stationary (π(·|·)) vs non-stationary (πt(·|·))

• random (πt(at = a|·)) vs deterministic (πt(xt) ∈ A(xt))

Which type of policy should be considered depends on the the
model/objective. In MDPs, we shall see that we only need to
consider Markov deterministic policies.

Theorem

Let π be some history-dependent policy. Then for each initial state
x0 = y , there exists a Markov policy that induces the same
distributions (xt = ·, at = ·) for all time t ≥ 0.

8 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Proof
x0 = y . at ∼ πt(at |Ft). Write Pπ(·) for the probabilities induced
by the fact of following (πt(·|Ft)).
Let π′ be defined as

π′t(at = a|xt = x) = Pπ(at = a|xt = x , x0 = y).

Then, by induction on t, one can prove that

∀t ≥ 0,Pπ
′
(xt = x |x0 = y) = Pπ(xt = x |x0 = y).

Pπ
′

(xt = x|x0 = y) =
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ
′

(xt−1 = z, at−1 = a|x0 = y)

=
∑
z∈X

∑
a∈A

P(xt = x|x0 = y, xt−1 = z, at−1 = a)Pπ(xt−1 = z, at−1 = a|x0 = y)

= Pπ(xt = x|x0 = y).

Pπ
′

(xt = x, at = a|x0 = y) = Pπ
′

(at = a|xt = x, x0 = y)Pπ
′

(xt = x|x0 = y)

= Pπ(at = a|xt = x, x0 = y)Pπ(xt = x|x0 = y)

= Pπ(xt = x, at = a|x0 = y)

9 / 64



Example: The Retail Store Management Problem
Each month t, a store contains xt items (maximum capacity M) of a
specific goods and the demand for that goods is wt . At the beginning of
each month t, the manager of the store can order at more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C (a). The income for selling q items is f (q). If the
demand w is bigger than the available inventory x , customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f (x) = x , g(x) = 0.25x , h(x) = 0.25x , C(a) = (1 + 0.5a)1a>0, wt ∼

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

de
m

an
d

• t = 0, 1, . . . , 11, H = 12

• State space: x ∈ X = {0, 1, . . . ,M}
• Action space: At state x , a ∈ A(x) = {0, 1, . . . ,M − x}
• Dynamics: xt+1 = max( xt + at − wt , 0)

• Reward: r(xt , at ,wt) = −C (at)− h(xt + at) + f (min(wt , xt + at))
and R(x) = g(x).

10 / 64



Example: The Retail Store Management Problem
Each month t, a store contains xt items (maximum capacity M) of a
specific goods and the demand for that goods is wt . At the beginning of
each month t, the manager of the store can order at more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C (a). The income for selling q items is f (q). If the
demand w is bigger than the available inventory x , customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f (x) = x , g(x) = 0.25x , h(x) = 0.25x , C(a) = (1 + 0.5a)1a>0, wt ∼

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

de
m

an
d

• t = 0, 1, . . . , 11, H = 12

• State space: x ∈ X = {0, 1, . . . ,M}
• Action space: At state x , a ∈ A(x) = {0, 1, . . . ,M − x}
• Dynamics: xt+1 = max( xt + at − wt , 0)

• Reward: r(xt , at ,wt) = −C (at)− h(xt + at) + f (min(wt , xt + at))
and R(x) = g(x).

10 / 64



Example: The Retail Store Management Problem
Each month t, a store contains xt items (maximum capacity M) of a
specific goods and the demand for that goods is wt . At the beginning of
each month t, the manager of the store can order at more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C (a). The income for selling q items is f (q). If the
demand w is bigger than the available inventory x , customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f (x) = x , g(x) = 0.25x , h(x) = 0.25x , C(a) = (1 + 0.5a)1a>0, wt ∼

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

de
m

an
d

• t = 0, 1, . . . , 11, H = 12

• State space: x ∈ X = {0, 1, . . . ,M}
• Action space: At state x , a ∈ A(x) = {0, 1, . . . ,M − x}
• Dynamics: xt+1 = max( xt + at − wt , 0)

• Reward: r(xt , at ,wt) = −C (at)− h(xt + at) + f (min(wt , xt + at))
and R(x) = g(x).

10 / 64



Example: The Retail Store Management Problem
Each month t, a store contains xt items (maximum capacity M) of a
specific goods and the demand for that goods is wt . At the beginning of
each month t, the manager of the store can order at more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C (a). The income for selling q items is f (q). If the
demand w is bigger than the available inventory x , customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f (x) = x , g(x) = 0.25x , h(x) = 0.25x , C(a) = (1 + 0.5a)1a>0, wt ∼

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

de
m

an
d

• t = 0, 1, . . . , 11, H = 12

• State space: x ∈ X = {0, 1, . . . ,M}
• Action space: At state x , a ∈ A(x) = {0, 1, . . . ,M − x}
• Dynamics: xt+1 = max( xt + at − wt , 0)

• Reward: r(xt , at ,wt) = −C (at)− h(xt + at) + f (min(wt , xt + at))
and R(x) = g(x).

10 / 64



Example: The Retail Store Management Problem
Each month t, a store contains xt items (maximum capacity M) of a
specific goods and the demand for that goods is wt . At the beginning of
each month t, the manager of the store can order at more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C (a). The income for selling q items is f (q). If the
demand w is bigger than the available inventory x , customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f (x) = x , g(x) = 0.25x , h(x) = 0.25x , C(a) = (1 + 0.5a)1a>0, wt ∼

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

de
m

an
d

• t = 0, 1, . . . , 11, H = 12

• State space: x ∈ X = {0, 1, . . . ,M}
• Action space: At state x , a ∈ A(x) = {0, 1, . . . ,M − x}
• Dynamics: xt+1 = max( xt + at − wt , 0)

• Reward: r(xt , at ,wt) = −C (at)− h(xt + at) + f (min(wt , xt + at))
and R(x) = g(x).

10 / 64



Example: The Retail Store Management Problem
Each month t, a store contains xt items (maximum capacity M) of a
specific goods and the demand for that goods is wt . At the beginning of
each month t, the manager of the store can order at more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C (a). The income for selling q items is f (q). If the
demand w is bigger than the available inventory x , customers that
cannot be served leave. The value of the remaining inventory at the end
of the year is g(x).

M = 20, f (x) = x , g(x) = 0.25x , h(x) = 0.25x , C(a) = (1 + 0.5a)1a>0, wt ∼

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

de
m

an
d

• t = 0, 1, . . . , 11, H = 12

• State space: x ∈ X = {0, 1, . . . ,M}
• Action space: At state x , a ∈ A(x) = {0, 1, . . . ,M − x}
• Dynamics: xt+1 = max( xt + at − wt , 0)

• Reward: r(xt , at ,wt) = −C (at)− h(xt + at) + f (min(wt , xt + at))
and R(x) = g(x).

10 / 64



Example: The Retail Store Management Problem

2 stationary det. policies and 1 non-stationary det. policy:

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

π(1)(x) =

{
M − x if x < M/4

0 otherwise

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

π(2)(x) = max{(M−x)/2−x ; 0}

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

π
(3)
t (x) =

{
M − x if t < 6

b(M − x)/5c otherwise

Remark. MDP + policy ⇒ Markov chain on X .
11 / 64



Example: The Retail Store Management Problem

2 stationary det. policies and 1 non-stationary det. policy:

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

π(1)(x) =

{
M − x if x < M/4

0 otherwise

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

π(2)(x) = max{(M−x)/2−x ; 0}

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

π
(3)
t (x) =

{
M − x if t < 6

b(M − x)/5c otherwise

Remark. MDP + policy ⇒ Markov chain on X .
11 / 64



The Finite-Horizon Optimal Control Problem

• System: xt+1 = ft(xt , at ,wt), t = 0, 1, . . . ,H − 1

• Policy π = (π0, . . . , πH−1), such that at ∼ πt(·|xt)

The expected return of π starting at x at time s (the value of π in
x at time s) is:

vπ,s(x) = Eπ

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

}

How can we evaluate vπ,0(x) for some x ?

• Estimate by simulation and Monte-Carlo

• Develop the tree of all possible realizations /: time=O(eH)

12 / 64



The Finite-Horizon Optimal Control Problem

• System: xt+1 = ft(xt , at ,wt), t = 0, 1, . . . ,H − 1

• Policy π = (π0, . . . , πH−1), such that at ∼ πt(·|xt)

The expected return of π starting at x at time s (the value of π in
x at time s) is:

vπ,s(x) = Eπ

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

}

How can we evaluate vπ,0(x) for some x ?

• Estimate by simulation and Monte-Carlo /: approximate

• Develop the tree of all possible realizations /: time=O(eH)

12 / 64



The Finite-Horizon Optimal Control Problem

• System: xt+1 = ft(xt , at ,wt), t = 0, 1, . . . ,H − 1

• Policy π = (π0, . . . , πH−1), such that at ∼ πt(·|xt)

The expected return of π starting at x at time s (the value of π in
x at time s) is:

vπ,s(x) = Eπ

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

}

How can we evaluate vπ,0(x) for some x ?

• Estimate by simulation and Monte-Carlo /: approximate

• Develop the tree of all possible realizations /: time=O(eH)

12 / 64



Policy evaluation by Value Iteration

vπ,s(x) = Eπ

[
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

]

= Eπ[rs(xs , as ,ws) | xs = x] + Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x

]

=
∑
a

πs(as = a|xs = x) ×
(

E[rs(x , a,ws)]

+
∑
y

P(xs+1 = y |xs = x , as = a) Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x , xs+1 = y

] )

=
∑
a

πs(as = a|xs = x)

(
E[rs(x , π(x),ws)] +

∑
y

P(xs+1 = y |xs = x , as = a) vπ,s+1(y).

)

The computation of vπ,s(·) can be done from vπ,s+1(·), and
recurrently using vπ,H(·) = R(·). ,: time=O(|X |2H), for all x0!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vπ,s = Tπsvπ,s+1 = rπs + Pπsvπ,s+1.
13 / 64



Policy evaluation by Value Iteration

vπ,s(x) = Eπ

[
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

]

= Eπ[rs(xs , as ,ws) | xs = x] + Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x

]

=
∑
a

πs(as = a|xs = x) ×
(

E[rs(x , a,ws)]

+
∑
y

P(xs+1 = y |xs = x , as = a) Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x , xs+1 = y

] )

=
∑
a

πs(as = a|xs = x)

(
E[rs(x , π(x),ws)] +

∑
y

P(xs+1 = y |xs = x , as = a) vπ,s+1(y).

)

The computation of vπ,s(·) can be done from vπ,s+1(·), and
recurrently using vπ,H(·) = R(·). ,: time=O(|X |2H), for all x0!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vπ,s = Tπsvπ,s+1 = rπs + Pπsvπ,s+1.
13 / 64



Policy evaluation by Value Iteration

vπ,s(x) = Eπ

[
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

]

= Eπ[rs(xs , as ,ws) | xs = x] + Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x

]

=
∑
a

πs(as = a|xs = x) ×
(

E[rs(x , a,ws)]

+
∑
y

P(xs+1 = y |xs = x , as = a) Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x , xs+1 = y

] )

=
∑
a

πs(as = a|xs = x)

(
E[rs(x , π(x),ws)] +

∑
y

P(xs+1 = y |xs = x , as = a) vπ,s+1(y).

)

The computation of vπ,s(·) can be done from vπ,s+1(·), and
recurrently using vπ,H(·) = R(·). ,: time=O(|X |2H), for all x0!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vπ,s = Tπsvπ,s+1 = rπs + Pπsvπ,s+1.
13 / 64



Policy evaluation by Value Iteration

vπ,s(x) = Eπ

[
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

]

= Eπ[rs(xs , as ,ws) | xs = x] + Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x

]

=
∑
a

πs(as = a|xs = x) ×
(

E[rs(x , a,ws)]

+
∑
y

P(xs+1 = y |xs = x , as = a) Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x , xs+1 = y

] )

=
∑
a

πs(as = a|xs = x)

(
E[rs(x , π(x),ws)] +

∑
y

P(xs+1 = y |xs = x , as = a) vπ,s+1(y).

)

The computation of vπ,s(·) can be done from vπ,s+1(·), and
recurrently using vπ,H(·) = R(·). ,: time=O(|X |2H), for all x0!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vπ,s = Tπsvπ,s+1 = rπs + Pπsvπ,s+1.
13 / 64



Policy evaluation by Value Iteration

vπ,s(x) = Eπ

[
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

]

= Eπ[rs(xs , as ,ws) | xs = x] + Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x

]

=
∑
a

πs(as = a|xs = x) ×
(

E[rs(x , a,ws)]

+
∑
y

P(xs+1 = y |xs = x , as = a) Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x , xs+1 = y

] )

=
∑
a

πs(as = a|xs = x)

(
E[rs(x , π(x),ws)] +

∑
y

P(xs+1 = y |xs = x , as = a) vπ,s+1(y).

)

The computation of vπ,s(·) can be done from vπ,s+1(·), and
recurrently using vπ,H(·) = R(·). ,: time=O(|X |2H), for all x0!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vπ,s = Tπsvπ,s+1 = rπs + Pπsvπ,s+1.
13 / 64



Policy evaluation by Value Iteration

vπ,s(x) = Eπ

[
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

]

= Eπ[rs(xs , as ,ws) | xs = x] + Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x

]

=
∑
a

πs(as = a|xs = x) ×
(

E[rs(x , a,ws)]

+
∑
y

P(xs+1 = y |xs = x , as = a) Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x , xs+1 = y

] )

=
∑
a

πs(as = a|xs = x)

(
E[rs(x , π(x),ws)] +

∑
y

P(xs+1 = y |xs = x , as = a) vπ,s+1(y).

)

The computation of vπ,s(·) can be done from vπ,s+1(·), and
recurrently using vπ,H(·) = R(·). ,: time=O(|X |2H), for all x0!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vπ,s = Tπsvπ,s+1 = rπs + Pπsvπ,s+1.
13 / 64



Policy evaluation by Value Iteration

vπ,s(x) = Eπ

[
H−1∑
t=s

rt(xt , at ,wt) + R(xH) | xs = x

]

= Eπ[rs(xs , as ,ws) | xs = x] + Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x

]

=
∑
a

πs(as = a|xs = x) ×
(

E[rs(x , a,ws)]

+
∑
y

P(xs+1 = y |xs = x , as = a) Eπ

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH) | xs = x , xs+1 = y

] )

=
∑
a

πs(as = a|xs = x)

(
E[rs(x , π(x),ws)] +

∑
y

P(xs+1 = y |xs = x , as = a) vπ,s+1(y).

)

The computation of vπ,s(·) can be done from vπ,s+1(·), and
recurrently using vπ,H(·) = R(·). ,: time=O(|X |2H), for all x0!

“Dynamic Programming is a method for solving a complex problem
by breaking it down into a collection of simpler subproblems.”

Notations: vπ,s = Tπsvπ,s+1 = rπs + Pπsvπ,s+1.
13 / 64



Example: the Retail Store Management Problem

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

15

12

9

6

3

0

3

6

9

12

15

va
lu

e

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

15

12

9

6

3

0

3

6

9

12

15

va
lu

e

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

15

12

9

6

3

0

3

6

9

12

15

va
lu

e

14 / 64



Optimal value and policy

• System: xt+1 = ft(xt , at ,wt), t = 0, 1, . . . ,H − 1

• Policy π = (π0, . . . , πH−1), such that at ∼ πt(·|xt)
• Value (expected return) of π if we start from x :

vπ,0(x) = Eπ

{
H−1∑
t=0

rt(xt , at ,wt) + R(xH) | x0 = x

}

• Optimal value function v∗,0 and optimal policy π∗:

v∗,0(x0) = max
π=(π0,...,πH−1)

vπ,0(x0) and vπ∗,0(x0) = v∗,0(x0)

Naive optimization: time: O(eH) /

15 / 64



Optimal value and policy

• System: xt+1 = ft(xt , at ,wt), t = 0, 1, . . . ,H − 1

• Policy π = (π0, . . . , πH−1), such that at ∼ πt(·|xt)
• Value (expected return) of π if we start from x :

vπ,0(x) = Eπ

{
H−1∑
t=0

rt(xt , at ,wt) + R(xH) | x0 = x

}

• Optimal value function v∗,0 and optimal policy π∗:

v∗,0(x0) = max
π=(π0,...,πH−1)

vπ,0(x0) and vπ∗,0(x0) = v∗,0(x0)

Naive optimization: time: O(eH) /

15 / 64



Policy optimization by Value Iteration

v∗,s(x) = max
πs ,...

Eπs ,...

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs = x

}

= max
πs ,πs+1,...

Eπs ,πs+1,...

{∑
a

πs(as = a|xs = x)

(
rs(xs , a,ws)

+
∑
y

P(xs+1 = y |xs = x , as = a)

(
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

) ∣∣∣∣∣ xs = x , xs+1 = y

)}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) max
πs+1,...

Eπs+1,...

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs+1 = y

]}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) v∗,s+1(y)
}
.

Dynamic Programming: The computation of v∗,s(·) can be done from
v∗,s+1(·), and recurrently using: v∗,H(·) = R(·). ,: time=O(|X |2|A|H),
for all x0. Then, π∗,s(x) is any (deterministically chosen) action a that
minimizes the r.h.s.

16 / 64



Policy optimization by Value Iteration

v∗,s(x) = max
πs ,...

Eπs ,...

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs = x

}

= max
πs ,πs+1,...

Eπs ,πs+1,...

{∑
a

πs(as = a|xs = x)

(
rs(xs , a,ws)

+
∑
y

P(xs+1 = y |xs = x , as = a)

(
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

) ∣∣∣∣∣ xs = x , xs+1 = y

)}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) max
πs+1,...

Eπs+1,...

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs+1 = y

]}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) v∗,s+1(y)
}
.

Dynamic Programming: The computation of v∗,s(·) can be done from
v∗,s+1(·), and recurrently using: v∗,H(·) = R(·). ,: time=O(|X |2|A|H),
for all x0. Then, π∗,s(x) is any (deterministically chosen) action a that
minimizes the r.h.s.

16 / 64



Policy optimization by Value Iteration

v∗,s(x) = max
πs ,...

Eπs ,...

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs = x

}

= max
πs ,πs+1,...

Eπs ,πs+1,...

{∑
a

πs(as = a|xs = x)

(
rs(xs , a,ws)

+
∑
y

P(xs+1 = y |xs = x , as = a)

(
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

) ∣∣∣∣∣ xs = x , xs+1 = y

)}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) max
πs+1,...

Eπs+1,...

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs+1 = y

]}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) v∗,s+1(y)
}
.

Dynamic Programming: The computation of v∗,s(·) can be done from
v∗,s+1(·), and recurrently using: v∗,H(·) = R(·). ,: time=O(|X |2|A|H),
for all x0. Then, π∗,s(x) is any (deterministically chosen) action a that
minimizes the r.h.s.

16 / 64



Policy optimization by Value Iteration

v∗,s(x) = max
πs ,...

Eπs ,...

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs = x

}

= max
πs ,πs+1,...

Eπs ,πs+1,...

{∑
a

πs(as = a|xs = x)

(
rs(xs , a,ws)

+
∑
y

P(xs+1 = y |xs = x , as = a)

(
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

) ∣∣∣∣∣ xs = x , xs+1 = y

)}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) max
πs+1,...

Eπs+1,...

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs+1 = y

]}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) v∗,s+1(y)
}
.

Dynamic Programming: The computation of v∗,s(·) can be done from
v∗,s+1(·), and recurrently using: v∗,H(·) = R(·). ,: time=O(|X |2|A|H),
for all x0. Then, π∗,s(x) is any (deterministically chosen) action a that
minimizes the r.h.s.

16 / 64



Policy optimization by Value Iteration

v∗,s(x) = max
πs ,...

Eπs ,...

{
H−1∑
t=s

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs = x

}

= max
πs ,πs+1,...

Eπs ,πs+1,...

{∑
a

πs(as = a|xs = x)

(
rs(xs , a,ws)

+
∑
y

P(xs+1 = y |xs = x , as = a)

(
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

) ∣∣∣∣∣ xs = x , xs+1 = y

)}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) max
πs+1,...

Eπs+1,...

[
H−1∑
t=s+1

rt(xt , at ,wt) + R(xH)

∣∣∣∣∣ xs+1 = y

]}

= max
a

{
E
[
rs(x , a,ws)

]
+
∑
y

P(xs+1 = y |xs = x , as = a) v∗,s+1(y)
}
.

Dynamic Programming: The computation of v∗,s(·) can be done from
v∗,s+1(·), and recurrently using: v∗,H(·) = R(·). ,: time=O(|X |2|A|H),
for all x0. Then, π∗,s(x) is any (deterministically chosen) action a that
minimizes the r.h.s.

16 / 64



Example: the Retail Store Management Problem

Optimal
value
and

policy

vs

values of
policies

π(1), π(2), π(3)

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

15

12

9

6

3

0

3

6

9

12

15

va
lu

e

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

0

2

4

6

8

10

12

14

16

18

20

#
 o

f i
te

m
s 

pu
rc

ha
se

d

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

15

12

9

6

3

0

3

6

9

12

15

va
lu

e

0 1 2 3 4 5 6 7 8 9 10 11
time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

15

12

9

6

3

0

3

6

9

12

15

va
lu

e
0 1 2 3 4 5 6 7 8 9 10 11

time

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

st
oc

k

15

12

9

6

3

0

3

6

9

12

15

va
lu

e

17 / 64



Bellman’s principle of optimality

• The recurrent identities (recall that v∗,s(·) = vπ∗,0(·))

v∗,s(x) = max
a

{
E
[
rs(xs , as ,ws) | as = a

]
+
∑
y

P(xs+1 = y |xs = x , as = a) v∗,s+1(y)
}

= E
[
rs(xs , as ,ws) | as = π∗,s(xs)

]
+
∑
y

P(xs+1 = y |xs = x , as = π∗,s(xs)) v∗,s+1(y)

are called Bellman equations.

• Notations:

v∗,s = T sv∗,s = max
πs

Tπsv∗,s+1

= max
πs det.

Tπsv∗,s+1 = Tπ∗,sv∗,s+1

• At each step, Dyn. Prog. solves ALL the tail subroblems tail
subproblems of a given time length, using the solution of the
tail subproblems of shorter time length

18 / 64



Outline for Part 1

• Finite-Horizon Optimal Control
• Problem definition
• Policy evaluation: Value Iteration1

• Policy optimization: Value Iteration2

• Stationary Infinite-Horizon Optimal Control
• Bellman operators
• Contraction Mappings
• Stationary policies
• Policy evaluation
• Policy optimization: Value Iteration3, Policy Iteration,

Modified/Optimistic Policy Iteration

19 / 64



Infinite-Horizon Optimal Control Problem

• Same as finite-horizon (Markov Decision Process), but:
• the number of stages is infinite
• the system is stationary (ft = f , wt ∼ w , rt = r)

xt+1 = f (xt , at ,wt)
[
⇔ P(xt+1 = x ′|xt = x , at = a) = p(x , a, x ′)

]
t = 0, 1, 2, . . .

• Find a policy π∞0 = (π0, π1, . . . ) that maximizes (for all x)

vπ∞0 (x) = lim
H→∞

E

{
H−1∑
t=0

γtr(xt , at ,wt) | x0 = x

}

• γ ∈ (0, 1) is called the discount factor
• Discounted problems (γ < 1, |r | ≤ M <∞, v ≤ M

1−γ )
• Stochastic shortest path problems (γ = 1 with a termination state

reached with probability 1) (sparingly covered)

• Det. Stationary policies π = (π, π, . . . ) play a central role

We will not cover the average reward criterion limH→∞
1
H
E
{∑H−1

t=0 rt (xt , at ,wt )
}

nor unbounded rewards...

20 / 64



Infinite-Horizon Optimal Control Problem

• Same as finite-horizon (Markov Decision Process), but:
• the number of stages is infinite
• the system is stationary (ft = f , wt ∼ w , rt = r)

xt+1 = f (xt , at ,wt)
[
⇔ P(xt+1 = x ′|xt = x , at = a) = p(x , a, x ′)

]
t = 0, 1, 2, . . .

• Find a policy π∞0 = (π0, π1, . . . ) that maximizes (for all x)

vπ∞0 (x) = lim
H→∞

E

{
H−1∑
t=0

γtr(xt , at ,wt) | x0 = x

}

• γ ∈ (0, 1) is called the discount factor
• Discounted problems (γ < 1, |r | ≤ M <∞, v ≤ M

1−γ )
• Stochastic shortest path problems (γ = 1 with a termination state

reached with probability 1) (sparingly covered)

• Det. Stationary policies π = (π, π, . . . ) play a central role

We will not cover the average reward criterion limH→∞
1
H
E
{∑H−1

t=0 rt (xt , at ,wt )
}

nor unbounded rewards...

20 / 64



Example: Student Dilemma
Stationary MDPs naturally represented as a graph:

Work

Work

Work

Work

Rest
Rest

Rest

Rest

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=1

r=−1000

r=0

r=−10

r=100

r=−10

0.9

0.1

r=−1

1

2

3

4

5

6

7

States x5, x6, x7 are terminal. Whatever the policy, they are reached in finite

time with probability 1 so we can take γ = 1.
21 / 64



Example: Tetris

22 / 64



Example: the Retail Store Management Problem

Each month t, a store contains xt items (maximum capacity M) of a
specific goods and the demand for that goods is wt . At the end of each
month the manager of the store can order at more items from his
supplier. The cost of maintaining an inventory of x is h(x). The cost to
order a items is C (a). The income for selling q items is f (q). If the
demand w is bigger than the available inventory x , customers that
cannot be served leave. The value of the remaining inventory at the end

of the year is g(x). The rate of inflation is α = 3% = 0.03.

M = 20, f (x) = x , g(x) = 0.25x , h(x) = 0.25x , C(a) = (1 + 0.5a)1a>0, wt ∼ U({5, 6, . . . , 15}), γ = 1
1+α

• t = 0, 1, . . .

• State space: x ∈ X = {0, 1, . . . ,M}
• Action space: At state x , a ∈ A(x) = {0, 1, . . . ,M − x}
• Dynamics: xt+1 = max( xt + at − wt , 0)

• Reward: r(xt , at ,wt) = −C (at)− h(xt + at) + f (min(wt , xt + at)).

23 / 64



Bellman operators (I)

• For any function v of x , denote,

∀x , (Tv)(x) = max
a

E
[
r(x , a,w)

]
+ E

[
γv(f (x , a,w))

]
= max

a
r(x , a) + γ

∑
y

P(y |x , a)v(y)

• Tv is the optimal value for the one-stage problem with stage
reward r and terminal reward R = γv .

• T operates on bounded functions of x to produce other
bounded functions of x .

• For any stationary policy π and v , denote

(Tπv)(x) = r(x , π(x)) + γ
∑
y

P(y |x , π(x))v(y), ∀x

• Tπv is the value of π for the same one-stage problem
• The critical structure of the problem is captured in T and Tπ

and most of the theory of discounted problems can be
developed using these two (Bellman) operators.

24 / 64



Bellman operators (I)

• For any function v of x , denote,

∀x , (Tv)(x) = max
a

E
[
r(x , a,w)

]
+ E

[
γv(f (x , a,w))

]
= max

a
r(x , a) + γ

∑
y

P(y |x , a)v(y)

• Tv is the optimal value for the one-stage problem with stage
reward r and terminal reward R = γv .

• T operates on bounded functions of x to produce other
bounded functions of x .
• For any stationary policy π and v , denote

(Tπv)(x) = r(x , π(x)) + γ
∑
y

P(y |x , π(x))v(y), ∀x

• Tπv is the value of π for the same one-stage problem
• The critical structure of the problem is captured in T and Tπ

and most of the theory of discounted problems can be
developed using these two (Bellman) operators.

24 / 64



Bellman operators (I)

• For any function v of x , denote,

∀x , (Tv)(x) = max
a

E
[
r(x , a,w)

]
+ E

[
γv(f (x , a,w))

]
= max

a
r(x , a) + γ

∑
y

P(y |x , a)v(y)

• Tv is the optimal value for the one-stage problem with stage
reward r and terminal reward R = γv .

• T operates on bounded functions of x to produce other
bounded functions of x .
• For any stationary policy π and v , denote

(Tπv)(x) = r(x , π(x)) + γ
∑
y

P(y |x , π(x))v(y), ∀x

• Tπv is the value of π for the same one-stage problem
• The critical structure of the problem is captured in T and Tπ

and most of the theory of discounted problems can be
developed using these two (Bellman) operators.

24 / 64



Bellman operators (II)

• Given π∞0 = (π0, π1, . . . ), consider the H-stage policy
πH

0 = (π0, π1, . . . , πH−1) with terminal reward R = 0

• For 0 ≤ s ≤ H, consider the (H − s)-stage “tail” policy
πH
s = (πs , πs+1, . . . , πH−1) with R = 0

vπH
0

(x) = Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
r(x0, π0(x0),w0) + γ

(
H−1∑
t=1

γt−1r(xt , πt(xt),wt)

)]
= Ex0=x

[
r(x0, π0(x0),w0) + γvπH

1
(x1)

]
= (Tπ0vπH

1
)(x)

• By induction (vπH
H

= 0), we get for all x ,

vπH
0

(x) = (Tπ0Tπ1 . . .TπH−1
0)(x)

H→∞−−−−→ vπ∞0 (x)

25 / 64



Bellman operators (II)

• Given π∞0 = (π0, π1, . . . ), consider the H-stage policy
πH

0 = (π0, π1, . . . , πH−1) with terminal reward R = 0

• For 0 ≤ s ≤ H, consider the (H − s)-stage “tail” policy
πH
s = (πs , πs+1, . . . , πH−1) with R = 0

vπH
0

(x) = Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
r(x0, π0(x0),w0) + γ

(
H−1∑
t=1

γt−1r(xt , πt(xt),wt)

)]
= Ex0=x

[
r(x0, π0(x0),w0) + γvπH

1
(x1)

]
= (Tπ0vπH

1
)(x)

• By induction (vπH
H

= 0), we get for all x ,

vπH
0

(x) = (Tπ0Tπ1 . . .TπH−1
0)(x)

H→∞−−−−→ vπ∞0 (x)

25 / 64



Bellman operators (II)

• Given π∞0 = (π0, π1, . . . ), consider the H-stage policy
πH

0 = (π0, π1, . . . , πH−1) with terminal reward R = 0

• For 0 ≤ s ≤ H, consider the (H − s)-stage “tail” policy
πH
s = (πs , πs+1, . . . , πH−1) with R = 0

vπH
0

(x) = Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
r(x0, π0(x0),w0) + γ

(
H−1∑
t=1

γt−1r(xt , πt(xt),wt)

)]
= Ex0=x

[
r(x0, π0(x0),w0) + γvπH

1
(x1)

]
= (Tπ0vπH

1
)(x)

• By induction (vπH
H

= 0), we get for all x ,

vπH
0

(x) = (Tπ0Tπ1 . . .TπH−1
0)(x)

H→∞−−−−→ vπ∞0 (x)

25 / 64



Bellman operators (II)

• Given π∞0 = (π0, π1, . . . ), consider the H-stage policy
πH

0 = (π0, π1, . . . , πH−1) with terminal reward R = 0

• For 0 ≤ s ≤ H, consider the (H − s)-stage “tail” policy
πH
s = (πs , πs+1, . . . , πH−1) with R = 0

vπH
0

(x) = Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
r(x0, π0(x0),w0) + γ

(
H−1∑
t=1

γt−1r(xt , πt(xt),wt)

)]
= Ex0=x

[
r(x0, π0(x0),w0) + γvπH

1
(x1)

]
= (Tπ0vπH

1
)(x)

• By induction (vπH
H

= 0), we get for all x ,

vπH
0

(x) = (Tπ0Tπ1 . . .TπH−1
0)(x)

H→∞−−−−→ vπ∞0 (x)

25 / 64



Bellman operators (II)

• Given π∞0 = (π0, π1, . . . ), consider the H-stage policy
πH

0 = (π0, π1, . . . , πH−1) with terminal reward R = 0

• For 0 ≤ s ≤ H, consider the (H − s)-stage “tail” policy
πH
s = (πs , πs+1, . . . , πH−1) with R = 0

vπH
0

(x) = Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
r(x0, π0(x0),w0) + γ

(
H−1∑
t=1

γt−1r(xt , πt(xt),wt)

)]
= Ex0=x

[
r(x0, π0(x0),w0) + γvπH

1
(x1)

]
= (Tπ0vπH

1
)(x)

• By induction (vπH
H

= 0), we get for all x ,

vπH
0

(x) = (Tπ0Tπ1 . . .TπH−1
0)(x)

H→∞−−−−→ vπ∞0 (x)

25 / 64



Bellman operators (II)

• Given π∞0 = (π0, π1, . . . ), consider the H-stage policy
πH

0 = (π0, π1, . . . , πH−1) with terminal reward R = 0

• For 0 ≤ s ≤ H, consider the (H − s)-stage “tail” policy
πH
s = (πs , πs+1, . . . , πH−1) with R = 0

vπH
0

(x) = Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
r(x0, π0(x0),w0) + γ

(
H−1∑
t=1

γt−1r(xt , πt(xt),wt)

)]
= Ex0=x

[
r(x0, π0(x0),w0) + γvπH

1
(x1)

]
= (Tπ0vπH

1
)(x)

• By induction (vπH
H

= 0), we get for all x ,

vπH
0

(x) = (Tπ0Tπ1 . . .TπH−1
0)(x)

H→∞−−−−→ vπ∞0 (x)

25 / 64



Bellman operators (III)

• Similarly, the optimal H-stage value function with terminal
reward R = 0 is TH0.
• Fortunately, it can be shown that

v∗ = max
π∞0

vπ∞0 = max
π∞0

lim
H→∞

vπH
0

(∗)
= lim

H→∞
max
πH

0

vπH
0

= lim
H→∞

TH0,

i.e, the infinite-horizon problem is the limit of the H-horizon problem

when the horizon H tends to ∞
(*) For any policy π∞0 = (π0, π1, . . . ), and any initial state x ,

vπ∞0 (x) = Ex0=x

[ ∞∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸

Tπ0
Tπ1

...TπH−1
0

+Ex0=x

[ ∞∑
t=H

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸∣∣ · ∣∣≤∑∞t=H γ

tM≤ γHM
1−γ

max⇒ v∗(x) = (TH0)(x) + O(γH)

26 / 64



Bellman operators (III)

• Similarly, the optimal H-stage value function with terminal
reward R = 0 is TH0.

• Fortunately, it can be shown that

v∗ = max
π∞0

vπ∞0 = max
π∞0

lim
H→∞

vπH
0

(∗)
= lim

H→∞
max
πH

0

vπH
0

= lim
H→∞

TH0,

i.e, the infinite-horizon problem is the limit of the H-horizon problem

when the horizon H tends to ∞
(*) For any policy π∞0 = (π0, π1, . . . ), and any initial state x ,

vπ∞0 (x) = Ex0=x

[ ∞∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸

Tπ0
Tπ1

...TπH−1
0

+Ex0=x

[ ∞∑
t=H

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸∣∣ · ∣∣≤∑∞t=H γ

tM≤ γHM
1−γ

max⇒ v∗(x) = (TH0)(x) + O(γH)

26 / 64



Bellman operators (III)

• Similarly, the optimal H-stage value function with terminal
reward R = 0 is TH0.

• Fortunately, it can be shown that

v∗ = max
π∞0

vπ∞0 = max
π∞0

lim
H→∞

vπH
0

(∗)
= lim

H→∞
max
πH

0

vπH
0

= lim
H→∞

TH0,

i.e, the infinite-horizon problem is the limit of the H-horizon problem

when the horizon H tends to ∞
(*) For any policy π∞0 = (π0, π1, . . . ), and any initial state x ,

vπ∞0 (x) = Ex0=x

[ ∞∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸

Tπ0
Tπ1

...TπH−1
0

+Ex0=x

[ ∞∑
t=H

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸∣∣ · ∣∣≤∑∞t=H γ

tM≤ γHM
1−γ

max⇒ v∗(x) = (TH0)(x) + O(γH)

26 / 64



Bellman operators (III)

• Similarly, the optimal H-stage value function with terminal
reward R = 0 is TH0.

• Fortunately, it can be shown that

v∗ = max
π∞0

vπ∞0 = max
π∞0

lim
H→∞

vπH
0

(∗)
= lim

H→∞
max
πH

0

vπH
0

= lim
H→∞

TH0,

i.e, the infinite-horizon problem is the limit of the H-horizon problem

when the horizon H tends to ∞
(*) For any policy π∞0 = (π0, π1, . . . ), and any initial state x ,

vπ∞0 (x) = Ex0=x

[ ∞∑
t=0

γtr(xt , πt(xt),wt)

]

= Ex0=x

[
H−1∑
t=0

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸

Tπ0
Tπ1

...TπH−1
0

+Ex0=x

[ ∞∑
t=H

γtr(xt , πt(xt),wt)

]
︸ ︷︷ ︸∣∣ · ∣∣≤∑∞t=H γ

tM≤ γHM
1−γ

max⇒ v∗(x) = (TH0)(x) + O(γH)

26 / 64



The contraction property

Theorem

T and Tπ are γ-contraction mappings for the max norm ‖ · ‖∞.

where for all function v , ‖v‖∞ = maxx |v(x)|, and an operator F is a
γ-contraction mapping for that norm iff:

∀v1, v2, ‖Fv1 − Fv2‖∞ ≤ γ‖v1 − v2‖∞.

Proof (for T ): By using |maxa f (a)−maxa g(a)| ≤ maxa |f (a)− g(a)|,

max
x

∣∣∣∣∣
(Tv1)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v1(x)

−
(Tv2)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v2(y)


∣∣∣∣∣

≤ max
x

∣∣∣max
a
γ
∑
y

P(y |x , a)(v1(x)− v2(x))
∣∣∣ ≤ max

x
max
a
γ
∑
y

P(y |x , a)‖v1 − v2‖∞ = γ‖v1 − v2‖∞.

• By Banach fixed point theorem, F has one and only one fixed point
f ∗ to which the sequence fn = Ffn−1 = F nf0 converges for any f0.

• v∗ = Tv∗, and for any stationary policy π, vπ = Tπvπ.

27 / 64



The contraction property

Theorem

T and Tπ are γ-contraction mappings for the max norm ‖ · ‖∞.

where for all function v , ‖v‖∞ = maxx |v(x)|, and an operator F is a
γ-contraction mapping for that norm iff:

∀v1, v2, ‖Fv1 − Fv2‖∞ ≤ γ‖v1 − v2‖∞.

Proof (for T ): By using |maxa f (a)−maxa g(a)| ≤ maxa |f (a)− g(a)|,

max
x

∣∣∣∣∣
(Tv1)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v1(x)

−
(Tv2)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v2(y)


∣∣∣∣∣

≤ max
x

∣∣∣max
a
γ
∑
y

P(y |x , a)(v1(x)− v2(x))
∣∣∣ ≤ max

x
max
a
γ
∑
y

P(y |x , a)‖v1 − v2‖∞ = γ‖v1 − v2‖∞.

• By Banach fixed point theorem, F has one and only one fixed point
f ∗ to which the sequence fn = Ffn−1 = F nf0 converges for any f0.

• v∗ = Tv∗, and for any stationary policy π, vπ = Tπvπ.

27 / 64



The contraction property

Theorem

T and Tπ are γ-contraction mappings for the max norm ‖ · ‖∞.

where for all function v , ‖v‖∞ = maxx |v(x)|, and an operator F is a
γ-contraction mapping for that norm iff:

∀v1, v2, ‖Fv1 − Fv2‖∞ ≤ γ‖v1 − v2‖∞.

Proof (for T ): By using |maxa f (a)−maxa g(a)| ≤ maxa |f (a)− g(a)|,

max
x

∣∣∣∣∣
(Tv1)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v1(x)

−
(Tv2)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v2(y)


∣∣∣∣∣

≤ max
x

∣∣∣max
a
γ
∑
y

P(y |x , a)(v1(x)− v2(x))
∣∣∣ ≤ max

x
max
a
γ
∑
y

P(y |x , a)‖v1 − v2‖∞ = γ‖v1 − v2‖∞.

• By Banach fixed point theorem, F has one and only one fixed point
f ∗ to which the sequence fn = Ffn−1 = F nf0 converges for any f0.

• v∗ = Tv∗, and for any stationary policy π, vπ = Tπvπ.

27 / 64



The contraction property

Theorem

T and Tπ are γ-contraction mappings for the max norm ‖ · ‖∞.

where for all function v , ‖v‖∞ = maxx |v(x)|, and an operator F is a
γ-contraction mapping for that norm iff:

∀v1, v2, ‖Fv1 − Fv2‖∞ ≤ γ‖v1 − v2‖∞.

Proof (for T ): By using |maxa f (a)−maxa g(a)| ≤ maxa |f (a)− g(a)|,

max
x

∣∣∣∣∣
(Tv1)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v1(x)

−
(Tv2)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v2(y)


∣∣∣∣∣

≤ max
x

∣∣∣max
a
γ
∑
y

P(y |x , a)(v1(x)− v2(x))
∣∣∣ ≤ max

x
max
a
γ
∑
y

P(y |x , a)‖v1 − v2‖∞ = γ‖v1 − v2‖∞.

• By Banach fixed point theorem, F has one and only one fixed point
f ∗ to which the sequence fn = Ffn−1 = F nf0 converges for any f0.

• v∗ = Tv∗, and for any stationary policy π, vπ = Tπvπ.

27 / 64



The contraction property

Theorem

T and Tπ are γ-contraction mappings for the max norm ‖ · ‖∞.

where for all function v , ‖v‖∞ = maxx |v(x)|, and an operator F is a
γ-contraction mapping for that norm iff:

∀v1, v2, ‖Fv1 − Fv2‖∞ ≤ γ‖v1 − v2‖∞.

Proof (for T ): By using |maxa f (a)−maxa g(a)| ≤ maxa |f (a)− g(a)|,

max
x

∣∣∣∣∣
(Tv1)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v1(x)

−
(Tv2)(x)︷ ︸︸ ︷

max
a

r(x , a) + γ
∑
y

P(y |x , a)v2(y)


∣∣∣∣∣

≤ max
x

∣∣∣max
a
γ
∑
y

P(y |x , a)(v1(x)− v2(x))
∣∣∣ ≤ max

x
max
a
γ
∑
y

P(y |x , a)‖v1 − v2‖∞ = γ‖v1 − v2‖∞.

• By Banach fixed point theorem, F has one and only one fixed point
f ∗ to which the sequence fn = Ffn−1 = F nf0 converges for any f0.

• v∗ = Tv∗, and for any stationary policy π, vπ = Tπvπ.

27 / 64



There exists an optimal stationary policy

Theorem

A stationary policy π is optimal if and only if for all x , π(x) attains
the maximum in Bellman’s optimality equation v∗ = Tv∗, i.e.

∀x , π(x) ∈ arg max
a

{
r(x , a) +

∑
y

P(y |x , a)v∗(y)

}

or equivalently Tπv∗ = Tv∗

In the sequel, for any function v (not necessarily v∗!), we shall say that π is
greedy with respect to v when Tπv = Tv , and write π = Gv .
⇒ A policy π∗ is optimal iff π∗ = Gv∗.

Proof: (1) Let π be such that Tπv∗ = Tv∗. Since v∗ = Tv∗, we have
v∗ = Tπv∗, and by the uniqueness of the fixed point of Tπ (which is vπ),
then vπ = v∗.

(2) Let π be optimal. This means vπ = v∗. Since vπ = Tπvπ, we have

v∗ = Tπv∗ and the result follows from v∗ = Tv∗.
28 / 64



There exists an optimal stationary policy

Theorem

A stationary policy π is optimal if and only if for all x , π(x) attains
the maximum in Bellman’s optimality equation v∗ = Tv∗, i.e.

∀x , π(x) ∈ arg max
a

{
r(x , a) +

∑
y

P(y |x , a)v∗(y)

}

or equivalently Tπv∗ = Tv∗

In the sequel, for any function v (not necessarily v∗!), we shall say that π is
greedy with respect to v when Tπv = Tv , and write π = Gv .
⇒ A policy π∗ is optimal iff π∗ = Gv∗.

Proof: (1) Let π be such that Tπv∗ = Tv∗. Since v∗ = Tv∗, we have
v∗ = Tπv∗, and by the uniqueness of the fixed point of Tπ (which is vπ),
then vπ = v∗.

(2) Let π be optimal. This means vπ = v∗. Since vπ = Tπvπ, we have

v∗ = Tπv∗ and the result follows from v∗ = Tv∗.
28 / 64



There exists an optimal stationary policy

Theorem

A stationary policy π is optimal if and only if for all x , π(x) attains
the maximum in Bellman’s optimality equation v∗ = Tv∗, i.e.

∀x , π(x) ∈ arg max
a

{
r(x , a) +

∑
y

P(y |x , a)v∗(y)

}

or equivalently Tπv∗ = Tv∗

In the sequel, for any function v (not necessarily v∗!), we shall say that π is
greedy with respect to v when Tπv = Tv , and write π = Gv .
⇒ A policy π∗ is optimal iff π∗ = Gv∗.

Proof: (1) Let π be such that Tπv∗ = Tv∗. Since v∗ = Tv∗, we have
v∗ = Tπv∗, and by the uniqueness of the fixed point of Tπ (which is vπ),
then vπ = v∗.

(2) Let π be optimal. This means vπ = v∗. Since vπ = Tπvπ, we have

v∗ = Tπv∗ and the result follows from v∗ = Tv∗.
28 / 64



A few comments

• The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A||X |).

• Solving an infinite-horizon problem essentially amounts to find
the optimal value function v∗, i.e. to solve the fixed point
equation v∗ = Tv∗ (then take any policy π ∈ Gv∗)
• We already have an algorithm: for any v0,

vk+1 ← Tvk (Value Iteration)

converges asymptotically to the optimal value v∗
• Convergence rate is at least linear:

‖v∗ − vk+1‖∞ = ‖Tv∗ − Tvk‖∞ ≤ γ‖v∗ − vk‖∞.

29 / 64



A few comments

• The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A||X |).

• Solving an infinite-horizon problem essentially amounts to find
the optimal value function v∗, i.e. to solve the fixed point
equation v∗ = Tv∗ (then take any policy π ∈ Gv∗)
• We already have an algorithm: for any v0,

vk+1 ← Tvk (Value Iteration)

converges asymptotically to the optimal value v∗
• Convergence rate is at least linear:

‖v∗ − vk+1‖∞ = ‖Tv∗ − Tvk‖∞ ≤ γ‖v∗ − vk‖∞.

29 / 64



A few comments

• The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A||X |).

• Solving an infinite-horizon problem essentially amounts to find
the optimal value function v∗, i.e. to solve the fixed point
equation v∗ = Tv∗ (then take any policy π ∈ Gv∗)
• We already have an algorithm: for any v0,

vk+1 ← Tvk (Value Iteration)

converges asymptotically to the optimal value v∗
• Convergence rate is at least linear:

‖v∗ − vk+1‖∞ = ‖Tv∗ − Tvk‖∞ ≤ γ‖v∗ − vk‖∞.

29 / 64



A few comments

• The space of (deterministic) stationary policies is much
smaller than the space of (random) non-stationary policies. If
the state and action spaces are finite, then it is finite (|A||X |).

• Solving an infinite-horizon problem essentially amounts to find
the optimal value function v∗, i.e. to solve the fixed point
equation v∗ = Tv∗ (then take any policy π ∈ Gv∗)
• We already have an algorithm: for any v0,

vk+1 ← Tvk (Value Iteration)

converges asymptotically to the optimal value v∗
• Convergence rate is at least linear:

‖v∗ − vk+1‖∞ = ‖Tv∗ − Tvk‖∞ ≤ γ‖v∗ − vk‖∞.

29 / 64



Example: the Retail Store Management Problem

0 20 40 60 80 100
# iteration

0
5

10
15
20

st
oc

k

0
4
8
12
16
20
24
28
32
36

va
lu

e

0 5 10 15 20
stock

24

26

28

30

32

34

36

va
lu

e
0 20 40 60 80

# iteration

0
5

10
15
20

st
oc

k

0
2
4
6
8
10
12
14
16
18
20

#
 it

em
s 

pu
rc

ha
se

d

0 5 10 15 20
stock

0

2

4

6

8

10

12

#
 it

em
s 

pu
rc

ha
se

d

30 / 64



Mini-Tetris
Assume we play on a small 5× 5 board.

We can enumerate the 225 ' 3.106 possible boards and run Value
Iteration. The optimal value from the start of the game is ' 13, 7
lines on average per game.

[simulation]
31 / 64



Example: the student dilemma

Evaluation of vπ with π = {rest, work, work, rest}

Work

Work

Work

Work

Rest
Rest

Rest

Rest

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V  = 88.31

V  = 86.93

r=−10

V  = 88.9
4

r=1
V  = 88.3

2

V  = −105

V  = 100
6

V  = −1000
7

This can be done by Value Iteration: vk+1 ← Tπvk ...

32 / 64



Example: the student dilemma

Evaluation of vπ with π = {rest, work, work, rest}

Work

Work

Work

Work

Rest
Rest

Rest

Rest

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V  = 88.31

V  = 86.93

r=−10

V  = 88.9
4

r=1
V  = 88.3

2

V  = −105

V  = 100
6

V  = −1000
7

This can be done by Value Iteration: vk+1 ← Tπvk ...

32 / 64



Example: the student dilemma

vπ = Tπvπ

m

vπ(x) = r(x , π(x)) + γ
∑
y

p(y |x , π(x))vπ(y)

Work

Work

Work

Work

Rest
Rest

Rest

Rest

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V  = 88.31

V  = 86.93

r=−10

V  = 88.9
4

r=1
V  = 88.3

2

V  = −105

V  = 100
6

V  = −1000
7

Linear system of equations with unknowns Vi = vπ(xi )

V1 = 0 + 0.5V1 + 0.5V2

V2 = 1 + 0.3V1 + 0.7V3

V3 = −1 + 0.5V4 + 0.5V3

V4 = −10 + 0.9V6 + 0.1V4

V5 = −10

V6 = 100

V7 = −1000

⇒

(vπ, rπ ∈ R7, Pπ ∈ R7×7)

vπ = rπ + γPπvπ

⇓

vπ = (I − γPπ)−1rπ

(I − γPπ)−1 = I + γPπ + (γPπ)2 + . . . (always invertible)
33 / 64



Example: the student dilemma

vπ = Tπvπ

m

vπ(x) = r(x , π(x)) + γ
∑
y

p(y |x , π(x))vπ(y)

Work

Work

Work

Work

Rest
Rest

Rest

Rest

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V  = 88.31

V  = 86.93

r=−10

V  = 88.9
4

r=1
V  = 88.3

2

V  = −105

V  = 100
6

V  = −1000
7

Linear system of equations with unknowns Vi = vπ(xi )

V1 = 0 + 0.5V1 + 0.5V2

V2 = 1 + 0.3V1 + 0.7V3

V3 = −1 + 0.5V4 + 0.5V3

V4 = −10 + 0.9V6 + 0.1V4

V5 = −10

V6 = 100

V7 = −1000

⇒

(vπ, rπ ∈ R7, Pπ ∈ R7×7)

vπ = rπ + γPπvπ

⇓

vπ = (I − γPπ)−1rπ

(I − γPπ)−1 = I + γPπ + (γPπ)2 + . . . (always invertible)
33 / 64



Example: the student dilemma

vπ = Tπvπ

m

vπ(x) = r(x , π(x)) + γ
∑
y

p(y |x , π(x))vπ(y)

Work

Work

Work

Work

Rest
Rest

Rest

Rest

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V  = 88.31

V  = 86.93

r=−10

V  = 88.9
4

r=1
V  = 88.3

2

V  = −105

V  = 100
6

V  = −1000
7

Linear system of equations with unknowns Vi = vπ(xi )

V1 = 0 + 0.5V1 + 0.5V2

V2 = 1 + 0.3V1 + 0.7V3

V3 = −1 + 0.5V4 + 0.5V3

V4 = −10 + 0.9V6 + 0.1V4

V5 = −10

V6 = 100

V7 = −1000

⇒

(vπ, rπ ∈ R7, Pπ ∈ R7×7)

vπ = rπ + γPπvπ

⇓

vπ = (I − γPπ)−1rπ

(I − γPπ)−1 = I + γPπ + (γPπ)2 + . . . (always invertible)
33 / 64



Example: the student dilemma

vπ = Tπvπ

m

vπ(x) = r(x , π(x)) + γ
∑
y

p(y |x , π(x))vπ(y)

Work

Work

Work

Work

Rest
Rest

Rest

Rest

p=0.5

0.4

0.3

0.7

0.5

0.50.5

0.5

0.4

0.6

0.6

1
0.5

r=−1000

r=0

r=−10

r=100

0.9

0.1

r=−1

V  = 88.31

V  = 86.93

r=−10

V  = 88.9
4

r=1
V  = 88.3

2

V  = −105

V  = 100
6

V  = −1000
7

Linear system of equations with unknowns Vi = vπ(xi )

V1 = 0 + 0.5V1 + 0.5V2

V2 = 1 + 0.3V1 + 0.7V3

V3 = −1 + 0.5V4 + 0.5V3

V4 = −10 + 0.9V6 + 0.1V4

V5 = −10

V6 = 100

V7 = −1000

⇒

(vπ, rπ ∈ R7, Pπ ∈ R7×7)

vπ = rπ + γPπvπ

⇓

vπ = (I − γPπ)−1rπ

(I − γPπ)−1 = I + γPπ + (γPπ)2 + . . . (always invertible)
33 / 64



Policy Iteration

• For any initial stationary policy π0, for k = 0, 1, . . .
• Policy evaluation: compute the value vπk

of πk :

vπk = Tπvπk ⇔ vπk = (I − γPπk )−1rπk

• Policy improvement: pick πk+1 greedy wrt to vπk
(πk+1 = Gvπk ):

Tπk+1vπk = Tvπk ⇔ ∀x , πk+1(x) ∈ arg max
a

r(x , a) + γ
∑
y

P(y |x , a)vπk+1 (y)


• Stop when vπk+1

= vπk .

Theorem

Policy Iteration generates a sequence of policies with
non-decreasing values (vπk+1

≥ vπk ). When the MDP is finite,
convergence occurs in a finite number of iterations.

34 / 64



Policy Iteration

• For any initial stationary policy π0, for k = 0, 1, . . .
• Policy evaluation: compute the value vπk

of πk :

vπk = Tπvπk ⇔ vπk = (I − γPπk )−1rπk

• Policy improvement: pick πk+1 greedy wrt to vπk
(πk+1 = Gvπk ):

Tπk+1vπk = Tvπk ⇔ ∀x , πk+1(x) ∈ arg max
a

r(x , a) + γ
∑
y

P(y |x , a)vπk+1 (y)


• Stop when vπk+1

= vπk .

Theorem

Policy Iteration generates a sequence of policies with
non-decreasing values (vπk+1

≥ vπk ). When the MDP is finite,
convergence occurs in a finite number of iterations.

34 / 64



Policy Iteration

Proof: (1) Monotonicity:

vπk+1
− vπk = (I − γPπk+1

)−1rπk+1
− vπk

= (I − γPπk+1
)−1

(
rπk+1

+ γPπk+1
vπk − vπk

)
= (I − γPπk+1

)−1
(
Tπk+1

vπk − vπk
)

= (I − γPπk+1
)−1︸ ︷︷ ︸

≥0

(Tvπk − Tπkvπk︸ ︷︷ ︸
≥0

)

where we used (I − γPπk+1
)−1 = I + γPπk+1

+ (γPπk+1
)2 + · · · ≥ 0

(2) Optimality: Assume vπk+1
= vπk . Then

vπk = Tπk+1
vπk+1

= Tπk+1
vπk = Tvπk , and thus vπk = v∗ (by the

uniqueness of the fixed point of T ).

35 / 64



Policy Iteration

Proof: (1) Monotonicity:

vπk+1
− vπk = (I − γPπk+1

)−1rπk+1
− vπk

= (I − γPπk+1
)−1

(
rπk+1

+ γPπk+1
vπk − vπk

)
= (I − γPπk+1

)−1
(
Tπk+1

vπk − vπk
)

= (I − γPπk+1
)−1︸ ︷︷ ︸

≥0

(Tvπk − Tπkvπk︸ ︷︷ ︸
≥0

)

where we used (I − γPπk+1
)−1 = I + γPπk+1

+ (γPπk+1
)2 + · · · ≥ 0

(2) Optimality: Assume vπk+1
= vπk . Then

vπk = Tπk+1
vπk+1

= Tπk+1
vπk = Tvπk , and thus vπk = v∗ (by the

uniqueness of the fixed point of T ).

35 / 64



Policy Iteration

Proof: (1) Monotonicity:

vπk+1
− vπk = (I − γPπk+1

)−1rπk+1
− vπk

= (I − γPπk+1
)−1

(
rπk+1

+ γPπk+1
vπk − vπk

)
= (I − γPπk+1

)−1
(
Tπk+1

vπk − vπk
)

= (I − γPπk+1
)−1︸ ︷︷ ︸

≥0

(Tvπk − Tπkvπk︸ ︷︷ ︸
≥0

)

where we used (I − γPπk+1
)−1 = I + γPπk+1

+ (γPπk+1
)2 + · · · ≥ 0

(2) Optimality: Assume vπk+1
= vπk . Then

vπk = Tπk+1
vπk+1

= Tπk+1
vπk = Tvπk , and thus vπk = v∗ (by the

uniqueness of the fixed point of T ).

35 / 64



Policy Iteration

Proof: (1) Monotonicity:

vπk+1
− vπk = (I − γPπk+1

)−1rπk+1
− vπk

= (I − γPπk+1
)−1

(
rπk+1

+ γPπk+1
vπk − vπk

)
= (I − γPπk+1

)−1
(
Tπk+1

vπk − vπk
)

= (I − γPπk+1
)−1︸ ︷︷ ︸

≥0

(Tvπk − Tπkvπk︸ ︷︷ ︸
≥0

)

where we used (I − γPπk+1
)−1 = I + γPπk+1

+ (γPπk+1
)2 + · · · ≥ 0

(2) Optimality: Assume vπk+1
= vπk . Then

vπk = Tπk+1
vπk+1

= Tπk+1
vπk = Tvπk , and thus vπk = v∗ (by the

uniqueness of the fixed point of T ).

35 / 64



Policy Iteration

Proof: (1) Monotonicity:

vπk+1
− vπk = (I − γPπk+1

)−1rπk+1
− vπk

= (I − γPπk+1
)−1

(
rπk+1

+ γPπk+1
vπk − vπk

)
= (I − γPπk+1

)−1
(
Tπk+1

vπk − vπk
)

= (I − γPπk+1
)−1︸ ︷︷ ︸

≥0

(Tvπk − Tπkvπk︸ ︷︷ ︸
≥0

)

where we used (I − γPπk+1
)−1 = I + γPπk+1

+ (γPπk+1
)2 + · · · ≥ 0

(2) Optimality: Assume vπk+1
= vπk . Then

vπk = Tπk+1
vπk+1

= Tπk+1
vπk = Tvπk , and thus vπk = v∗ (by the

uniqueness of the fixed point of T ).

35 / 64



Value Iteration vs Policy Iteration

• Policy Iteration (PI)
• Convergence in finite time (in practice very fast)(∗)

• Each iteration has complexity O(|X |2|A|) + O(|X |3) (G + inv.)

• Value Iteration (VI)
• Asymptotic convergence (in practice may be long for π to

converge)
• Each iteration has complexity O(|X |2|A|) (T )

(*) Theorem (Ye, 2010, Hansen 2011, Scherrer 2013)

Policy Iteration converges in at most O( |X ||A|
1−γ log 1

1−γ ) iterations.

36 / 64



Proof of the complexity of PI

Lemma

For all pairs of policies π and π′, vπ′ − vπ = (I − γPπ′ )−1(Tπ′vπ − vπ).

For some state s0, (the “worst” state of π0)

v∗(s0)− Tπk v∗(s0) ≤ ‖v∗ − Tπk v∗‖∞
≤ ‖v∗ − vπk ‖∞ {Lemma}

≤ γk‖vπ∗ − vπ0‖∞ {γ-contraction}

= γk‖(I − γPπ0 )−1(v∗ − Tπ0v∗)‖∞ {Lemma}

≤
γk

1− γ
‖v∗ − Tπ0v∗‖∞. {‖(I − γPπ0 )−1‖∞ =

1

1− γ
}

=
γk

1− γ
(v∗(s0)− Tπ0v∗(s0)).

Elimination of a non-optimal action:
For all “sufficiently big” k, πk (s0) must differ from π0(s0).

“sufficiently big”: γk

1−γ < 1 ⇔ k ≥
⌈

log 1
1−γ

1−γ

⌉
>

⌈
log 1

1−γ
log 1

γ

⌉
.

There are at most n(m − 1) non-optimal actions to eliminate.

37 / 64



Proof of the complexity of PI

Lemma

For all pairs of policies π and π′, vπ′ − vπ = (I − γPπ′ )−1(Tπ′vπ − vπ).

For some state s0, (the “worst” state of π0)

v∗(s0)− Tπk v∗(s0) ≤ ‖v∗ − Tπk v∗‖∞
≤ ‖v∗ − vπk ‖∞ {Lemma}

≤ γk‖vπ∗ − vπ0‖∞ {γ-contraction}

= γk‖(I − γPπ0 )−1(v∗ − Tπ0v∗)‖∞ {Lemma}

≤
γk

1− γ
‖v∗ − Tπ0v∗‖∞. {‖(I − γPπ0 )−1‖∞ =

1

1− γ
}

=
γk

1− γ
(v∗(s0)− Tπ0v∗(s0)).

Elimination of a non-optimal action:
For all “sufficiently big” k, πk (s0) must differ from π0(s0).

“sufficiently big”: γk

1−γ < 1 ⇔ k ≥
⌈

log 1
1−γ

1−γ

⌉
>

⌈
log 1

1−γ
log 1

γ

⌉
.

There are at most n(m − 1) non-optimal actions to eliminate.

37 / 64



Proof of the complexity of PI

Lemma

For all pairs of policies π and π′, vπ′ − vπ = (I − γPπ′ )−1(Tπ′vπ − vπ).

For some state s0, (the “worst” state of π0)

v∗(s0)− Tπk v∗(s0) ≤ ‖v∗ − Tπk v∗‖∞
≤ ‖v∗ − vπk ‖∞ {Lemma}

≤ γk‖vπ∗ − vπ0‖∞ {γ-contraction}

= γk‖(I − γPπ0 )−1(v∗ − Tπ0v∗)‖∞ {Lemma}

≤
γk

1− γ
‖v∗ − Tπ0v∗‖∞. {‖(I − γPπ0 )−1‖∞ =

1

1− γ
}

=
γk

1− γ
(v∗(s0)− Tπ0v∗(s0)).

Elimination of a non-optimal action:
For all “sufficiently big” k, πk (s0) must differ from π0(s0).

“sufficiently big”: γk

1−γ < 1 ⇔ k ≥
⌈

log 1
1−γ

1−γ

⌉
>

⌈
log 1

1−γ
log 1

γ

⌉
.

There are at most n(m − 1) non-optimal actions to eliminate.

37 / 64



Proof of the complexity of PI

Lemma

For all pairs of policies π and π′, vπ′ − vπ = (I − γPπ′ )−1(Tπ′vπ − vπ).

For some state s0, (the “worst” state of π0)

v∗(s0)− Tπk v∗(s0) ≤ ‖v∗ − Tπk v∗‖∞
≤ ‖v∗ − vπk ‖∞ {Lemma}

≤ γk‖vπ∗ − vπ0‖∞ {γ-contraction}

= γk‖(I − γPπ0 )−1(v∗ − Tπ0v∗)‖∞ {Lemma}

≤
γk

1− γ
‖v∗ − Tπ0v∗‖∞. {‖(I − γPπ0 )−1‖∞ =

1

1− γ
}

=
γk

1− γ
(v∗(s0)− Tπ0v∗(s0)).

Elimination of a non-optimal action:
For all “sufficiently big” k, πk (s0) must differ from π0(s0).

“sufficiently big”: γk

1−γ < 1 ⇔ k ≥
⌈

log 1
1−γ

1−γ

⌉
>

⌈
log 1

1−γ
log 1

γ

⌉
.

There are at most n(m − 1) non-optimal actions to eliminate.

37 / 64



Proof of the complexity of PI

Lemma

For all pairs of policies π and π′, vπ′ − vπ = (I − γPπ′ )−1(Tπ′vπ − vπ).

For some state s0, (the “worst” state of π0)

v∗(s0)− Tπk v∗(s0) ≤ ‖v∗ − Tπk v∗‖∞
≤ ‖v∗ − vπk ‖∞ {Lemma}

≤ γk‖vπ∗ − vπ0‖∞ {γ-contraction}

= γk‖(I − γPπ0 )−1(v∗ − Tπ0v∗)‖∞ {Lemma}

≤
γk

1− γ
‖v∗ − Tπ0v∗‖∞. {‖(I − γPπ0 )−1‖∞ =

1

1− γ
}

=
γk

1− γ
(v∗(s0)− Tπ0v∗(s0)).

Elimination of a non-optimal action:
For all “sufficiently big” k, πk (s0) must differ from π0(s0).

“sufficiently big”: γk

1−γ < 1 ⇔ k ≥
⌈

log 1
1−γ

1−γ

⌉
>

⌈
log 1

1−γ
log 1

γ

⌉
.

There are at most n(m − 1) non-optimal actions to eliminate.

37 / 64



Proof of the complexity of PI

Lemma

For all pairs of policies π and π′, vπ′ − vπ = (I − γPπ′ )−1(Tπ′vπ − vπ).

For some state s0, (the “worst” state of π0)

v∗(s0)− Tπk v∗(s0) ≤ ‖v∗ − Tπk v∗‖∞
≤ ‖v∗ − vπk ‖∞ {Lemma}

≤ γk‖vπ∗ − vπ0‖∞ {γ-contraction}

= γk‖(I − γPπ0 )−1(v∗ − Tπ0v∗)‖∞ {Lemma}

≤
γk

1− γ
‖v∗ − Tπ0v∗‖∞. {‖(I − γPπ0 )−1‖∞ =

1

1− γ
}

=
γk

1− γ
(v∗(s0)− Tπ0v∗(s0)).

Elimination of a non-optimal action:
For all “sufficiently big” k, πk (s0) must differ from π0(s0).

“sufficiently big”: γk

1−γ < 1 ⇔ k ≥
⌈

log 1
1−γ

1−γ

⌉
>

⌈
log 1

1−γ
log 1

γ

⌉
.

There are at most n(m − 1) non-optimal actions to eliminate.

37 / 64



Proof of the complexity of PI

Lemma

For all pairs of policies π and π′, vπ′ − vπ = (I − γPπ′ )−1(Tπ′vπ − vπ).

For some state s0, (the “worst” state of π0)

v∗(s0)− Tπk v∗(s0) ≤ ‖v∗ − Tπk v∗‖∞
≤ ‖v∗ − vπk ‖∞ {Lemma}

≤ γk‖vπ∗ − vπ0‖∞ {γ-contraction}

= γk‖(I − γPπ0 )−1(v∗ − Tπ0v∗)‖∞ {Lemma}

≤
γk

1− γ
‖v∗ − Tπ0v∗‖∞. {‖(I − γPπ0 )−1‖∞ =

1

1− γ
}

=
γk

1− γ
(v∗(s0)− Tπ0v∗(s0)).

Elimination of a non-optimal action:
For all “sufficiently big” k, πk (s0) must differ from π0(s0).

“sufficiently big”: γk

1−γ < 1 ⇔ k ≥
⌈

log 1
1−γ

1−γ

⌉
>

⌈
log 1

1−γ
log 1

γ

⌉
.

There are at most n(m − 1) non-optimal actions to eliminate.

37 / 64



Example: Grid-World

[simulation]

38 / 64



Modified/Optimistic Policy Iteration (I)

Value Iteration

πk+1 ← Gvk
vk+1 ← Tvk = Tπk+1vk

Policy Iteration

πk+1 ← Gvk
vk+1 ← vπk+1 = (Tπk+1 )∞vk

Modified Policy Iteration (Puterman and Shin, 1978)

πk+1 ← Gvk
vk+1 ← (Tπk+1 )mvk m ∈ N

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

λ-Policy Iteration (Ioffe and Bertsekas, 1996)

πk+1 ← Gvk
vk+1 ← (1− λ)

∑∞
i=0 λ

i (Tπk+1 )i+1vk λ ∈ [0, 1]

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

πk+1 ← Gvk
vk+1 ←

∑∞
i=0 λi (Tπk+1 )i+1vk λi ≥ 0,

∑∞
i=0 λi = 1

39 / 64



Modified/Optimistic Policy Iteration (I)

Value Iteration

πk+1 ← Gvk
vk+1 ← Tvk = Tπk+1vk

Policy Iteration

πk+1 ← Gvk
vk+1 ← vπk+1 = (Tπk+1 )∞vk

Modified Policy Iteration (Puterman and Shin, 1978)

πk+1 ← Gvk
vk+1 ← (Tπk+1 )mvk m ∈ N

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

λ-Policy Iteration (Ioffe and Bertsekas, 1996)

πk+1 ← Gvk
vk+1 ← (1− λ)

∑∞
i=0 λ

i (Tπk+1 )i+1vk λ ∈ [0, 1]

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

πk+1 ← Gvk
vk+1 ←

∑∞
i=0 λi (Tπk+1 )i+1vk λi ≥ 0,

∑∞
i=0 λi = 1

39 / 64



Modified/Optimistic Policy Iteration (I)

Value Iteration

πk+1 ← Gvk
vk+1 ← Tvk = Tπk+1vk

Policy Iteration

πk+1 ← Gvk
vk+1 ← vπk+1 = (Tπk+1 )∞vk

Modified Policy Iteration (Puterman and Shin, 1978)

πk+1 ← Gvk
vk+1 ← (Tπk+1 )mvk m ∈ N

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

λ-Policy Iteration (Ioffe and Bertsekas, 1996)

πk+1 ← Gvk
vk+1 ← (1− λ)

∑∞
i=0 λ

i (Tπk+1 )i+1vk λ ∈ [0, 1]

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

πk+1 ← Gvk
vk+1 ←

∑∞
i=0 λi (Tπk+1 )i+1vk λi ≥ 0,

∑∞
i=0 λi = 1

39 / 64



Modified/Optimistic Policy Iteration (I)

Value Iteration

πk+1 ← Gvk
vk+1 ← Tvk = Tπk+1vk

Policy Iteration

πk+1 ← Gvk
vk+1 ← vπk+1 = (Tπk+1 )∞vk

Modified Policy Iteration (Puterman and Shin, 1978)

πk+1 ← Gvk
vk+1 ← (Tπk+1 )mvk m ∈ N

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

λ-Policy Iteration (Ioffe and Bertsekas, 1996)

πk+1 ← Gvk
vk+1 ← (1− λ)

∑∞
i=0 λ

i (Tπk+1 )i+1vk λ ∈ [0, 1]

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

πk+1 ← Gvk
vk+1 ←

∑∞
i=0 λi (Tπk+1 )i+1vk λi ≥ 0,

∑∞
i=0 λi = 1

39 / 64



Modified/Optimistic Policy Iteration (I)

Value Iteration

πk+1 ← Gvk
vk+1 ← Tvk = Tπk+1vk

Policy Iteration

πk+1 ← Gvk
vk+1 ← vπk+1 = (Tπk+1 )∞vk

Modified Policy Iteration (Puterman and Shin, 1978)

πk+1 ← Gvk
vk+1 ← (Tπk+1 )mvk m ∈ N

In practice, moderate values of m allow to find optimal policies faster than VI while
being lighter than PI.

λ-Policy Iteration (Ioffe and Bertsekas, 1996)

πk+1 ← Gvk
vk+1 ← (1− λ)

∑∞
i=0 λ

i (Tπk+1 )i+1vk λ ∈ [0, 1]

Optimistic Policy Iteration (Thiéry and Scherrer, 2009)

πk+1 ← Gvk
vk+1 ←

∑∞
i=0 λi (Tπk+1 )i+1vk λi ≥ 0,

∑∞
i=0 λi = 1

39 / 64



Modified/Optimistic Policy Iteration (II)

Theorem (Puterman and Shin, 1978)

For any m, Modified Policy Iteration converges asymptotically to an
optimal value-policy pair v∗, π∗.

Theorem (Ioffe and Bertsekas, 1996)

For any λ, λ-Policy Iteration converges asymptotically to an optimal
value-policy pair v∗, π∗.

Theorem (Thiéry and Scherrer, 2009)

For any set of weights λi , Optimistic Policy Iteration converges
asymptotically to an optimal value-policy pair v∗, π∗.

40 / 64



Modified/Optimistic Policy Iteration (II)

Theorem (Puterman and Shin, 1978)

For any m, Modified Policy Iteration converges asymptotically to an
optimal value-policy pair v∗, π∗.

Theorem (Ioffe and Bertsekas, 1996)

For any λ, λ-Policy Iteration converges asymptotically to an optimal
value-policy pair v∗, π∗.

Theorem (Thiéry and Scherrer, 2009)

For any set of weights λi , Optimistic Policy Iteration converges
asymptotically to an optimal value-policy pair v∗, π∗.

40 / 64



Modified/Optimistic Policy Iteration (II)

Theorem (Puterman and Shin, 1978)

For any m, Modified Policy Iteration converges asymptotically to an
optimal value-policy pair v∗, π∗.

Theorem (Ioffe and Bertsekas, 1996)

For any λ, λ-Policy Iteration converges asymptotically to an optimal
value-policy pair v∗, π∗.

Theorem (Thiéry and Scherrer, 2009)

For any set of weights λi , Optimistic Policy Iteration converges
asymptotically to an optimal value-policy pair v∗, π∗.

40 / 64



Optimism in the greedy partition

41 / 64



Optimism in the greedy partition

Policy Iteration

41 / 64



Optimism in the greedy partition

Policy Iteration

Value Iteration

41 / 64



Optimism in the greedy partition

Policy Iteration

Value Iteration

Opt. PI

41 / 64



The “q-value” variation (I)

• The q-value of policy π at (x , a) is the value if one first takes
action a and then follows policy π:

qπ(x , a) = E

[ ∞∑
t=0

γtr(xt , at)

∣∣∣∣∣ x0 = x , a0 = a, {∀t ≥ 1, at = π(xt)}

]

• qπ and q∗ satisfy the following Bellman equations

∀x , qπ(x , a) = r(x , a) + γ
∑
y

p(y |x , a)qπ(y , π(y)) ⇔ qπ = Tπqπ

∀x , q∗(x , a) = r(x , a) + γ
∑
y

p(y |x , a) max
a′

q∗(y , a
′) ⇔ q∗ = Tq∗

∀x , π(x) ∈ arg max
a

q(x , a) ⇔ π = Gq

• The following relations hold:

vπ(x) = qπ(x , π(x)), qπ(x , a) = r(x , a) + γ
∑
y

p(y |x , a)vπ(y)

v∗(x) = max
a

q∗(x , a), q∗(x , a) = r(x , a) + γ
∑
y

p(y |x , a)v∗(y)

42 / 64



The “q-value” variation (I)

• The q-value of policy π at (x , a) is the value if one first takes
action a and then follows policy π:

qπ(x , a) = E

[ ∞∑
t=0

γtr(xt , at)

∣∣∣∣∣ x0 = x , a0 = a, {∀t ≥ 1, at = π(xt)}

]

• qπ and q∗ satisfy the following Bellman equations

∀x , qπ(x , a) = r(x , a) + γ
∑
y

p(y |x , a)qπ(y , π(y)) ⇔ qπ = Tπqπ

∀x , q∗(x , a) = r(x , a) + γ
∑
y

p(y |x , a) max
a′

q∗(y , a
′) ⇔ q∗ = Tq∗

∀x , π(x) ∈ arg max
a

q(x , a) ⇔ π = Gq

• The following relations hold:

vπ(x) = qπ(x , π(x)), qπ(x , a) = r(x , a) + γ
∑
y

p(y |x , a)vπ(y)

v∗(x) = max
a

q∗(x , a), q∗(x , a) = r(x , a) + γ
∑
y

p(y |x , a)v∗(y)

42 / 64



The “q-value” variation (I)

• The q-value of policy π at (x , a) is the value if one first takes
action a and then follows policy π:

qπ(x , a) = E

[ ∞∑
t=0

γtr(xt , at)

∣∣∣∣∣ x0 = x , a0 = a, {∀t ≥ 1, at = π(xt)}

]

• qπ and q∗ satisfy the following Bellman equations

∀x , qπ(x , a) = r(x , a) + γ
∑
y

p(y |x , a)qπ(y , π(y)) ⇔ qπ = Tπqπ

∀x , q∗(x , a) = r(x , a) + γ
∑
y

p(y |x , a) max
a′

q∗(y , a
′) ⇔ q∗ = Tq∗

∀x , π(x) ∈ arg max
a

q(x , a) ⇔ π = Gq

• The following relations hold:

vπ(x) = qπ(x , π(x)), qπ(x , a) = r(x , a) + γ
∑
y

p(y |x , a)vπ(y)

v∗(x) = max
a

q∗(x , a), q∗(x , a) = r(x , a) + γ
∑
y

p(y |x , a)v∗(y)

42 / 64



The “q-value” variation (II)

• “q-values” are values in an “augmented problem” where
states are X × A:

(xt , at)
uncontrolled/stochastic−−−−−−−−−−−−−→ (xt+1)

controlled/deterministic−−−−−−−−−−−−−−→ (xt+1, at+1)

• VI, PI and MPI with q − values are mathematically equivalent
to their v -counterparts

• Requires more memory (O(|X ||A|) instead of O(|X |))

• The computation of Gq is lighter (O(|A|) instead of
O(|X |2|A|)) and model-free:

∀x , π(x) ∈ arg max
a

q(x , a) ⇔ π = Gq

∀x , π∗(x) ∈ arg max
a

q∗(x , a)

43 / 64



The “q-value” variation (II)

• “q-values” are values in an “augmented problem” where
states are X × A:

(xt , at)
uncontrolled/stochastic−−−−−−−−−−−−−→ (xt+1)

controlled/deterministic−−−−−−−−−−−−−−→ (xt+1, at+1)

• VI, PI and MPI with q − values are mathematically equivalent
to their v -counterparts

• Requires more memory (O(|X ||A|) instead of O(|X |))

• The computation of Gq is lighter (O(|A|) instead of
O(|X |2|A|)) and model-free:

∀x , π(x) ∈ arg max
a

q(x , a) ⇔ π = Gq

∀x , π∗(x) ∈ arg max
a

q∗(x , a)

43 / 64



Outline for Part 1

• Finite-Horizon Optimal Control
• Problem definition
• Policy evaluation: Value Iteration1

• Policy optimization: Value Iteration2

• Stationary Infinite-Horizon Optimal Control
• Bellman operators
• Contraction Mappings
• Stationary policies
• Policy evaluation
• Policy optimization: Value Iteration3, Policy Iteration,

Modified/Optimistic Policy Iteration

44 / 64



Brief Outline

• Part 1: “Small” problems
• Optimal control problem definitions
• Dynamic Programming (DP) principles, standard algorithms

• Part 2: “Large” problems
• Approximate DP Algorithms
• Theoretical guarantees

45 / 64



Outline for Part 2

• Approximate Dynamic Programming
• Approximate VI: Fitted-Q Iteration
• Approximate MPI: AMPI-Q, CBMPI

46 / 64



Algorithms

Value Iteration

πk+1 ← Gvk
vk+1 ← Tvk = Tπk+1

vk

Policy Iteration

πk+1 ← Gvk
vk+1 ← vπk+1

= (Tπk+1
)∞vk

Modified Policy Iteration

πk+1 ← Gvk
vk+1 ← (Tπk+1

)mvk m ∈ N

When the problem is big (ex: Tetris, ' 210×20 ' 1060 states!), even
applying once Tπk+1

or storing the value function is infeasible. /

47 / 64



Algorithms

Value Iteration

πk+1 ← Gvk
vk+1 ← Tvk = Tπk+1

vk

Policy Iteration

πk+1 ← Gvk
vk+1 ← vπk+1

= (Tπk+1
)∞vk

Modified Policy Iteration

πk+1 ← Gvk
vk+1 ← (Tπk+1

)mvk m ∈ N

When the problem is big (ex: Tetris, ' 210×20 ' 1060 states!), even
applying once Tπk+1

or storing the value function is infeasible. /

47 / 64



Approximate VI: Fitted Q-Iteration�� ��(qk) are represented in F ⊆ RX×A πk+1 ← Gqk
qk+1 ← Tπk+1

qk

Policy update

In state x , the greedy action is estimated by:

πk+1(x) = arg max
a∈A

qk(x , a)

Value function update

1 Point-wise estimation through samples:
For N state-action pairs (x (i), a(i)) ∼ µ, simulate a transition (r (i), x ′

(i)
)

and compute an unbiased estimate of
[
Tπk+1qk

]
(x (i), a(i))

q̂k+1(x (i), a(i)) = r
(i)
t + γqk(x ′

(i)
, πk+1(x ′

(i)
))

2 Generalisation through regression:
qk+1 is computed as the best fit of these estimates in F

qk+1 = arg min
q∈F

1

N

N∑
i=1

(
q(x (i), a(i))− q̂k+1(x (i), a(i))

)2

48 / 64



Approximate VI: Fitted Q-Iteration�� ��(qk) are represented in F ⊆ RX×A πk+1 ← Gqk
qk+1 ← Tπk+1

qk

Policy update

In state x , the greedy action is estimated by:

πk+1(x) = arg max
a∈A

qk(x , a)

Value function update

1 Point-wise estimation through samples:
For N state-action pairs (x (i), a(i)) ∼ µ, simulate a transition (r (i), x ′

(i)
)

and compute an unbiased estimate of
[
Tπk+1qk

]
(x (i), a(i))

q̂k+1(x (i), a(i)) = r
(i)
t + γqk(x ′

(i)
, πk+1(x ′

(i)
))

2 Generalisation through regression:
qk+1 is computed as the best fit of these estimates in F

qk+1 = arg min
q∈F

1

N

N∑
i=1

(
q(x (i), a(i))− q̂k+1(x (i), a(i))

)2

48 / 64



Approximate Value Iteration
Fitted Q-Iteration is an instance of Approximate VI:

qk+1 = Tqk + εk+1

where (regression literature):

‖εk+1‖2,µ = ‖qk+1−Tqk‖2,µ ≤ O

sup
g∈F

inf
f ∈F
‖f − Tg‖2,µ︸ ︷︷ ︸

Approx .error

+
1√
n︸︷︷︸

Estim.error


Theorem

Assume ‖εk‖∞ ≤ ε. The loss due to running policy πk instead of
the optimal policy π∗ satisfies

lim sup
k→∞

‖q∗ − qπk‖∞ ≤
2γ

(1− γ)2
ε.

49 / 64



Approximate Value Iteration
Fitted Q-Iteration is an instance of Approximate VI:

qk+1 = Tqk + εk+1

where (regression literature):

‖εk+1‖2,µ = ‖qk+1−Tqk‖2,µ ≤ O

sup
g∈F

inf
f ∈F
‖f − Tg‖2,µ︸ ︷︷ ︸

Approx .error

+
1√
n︸︷︷︸

Estim.error


Theorem

Assume ‖εk‖∞ ≤ ε. The loss due to running policy πk instead of
the optimal policy π∗ satisfies

lim sup
k→∞

‖q∗ − qπk‖∞ ≤
2γ

(1− γ)2
ε.

49 / 64



Error propagation for AVI

1 Bounding: ‖q∗ − qk‖∞:

‖q∗ − qk‖∞ = ‖q∗ − Tqk−1 − εk‖∞
≤ ‖Tq∗ − Tqk−1‖∞ + ε

≤ γ‖q∗ − qk−1‖∞ + ε

≤ ε

1− γ
.

2 From ‖q∗ − qk‖∞ to ‖q∗ − qπk+1
‖∞ (πk+1 = Gqk):

‖q∗ − qπk+1
‖∞ ≤ ‖Tq∗ − Tπk+1

qk‖∞ + ‖Tπk+1
qk − Tπk+1

qπk+1
‖∞

≤ ‖Tq∗ − Tqk‖∞ + γ‖qk − qπk+1
‖∞

≤ γ‖q∗ − qk‖∞ + γ
(
‖qk − q∗‖∞ + ‖q∗ − qπk+1

‖∞
)

≤ 2γ

1− γ
‖q∗ − qk‖∞.

50 / 64



Error propagation for AVI

1 Bounding: ‖q∗ − qk‖∞:

‖q∗ − qk‖∞ = ‖q∗ − Tqk−1 − εk‖∞
≤ ‖Tq∗ − Tqk−1‖∞ + ε

≤ γ‖q∗ − qk−1‖∞ + ε

≤ ε

1− γ
.

2 From ‖q∗ − qk‖∞ to ‖q∗ − qπk+1
‖∞ (πk+1 = Gqk):

‖q∗ − qπk+1
‖∞ ≤ ‖Tq∗ − Tπk+1

qk‖∞ + ‖Tπk+1
qk − Tπk+1

qπk+1
‖∞

≤ ‖Tq∗ − Tqk‖∞ + γ‖qk − qπk+1
‖∞

≤ γ‖q∗ − qk‖∞ + γ
(
‖qk − q∗‖∞ + ‖q∗ − qπk+1

‖∞
)

≤ 2γ

1− γ
‖q∗ − qk‖∞.

50 / 64



Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

• c(x ,R) = C

• c(x ,K ) = c(x) maintenance plus extra costs.

Dynamics:

• p(y |x ,R) ∼ d(y) = β exp−βy 1{y ≥ 0},
• p(y |x ,K ) ∼ d(y − x) = β exp−β(y−x)

1{y ≥ x}.
Problem: Minimize the discounted expected cost over an infinite
horizon.

51 / 64



Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

• c(x ,R) = C

• c(x ,K ) = c(x) maintenance plus extra costs.

Dynamics:

• p(y |x ,R) ∼ d(y) = β exp−βy 1{y ≥ 0},
• p(y |x ,K ) ∼ d(y − x) = β exp−β(y−x)

1{y ≥ x}.
Problem: Minimize the discounted expected cost over an infinite
horizon.

51 / 64



Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

• c(x ,R) = C

• c(x ,K ) = c(x) maintenance plus extra costs.

Dynamics:

• p(y |x ,R) ∼ d(y) = β exp−βy 1{y ≥ 0},
• p(y |x ,K ) ∼ d(y − x) = β exp−β(y−x)

1{y ≥ x}.
Problem: Minimize the discounted expected cost over an infinite
horizon.

51 / 64



Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

• c(x ,R) = C

• c(x ,K ) = c(x) maintenance plus extra costs.

Dynamics:

• p(y |x ,R) ∼ d(y) = β exp−βy 1{y ≥ 0},
• p(y |x ,K ) ∼ d(y − x) = β exp−β(y−x)

1{y ≥ x}.
Problem: Minimize the discounted expected cost over an infinite
horizon.

51 / 64



Example: the Optimal Replacement Problem

State: level of wear (x) of an object (e.g., a car).
Action: {(R)eplace, (K)eep}.
Cost:

• c(x ,R) = C

• c(x ,K ) = c(x) maintenance plus extra costs.

Dynamics:

• p(y |x ,R) ∼ d(y) = β exp−βy 1{y ≥ 0},
• p(y |x ,K ) ∼ d(y − x) = β exp−β(y−x)

1{y ≥ x}.
Problem: Minimize the discounted expected cost over an infinite
horizon.

51 / 64



Example: the Optimal Replacement Problem

The optimal value function satisfies

v∗(x) = min
{
c(x) + γ

∫ ∞
0

d(y − x)v∗(y)dy︸ ︷︷ ︸
(K)eep

, C + γ

∫ ∞
0

d(y)v∗(y)dy︸ ︷︷ ︸
(R)eplace

}

Optimal policy : action that attains the minimum

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Management cost

wear

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Value function

R RR KKK

52 / 64



Example: the Optimal Replacement Problem
Linear approximation space

F :=

{
vn(x) =

19∑
k=0

αk cos(kπ
x

xmax
)

}
.

Collect N samples on a uniform grid:

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

Figure: Left: the target values computed as {Tv0(xn)}1≤n≤N . Right:
the approximation v1 ∈ F of the target function Tv0.

53 / 64



Example: the Optimal Replacement Problem
Linear approximation space

F :=

{
vn(x) =

19∑
k=0

αk cos(kπ
x

xmax
)

}
.

Collect N samples on a uniform grid:

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Figure: Left: the target values computed as {Tv0(xn)}1≤n≤N . Right:
the approximation v1 ∈ F of the target function Tv0.

53 / 64



Example: the Optimal Replacement Problem

One more step:

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

++++

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+

+++++++++++++++++++++++++

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

Figure: Left: the target values computed as {Tv1(xn)}1≤n≤N . Right:
the approximation v2 ∈ F of Tv1.

54 / 64



Example: the Optimal Replacement Problem

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10

10

20

30

40

50

60

70

Figure: The approximation v20 ∈ F .

54 / 64



Approximate MPI-Q�� ��(qk) are represented in F ⊆ RX×A πk+1 ← Gqk
qk+1 ← (Tπk+1

)mqk

Policy update

In state x , the greedy action is estimated by:

πk+1(x) = arg max
a∈A

qk(x , a)

Value function update

1 Point-wise estimation through rollouts of length m:
For N state-action pairs (x (i), a(i)) ∼ µ, compute an unbiased estimate of[(
Tπk+1

)m
qk
]

(x (i), a(i)) (using a(i), then πk+1 m times)

q̂k+1(x (i), a(i)) =
∑m−1

t=0 γtr
(i)
t + γmqk(x

(i)
m , πk+1(x (i)))

2 Generalisation through regression:
qk+1 is computed as the best fit of these estimates in F

qk+1 = arg min
q∈F

1

N

N∑
i=1

(
q(x (i), a(i))− q̂k+1(x (i), a(i))

)2

55 / 64



Approximate MPI-Q�� ��(qk) are represented in F ⊆ RX×A πk+1 ← Gqk
qk+1 ← (Tπk+1

)mqk

Policy update

In state x , the greedy action is estimated by:

πk+1(x) = arg max
a∈A

qk(x , a)

Value function update

1 Point-wise estimation through rollouts of length m:
For N state-action pairs (x (i), a(i)) ∼ µ, compute an unbiased estimate of[(
Tπk+1

)m
qk
]

(x (i), a(i)) (using a(i), then πk+1 m times)

q̂k+1(x (i), a(i)) =
∑m−1

t=0 γtr
(i)
t + γmqk(x

(i)
m , πk+1(x (i)))

2 Generalisation through regression:
qk+1 is computed as the best fit of these estimates in F

qk+1 = arg min
q∈F

1

N

N∑
i=1

(
q(x (i), a(i))− q̂k+1(x (i), a(i))

)2

55 / 64



Approximate Modified Policy Iteration
AMPI-Q is an instance of:

πk+1 = Gqk
qk+1 = (Tπk+1

)mqk + εk+1

where (regression literature):

‖εk+1‖2,µ = ‖qk+1−(Tπk+1 )mqk‖2,µ ≤ O

 sup
g,π∈F

inf
f∈F
‖f − (Tπ)mg‖2,µ︸ ︷︷ ︸

Approx.error

+
1√
n︸︷︷︸

Estim.error



Theorem (Scherrer et al., 2014)

Assume ‖εk‖∞ ≤ ε. The loss due to running policy πk instead of the
optimal policy π∗ satisfies

lim sup
k→∞

‖q∗ − qπk
‖∞ ≤

2γ

(1− γ)2
ε.

56 / 64



Approximate Modified Policy Iteration
AMPI-Q is an instance of:

πk+1 = Gqk
qk+1 = (Tπk+1

)mqk + εk+1

where (regression literature):

‖εk+1‖2,µ = ‖qk+1−(Tπk+1 )mqk‖2,µ ≤ O

 sup
g,π∈F

inf
f∈F
‖f − (Tπ)mg‖2,µ︸ ︷︷ ︸

Approx.error

+
1√
n︸︷︷︸

Estim.error



Theorem (Scherrer et al., 2014)

Assume ‖εk‖∞ ≤ ε. The loss due to running policy πk instead of the
optimal policy π∗ satisfies

lim sup
k→∞

‖q∗ − qπk
‖∞ ≤

2γ

(1− γ)2
ε.

56 / 64



Classification-based MPI�



�
	(vk) represented in F ⊆ RX

(πk) represented in Π ⊆ AX

vk ← (Tπk
)mvk−1

πk+1 ← G
[
(Tπk

)mvk−1

]
Value function update

Similar to AMPI-Q:

1 Point-wise estimation through rollouts of length m:
Draw N states x (i) ∼ µ

v̂k+1(x (i)) =
∑m−1

t=0 γtr
(i)
t + γmvk−1(x

(i)
m )

2 Generalisation through regression

vk = arg min
v∈F

1

N

N∑
i=1

(
v(x (i))− v̂k(x (i)

)2

57 / 64



Classification-based MPI

Policy update

When π = G
[
(Tπk )mvk−1

]
, for each x ∈ X , we have[

Tπ(Tπk )mvk−1

]
(x)︸ ︷︷ ︸

Qk

(
x,π(x)

) = max
a∈A

[
Ta(Tπk )mvk−1

]
(x)︸ ︷︷ ︸

Qk (x,a)

1 For N states x (i) ∼ µ, for all actions a, compute an unbiased estimate of
[Ta (Tπk )m vk−1] (x (i)) from M rollouts (using a, then πk+1 m times):

Q̂k(x (i), a) =
1

M

M∑
j=1

m∑
t=0

γtr
(i,j)
t + γm+1vk−1(x

(i,j)
m+1)

2 πk+1 is the result of the (cost-sensitive) classifier:

πk+1 = arg min
π∈Π

1

N

N∑
i=1

[
max
a∈A

Q̂k(x (i), a)− Q̂k

(
x (i), π(x (i))

)]

58 / 64



CBMPI
CBMPI is an instance of:

vk = (Tπk
)mvk−1 + εk

πk+1 = Ĝε′k+1
(Tπk

)mvk−1

where (regression & classification literature):

‖εk‖2,µ = ‖vk − (Tπk )mvk−1‖2,µ ≤ O

(
sup

g,π∈F
inf
f∈F
‖f − (Tπ)mg‖2,µ +

1√
n

)
‖ε′k‖1,µ = O

(
sup

v∈F,π′
inf
π∈Π

∑
x∈X

[
max

a
Qπ′,v (x , a)− Qπ′,v (x , π(x)

)]
µ(x) +

1√
N

)

Theorem (Scherrer et al., 2014)

Assume ‖εk‖∞ ≤ ε. The loss due to running policy πk instead of the
optimal policy π∗ satisfies

lim sup
k→∞

‖q∗ − qπk
‖∞ ≤

2γ

(1− γ)2
(2γm+1ε+ ε′).

59 / 64



CBMPI
CBMPI is an instance of:

vk = (Tπk
)mvk−1 + εk

πk+1 = Ĝε′k+1
(Tπk

)mvk−1

where (regression & classification literature):

‖εk‖2,µ = ‖vk − (Tπk )mvk−1‖2,µ ≤ O

(
sup

g,π∈F
inf
f∈F
‖f − (Tπ)mg‖2,µ +

1√
n

)
‖ε′k‖1,µ = O

(
sup

v∈F,π′
inf
π∈Π

∑
x∈X

[
max

a
Qπ′,v (x , a)− Qπ′,v (x , π(x)

)]
µ(x) +

1√
N

)

Theorem (Scherrer et al., 2014)

Assume ‖εk‖∞ ≤ ε. The loss due to running policy πk instead of the
optimal policy π∗ satisfies

lim sup
k→∞

‖q∗ − qπk
‖∞ ≤

2γ

(1− γ)2
(2γm+1ε+ ε′).

59 / 64



Illustration of approximation on Tetris

1 Approximation architecture for v :

“An expert says that” for all state x ,

v(x) ' vθ(x)

= θ0 Constant

+ θ1h1(x) + θ2h2(x) + · · ·+ θ10h10(x) column height

+ θ11∆h1(x) + θ12∆h2(x) + · · ·+ θ19∆h9(x) height variation

+ θ20 max
k

hk(x) max height

+ θ21L(x) # holes

+ ...

2 The classifier is based on the same features to compute a
score function for the (deterministic) next state.

3 Sampling Scheme: play

60 / 64



“Small” Tetris (10× 10)

2 4 6 8 10

0
10

00
20

00
30

00
40

00

Iterations

A
ve

ra
ge

d 
lin

es
 r

em
ov

ed

Rollout size m of DPI

1
2

5
10

20

Learning curves of CBMPI algorithm on the small 10× 10 board. The results are

averaged over 100 runs of the algorithms. B = 8.106 samples per iteration.
61 / 64



Tetris (10× 20)

1 2 3 4 5 6 7 8
Iterations

A
ve

ra
ge

d 
lin

es
 r

em
ov

ed
 (

 ×
 1

06  )
0

10
20

Rollout size m of CBMPI

5 10

Rollout size m of DPI

5 10

CE

Learning curves of CE, DPI, and CBMPI algorithms on the large 10× 20 board. The

results are averaged over 100 runs of the algorithms. BDPI/CBMPI = 16.106 samples

per iteration. BCE = 1700.106.
62 / 64



Topics not covered (1/2)

“Small problems”:

• Unkwown model, stochastic approximation (TD, Q-Learning,
Sarsa), Exploration vs Exploitation

• Complexity of PI (independent of γ) ? open problem even
when the dynamics is deterministic (n2 or mn

n ?)

“Large problems”:

• LSPI (Policy Iteration with linear approximation of the value)

• Analysis in L2-norm, concentrability coefficients / where to
sample ?

• Sensitivity of finite-horizon vs infinite-horizon problems
(non-stationary policies)

• Algorithms: Conservative Policy Iteration (Kakade and
Langford, 2002), Policy Search by Dynamic
Programming (Bagnell et al., 2003)

63 / 64



Topics not covered (1/2)

“Small problems”:

• Unkwown model, stochastic approximation (TD, Q-Learning,
Sarsa), Exploration vs Exploitation

• Complexity of PI (independent of γ) ? open problem even
when the dynamics is deterministic (n2 or mn

n ?)

“Large problems”:

• LSPI (Policy Iteration with linear approximation of the value)

• Analysis in L2-norm, concentrability coefficients / where to
sample ?

• Sensitivity of finite-horizon vs infinite-horizon problems
(non-stationary policies)

• Algorithms: Conservative Policy Iteration (Kakade and
Langford, 2002), Policy Search by Dynamic
Programming (Bagnell et al., 2003)

63 / 64



Topics not covered (2/2)

Variations of Dynamic Programming:

• Variations of Dynamic Programming: deeper greedy operator
(tree search / AlphaZero), regularized operators

• Two-player Zero-sum games (min max)

• General-sum games...

Thank you for your attention!

64 / 64



Topics not covered (2/2)

Variations of Dynamic Programming:

• Variations of Dynamic Programming: deeper greedy operator
(tree search / AlphaZero), regularized operators

• Two-player Zero-sum games (min max)

• General-sum games...

Thank you for your attention!

64 / 64


	Introduction
	Finite-Horizon Optimal Control
	Policy Evaluation
	Policy Optimization

	Infinite-Horizon Optimal Control
	Bellman operators
	Optimal stationary policy

	Approximate Dynamic Programming
	Fitted Q-Iteration
	AMPI-Q
	CBMPI


