
RL

Olivier
PietquinReinforcement Learning

Olivier Pietquin
pietquin@google.com

olivier.pietquin@univ-lille.fr

Google Research - Brain Team

Reinforcement Learning Summer School 2019

RL

Olivier
Pietquin

Introduction

MDP

Dynamic
Programming

Part I

Reminder

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

1 Introduction
Problem description

2 MDP

3 Dynamic Programming

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Learning methods

Supervised Learning

Learn a mapping between inputs and outputs;

An oracle provides labelled examples of this mapping;

Unsupervised Learning

Learn a structure in a data set (capture the distribution);

No oracle;

Reinforcement Learning

Learn to Behave!

Online Learning.

Sequential decision making, controle.

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Learning methods

Supervised Learning

Learn a mapping between inputs and outputs;

An oracle provides labelled examples of this mapping;

Unsupervised Learning

Learn a structure in a data set (capture the distribution);

No oracle;

Reinforcement Learning

Learn to Behave!

Online Learning.

Sequential decision making, controle.

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Learning methods

Supervised Learning

Learn a mapping between inputs and outputs;

An oracle provides labelled examples of this mapping;

Unsupervised Learning

Learn a structure in a data set (capture the distribution);

No oracle;

Reinforcement Learning

Learn to Behave!

Online Learning.

Sequential decision making, controle.

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Learning methods

Supervised Learning

Learn a mapping between inputs and outputs;

An oracle provides labelled examples of this mapping;

Unsupervised Learning

Learn a structure in a data set (capture the distribution);

No oracle;

Reinforcement Learning

Learn to Behave!

Online Learning.

Sequential decision making, controle.

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

General problem

RL is a problem (unsolved), a general paradigm, not a method !

Image taken from ATR Cyber rodent project

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Induced Problems

Trial-and-error learning process

Acting is mandatory to learn.

Exploration vs Exploitation Dilemma

Should the agent follow its current policy because it knows
its consequences ?

Should the agent explore the environment to find a better
strategy ?

Delayed Rewards

The results of an action can be delayed

How to learn to sacrifice small immediate rewards to gain
large long term rewards ?

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Examples

Artificial problems

Mazes or grid-worlds

Mountain car

Inverted Pendulum

Games: BackGammon, Chess,
Atari, Go

Real-world problems

Man-Machine Interfaces

Data center cooling

Autonomous robotics

https://github.com/deepmind/lab
https://www.youtube.com/watch?v=x_qDs2kA7H4
https://www.youtube.com/results?search_query=inverted+pendulum
https://www.youtube.com/watch?v=Q70ulPJW3Gk
https://www.nature.com/nature/journal/v550/n7676/full/nature24270.html

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Examples I

Grid World

State: x,y position

Actions: up,down,right,left

Reward: +1 for reaching goal state, 0 every other step

Cart Pole

State: angle, angular velocity

Actions: right, left

Reward: +1 for vertical position, 0 otherwise

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Examples II

Chess, Go

State: configuration of the board

Actions: move a piece, place a stone

Reward: +1 for winning, 0 for draw, -1 for loosing

Atari

RL

Olivier
Pietquin

Introduction

Problem
description

MDP

Dynamic
Programming

Example: Dialogue as an MDP

The dialogue strategy is optimized at an intention level.

States

Dialogue states are given by the context (e.g. information
retrieved, status of a database query)

Actions

Dialog acts : simple communicative acts (e.g. greeting, open
question, confirmation)

Reward

User satisfaction usually estimated as a function of objective
measures (e.g. dialogue duration, task completion, ASR
performances)

RL

Olivier
Pietquin

Introduction

MDP

Long term vision

Policy

Value Function

Dynamic
Programming

1 Introduction

2 MDP
Long term vision
Policy
Value Function

3 Dynamic Programming

RL

Olivier
Pietquin

Introduction

MDP

Long term vision

Policy

Value Function

Dynamic
Programming

Markov Decision Processes (MDP)

Definition (MDP)

An MDP is a Tuple {S ,A,Pt , rt , γ} such
as:

S is the state space;

A is the action space;

T is the time axis ;

T a
ss′ ∈ (Pt)t∈T is a family of

markovian transition probability
distributions between states
conditionned on actions;

(rt)t∈T is a bouded familly of
rewards associated to transitions

γ is a discount factor

Interpretation
At each time t of T , the agent observes the current
state st ∈ S , performs an action at ∈ A on the
system wich is randomly led according to
T a
ss′ = Pt (.|st , at) to a new state st+1 (Pt (s′|s, a)

represents the probability to step into state s′ after
having performed action a at time t in state s), and
receives a reward rt (st , at , st+1) ∈ R. with

Ra
ss′ = E [rt |s, s′, a]

RL

Olivier
Pietquin

Introduction

MDP

Long term vision

Policy

Value Function

Dynamic
Programming

Gain : premises of local view

Definition (Cumulative reward)

Rt = rt+1 + rt+2 + ...+ rT =
T∑

i=t+1

ri

Definition (Discounted cumulative reward)

Rt = rt+1 + γrt+2 + γ2rt+3...+ γT−t+1rT + ... =
∞∑
k=0

γk rt+k+1

Definition (Averaged Gain)

Rt =
1

T − 1

T∑
i=t+1

ri

RL

Olivier
Pietquin

Introduction

MDP

Long term vision

Policy

Value Function

Dynamic
Programming

Policy

πt(a|s) : S → ∆A

Definition (Policy or Strategy π)

The agent’s policy or strategy πt at time t is an application
from S into distributions over A defining the agent’s behavior
(mapping between situations and actions, remember Thorndike)

Definition (Optimal Policy or Strategy π∗)

An optimal politicy or strategy π∗ for a given MDP is a politicy
that maximises the agent’s gain

RL

Olivier
Pietquin

Introduction

MDP

Long term vision

Policy

Value Function

Dynamic
Programming

Value Function

Definition (Value function for a state V π(s))

∀s ∈ S V π(s) = Eπ[
∞∑
t=0

γtr(st , at)|s0 = s]

V π(s) = Expected gain when starting from s and following the
policy π

Definition (Action value function or Quality function Qπ(s, a))

∀s ∈ S , a ∈ A Qπ(s, a) = Eπ[
∞∑
t=0

γtr(st , at)|s0 = s, a0 = a]

Qπ(s, a) = Expected gain when starting from state s, selecting
action a then following policy π

RL

Olivier
Pietquin

Introduction

MDP

Dynamic
Programming

Bellman
Equations

Algorithms

1 Introduction

2 MDP

3 Dynamic Programming
Bellman Equations
Algorithms

RL

Olivier
Pietquin

Introduction

MDP

Dynamic
Programming

Bellman
Equations

Algorithms

Bellman evaluation equations

Bellman equations for Qπ(s, a) and V π(s)

Qπ(s, a) =
∑
s′

T a
ss′ [Ra

ss′ + γV π(s ′)]

V π(s) =
∑
a

π(s|a)
∑
s′

T a
ss′ [Ra

ss′ + γV π(s ′)]

Systems of |S | linear equations in |S | unknowns (tabular
representation).

RL

Olivier
Pietquin

Introduction

MDP

Dynamic
Programming

Bellman
Equations

Algorithms

Bellman Optimality equations

Theorem (Bellman equation for V ∗(s))

V ∗(s) = max
a

∑
s′

T a
ss′ [Ra

ss′ + γV ∗(s ′)]

Theorem (Bellman Equations for Q∗(s, a))

Q∗(s, a) =
∑
s′

T a
ss′ [Ra

ss′ + γV ∗(s ′)]

=
∑
s′

T a
ss′ [Ra

ss′ + γmax
a′

Q∗(s ′, a′)]

∀s ∈ S π∗(s) = argmax
a

∑
s′

T a
ss′ [Ra

ss′ + γV ∗(s ′)]

RL

Olivier
Pietquin

Introduction

MDP

Dynamic
Programming

Bellman
Equations

Algorithms

Value Iteration

Value iteration algorithm

initialize V0 ∈ V
n← 0
while ‖Vn+1 − Vn‖ > ε do
for s ∈ S do
Vn+1(s) = maxa

∑
s′ T a

ss′ [Ra
ss′ + γVn(s ′)]

end for
n← n + 1

end while
for s ∈ S do
π(s) = argmaxa∈A

∑
s′ T a

ss′ [Ra
ss′ + γVn(s ′)]

end for
return Vn, π

RL

Olivier
Pietquin

Introduction

MDP

Dynamic
Programming

Bellman
Equations

Algorithms

Policy Iteration

Policy iteration algorithm

Init π0 ∈ D
n← 0
while πn+1 6= πn do

solve (Evaluation phase)

Vn+1(s) =
∑

s′ T
π(s)
ss′ [Ra

ss′ + γVn(s ′)] (Linear eq.)
for s ∈ S do (Improvement phase)
πn+1(s) = argmaxa∈A

∑
s′ T a

ss′ [Ra
ss′ + γVn(s ′)]

end for
n← n + 1

end while
return Vn, πn+1

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

Part II

Reinforcement Learning

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

4 Introduction

5 Problem Definition

6 Monte Carlo Methods

7 Temporal Differences

8 Exploration Management

9 Conclusion

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

4 Introduction

5 Problem Definition

6 Monte Carlo Methods

7 Temporal Differences

8 Exploration Management

9 Conclusion

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

Reinforcement Learning

Unknown environment

If the system’s dynamic is not known, learning has to happen
through interaction. No policy can be learnt before some
information about the environment is gathered. This setting
defines the Reinforcement Learning problem.

Naive Method : Adaptive DP

Learn the environment’s dynamic through interaction (sampling
the distributions) and apply dynamic programming.

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

4 Introduction

5 Problem Definition

6 Monte Carlo Methods

7 Temporal Differences

8 Exploration Management

9 Conclusion

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

Monte Carlo Methods

Learning V π(s) through sampling

Random choice of a starting state s ∈ S

Follow the policy π and observe the cumulative gain Rt

Do this infinitly and average: V π(s) = Eπ[Rt]

Learning Qπ(s, a) by sampling

Random choice of a starting state s ∈ S

Random choice of an action a ∈ A (exploring starts)

Follow policy π and observe gain Rt

Do that infinitly and average : Qπ(s, a) = Eπ[Rt]

Enhance the policy : π(s) = argmaxa∈AQπ(s, a)

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

Monte Carlo Methods

Learning V π(s) through sampling

Random choice of a starting state s ∈ S

Follow the policy π and observe the cumulative gain Rt

Do this infinitly and average: V π(s) = Eπ[Rt]

Learning Qπ(s, a) by sampling

Random choice of a starting state s ∈ S

Random choice of an action a ∈ A (exploring starts)

Follow policy π and observe gain Rt

Do that infinitly and average : Qπ(s, a) = Eπ[Rt]

Enhance the policy : π(s) = argmaxa∈AQπ(s, a)

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

Problem

Dynamic Programming

Requires knowing the system’s dynamics

But takes the structure into account :

∀s ∈ S V ∗(s) = max
a∈A

E (r(s, a) + γ
∑
s′∈S
T a
ss′V

∗(s ′))

Monte Carlo

No knowledge is necessary

No consideration is made of the structure :
Qπ(s, a) = Eπ[Rt]

So, the agent has to wait until the end of the interaction
to improve the policy

High variance

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

4 Introduction

5 Problem Definition

6 Monte Carlo Methods

7 Temporal Differences
Q-Learning
Eligibility Traces

8 Exploration Management

9 Conclusion

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Temporal Differences (TD) I

TD Principle

Ideal Case (deterministic) :

V (st) = rt + γrt+1 + γ2rt+2 + γ3rt+3 + . . .

= rt + γV (st+1)

In practice :

δt = [rt + γV (st+1)]− V (st) 6= 0!

δt is the temporal difference error (TD error).

Note: r(st , at) = rt
Note: target is now rt + γV (st+1) which is biased but with
lower variance.

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Temporal Differences (TD) II

New Evaluation method for V

Widrow-Hoff like update rule:

V t+1(st)← V t(st) + α
(
rt + γV t(st+1)− V t(st)

)
α is the learning rate

V (st) is the target

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

SARSA

Same for Q

Qt+1(st , at)← Qt(st , at) + α
(
rt + γQt(st+1, at+1)− Qt(st , at)

)

SARSA

Init Q0

for n← 0 until Ntot − 1 do
sn ← StateChoice

an ← ActionChoice = f (Qπt (s, a))
Perform action a and observe s ′, r
begin

Perform action a′ = f (Qπt (s ′, a′))
δn ← rn + γQn(s ′n, a

′)− Qn(sn, an)
Qn+1(sn, an)← Qn(sn, an) + αn(sn, an)δn
s ← s ′, a← a′ end

end for
return QNtot

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Q-Learning

Learn π∗ following πt (off-policy)

Qt+1(st , at)← Qt(st , at) + α(rt + γmax
b

Qt(st+1, b)− Qt(st , at))

Q-learning Algorithm

for n← 0 until Ntot − 1 do
sn ← StateChoice

an ← ActionChoice

(s ′n, rn)← Simuler(sn, an)
% Update Qn

begin
Qn+1 ← Qn

δn ← rn + γmaxb Qn(s ′n, b)− Qn(sn, an)
Qn+1(sn, an)← Qn(sn, an) + αn(sn, an)δn

end
end for
return QNtot

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Q-Learning

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Problem of TD(0) method

Problem

In case of a limited number of interactions, information
propagation may not reach all the states.

Ex : grid world.

Solution ?

Remember all interactions replay them a large number of times.

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Eligibility Traces

The TD framework is based on R1
t = rt+1 + γVt(st+1)

One can also write:

R2
t = rt + γrt+1 + γ2Vt(st+1)

Rn
t = rt + γrt+1 + γ2rt+2 + ...+ γnVt(st+n)

General update rule

∆Vt(st) = α[Rn
t − Vt(st)]

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Forward view I

Any average of different Rt can be used :

Rmoy
t = 1/2R2

t + 1/2R4
t

Rmoy
t = 1/3R1

t + 1/3R2
t + 1/3R3

t

Eligibility Traces

Rλt = (1− λ)
∞∑
n=1

λn−1Rn
t

∆V t(st) = α[Rλt − V (st)]

0 < λ < 1

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Forward view II

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Backward View I

A memory variable is
associated to each state
(state-action pair).

∀s, t et(s) =

{
γλet−1(s) si s 6= st

γλet−1(s) + 1 si s = st

Update rule

δt = rt + γV t(st+1)− V t(st)

∀s ∆V t(s) = αδtet(s)

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Backward View II

TD(λ) et Q(λ)

Every states are updated, the learning rate of each state being weighted by
the corresponding eligibility trace;

si λ = 0, TD(0) ;

si λ = 1, Monte Carlo

Sarsa(λ)

δt = rt + γQt(st+1, at+1)− Qt(st , at)

Qt+1(s, a) = Qt(s, a) + αδtet(s, a)

Watkin’s Q(λ)

δt = rt + γmax
b

Qt(st+1, b)− Qt(st , at)

Qt+1(s, a) = Qt(s, a) + αδtet(s, a)

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Backward View III

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Interpretation

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Q-Learning

Eligibility Traces

Exploration
Management

Conclusion

Replacing traces

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

4 Introduction

5 Problem Definition

6 Monte Carlo Methods

7 Temporal Differences

8 Exploration Management

9 Conclusion

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

Exploration Management

Action selection

Greedy Selection : a = a∗ = argmaxa Q(s, a)

ε-greedy selection : P(a∗) = 1− ε
Softmax (Gibbs or Boltzmann) P(a) = eQ(a)/τ∑

a′ e
Q(a′)/τ

Optimistic Initialization

Initialize the value functions with high values so as to visit
unseen states thanks to action selection rules.

Uncertainty and value of information

Take uncertainty on the values into account.

Compute the value of information provided by exploration.

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

4 Introduction

5 Problem Definition

6 Monte Carlo Methods

7 Temporal Differences

8 Exploration Management

9 Conclusion

RL

Olivier
Pietquin

Introduction

Problem
Definition

Monte Carlo
Methods

Temporal
Differences

Exploration
Management

Conclusion

Conclusion

Good

Optimal control without models of the physics

Online learning

Bad

Large state spaces

Sample efficiency

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Part III

Value Function Approximation

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

10 Introduction

11 Policy Evaluation

12 Control

13 Warnings

14 Deep Q-Network

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

The Curse of Dimensionality (Bellman) I

Some examples

BackGammon: 1020 states [Tesauro, 1995]

Chess: 1050 states

Go: 10170 states, 400 actions [Silver et al., 2016]

Atari: 240x160 continuous dimensions [Mnih et al., 2015]

Robotics: multiple degrees of freedom

Language: very large discrete action space

Tabular RL

Complexity is polynomial. Doesn’t scale up.

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

The Curse of Dimensionality (Bellman) II

Two problems

How to handle large state/action spaces in memory?

How to generalise over state/action spaces to learn faster?

Challenges for Machine Learing

Data non i.i.d because they come in trajectories

Non stationnarity during control

Off-policy learning induces difference between observed
and learnt distributions

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Value Function Approximation

Parametric approximation

The value function (or Q-function) will be expressed as a
function of a set of parameters θi :

V̂ π(s) = Vθ(s) = V (s, θ) Q̂π(s, a) = Qθ(s, a) = Q(s, a, θ)

where θ is the (column) vector of parameters: [θi]
p
i=1

Method

Search in space H = {Vθ(s)(resp. Qθ(s, a))|θ ∈ Rp} generated
by parameters θi for the best fit to V π(s) (resp. Qπ(s, a)) by
minimizing an objective function J(θ).

Goal

Learn optimal parameters θ∗ = argminθ J(θ) from samples.

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Types of parameterizations I

Linear function approximation

Vθ(s) =

p∑
i=0

θiφi (s) = θ>φ(s)

where φi (s) are called basis functions (or features) and define
H and φ(s) = [φi (s)]pi=1.

Look up table

It is a special case of linear function approximation

Parameters are the value of each state (θi = V (si) and
p = |S |)
φ(s) = δ(s) = [δi (s)]

|S |
i=1 where δi (s) = 1 if s = si and 0

otherwise

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Types of parameterizations II

Neural networks

θ is the vector of synaptic weights

Inputs to the network is either s or (s, a)

Either a single output for Vθ(s) or Qθ(s, a) or |A| outputs
(one for each Qθ(aj , s))

Other approximations

Tile Coding

Regression trees, neirest neighbours etc.

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

10 Introduction

11 Policy Evaluation
Direct methods
Residual Methods
Least-Square TD
Fitted-Value Iteration

12 Control

13 Warnings

14 Deep Q-Network

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Direct or semi-gradient methods I

General Idea

J(θ) = ‖V π(s)− Vθ(s)‖pp,µ

where ‖f (x)‖p,µ =
[∫
X µ(x)‖f (x)‖pdx

]1/p
is the expetation of

`p-norm according to distribution µ.
As samples are generated by a policy π, µ is in general the
stationary distribution dπ of the Markov Chain induced by π.

In practice: empirical `2-norm

J(θ) =
1

N

N∑
i=1

(vπi − Vθ(si))2

where vπi is a realisation of V π(si)

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Direct or semi-gradient methods II

Gradient Descent

θ ← θ − 1

2
α∇θJ(θ)

∇θJ(θ) =
2

N

N∑
i=1

(vπi − Vθ(si))∇θVθ(si)

Stochastic Gradient Descent

θ ← θ − αi

2
∇θ [vπi − Vθ(si)]2

← θ + αi∇θVθ(si) (vπi − Vθ(si))

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Direct or semi-gradient methods III

Problem

vπi is of course unknown.

Different solution

Monte Carlo estimate: vπi ≈ GH
i =

∑i+H
t=i γ

tr(st , at)

TD(0) estimate: vπi ≈ r(si , ai) + γVθ(si+1)

TD(λ) estimate: vπi ≈ Gλ
i = (1− λ)

∑
t λ

t−1G t
i

Most often used: TD(0) estimate (Bootstrapping)

Replace vπi by its current estimate according to Bellman
equation: r(si , ai) + γVθi−1

(si+1):

θ ← θ + αi∇θVθ(si) (r(si , ai) + γVθ(si+1)− Vθ(si))

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Direct or semi-gradient methods IV

Linear TD(0)

Vθ(s) = θ>φ(s)

∇θVθ(s) = φ(s)

Linear TD(0) update:

θ ← θ + αiφ(si)
(
r(si , ai) + γθ>φ(si+1)− θ>φ(si)

)
Notes

This generalises exact TD(0) (using φ(s) = δ(s))

Guaranteed to converge to global optimum with linear
function approximation

No guarantee in the general case.

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Residual or full gradient methods I

Semi versus full gradient

Semi-gradient: estimate of vπi doesn’t follow gradient of
J(θ), only ∇θVθ
Use TD(0) before derivation

Same as minimizing the Bellman residual:

J(θ) = ‖TπVθ(s)− Vθ(s)‖pµ,p

Where Tπ is the evaluation Bellman operator:

TπV (s) = Eπ[R(s, a) + γV (s ′)]

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Residual or full gradient methods II

Residual approach [Baird, 1995]

V̂θ(s) must satisfy Bellman equation (V π = TπV π):

J(θ) = ‖TπVθ(s)− Vθ(s)‖pµ,p

In practice

J(θ) =
1

N

N∑
i=1

(
T̂πVθ(si)− Vθ(si)

)2

with T̂πV (s) = r(s, π(s)) + γV (s ′)

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Residual or full gradient methods III

Gradient descent

θ ← θ−α
N

N∑
i=1

(
∇θT̂πVθ(si)−∇θVθ(si)

)(
T̂πVθ(si)− Vθ(si)

)

Stochastic Gradient Descent

θ ← θ − αi

(
∇θT̂πVθ(si)−∇θVθ(si)

)(
T̂πVθ(si)− Vθ(si)

)
Linear residual

θ ← θ−αi (γφ(si+1)− φ(si))
(
r(si , ai) + γθ>φ(si+1)− θ>φ(si)

)

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Residual or full gradient methods IV

Problem

Approach works with deterministic MDPs

In stochastic MPDs, the estimator is biased:

E
[(

T̂πVθ(s)− Vθ(s)
)2
]

=
[
E
(
T̂πVθ(s)− Vθ(s)

)]2

+ Var
(
T̂πVθ(s)− Vθ(s)

)
6= E

[(
Vθ(s)− T̂Vθ(s)

)]2

Solution : double sampling [Baird, 1995]

θ ← θ−αi

[
γ∇θVθ(s1

i+1)−∇θVθ(sj)
] (

r(si , ai) + γVθ(s2
i+1)− Vθ(si)

)

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Least-Square Temporal Differences I

General idea (batch method)

Let’s define Π as the projection operator such that:

ΠV = argmin
Vθ∈H

‖V − Vθ‖qν,q

Least-square TD minimizes the distance between the current
estimate Vθ and the projection on H of TπVθ(s)

J(θ) = ‖Vθ(s)− ΠTVθ(s)‖pµ,p

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Least-Square Temporal Differences II

Two nested optimisation problems

J1(θ) =
1

N

N∑
i=1

‖Vθ(si)− Vω(si)‖2

J2(ω) =
1

N

N∑
i=1

‖Vω(si)− (r(si , ai) + γVθ(si+1))‖2

Linear solution: LSTD [Bradtke and Barto, 1996, Boyan, 1999]

θ∗ =

[
N∑
i=1

φ(si) [φ(si)− γφ(si+1)]>
]−1 N∑

i=1

φ(si)r(si , ai).

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Direct methods

Residual
Methods

Least-Square TD

Fitted-Value
Iteration

Control

Warnings

Deep
Q-Network

Iterative projected fixed point

Fitted value iteration

Under some conditions, the composition of Π and Tπ remains
a contraction. The Fitted Value Iteration (FVI) procedure
consists in iteratively applying the following rule:

Vθ ← ΠTVθ

In practice (batch method) [Gordon, 1995]

Collect a set of transitions with π: {si , ai , r(si , ai), si+1}Ni=1

Initialise θ0

Build a data set:
Dt = {si , T̂πVθt (si)} = {si , r(si , ai) + γVθt (si+1)}Ni=1

Regress on Dt to find θt+1

Iterate until convergence

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

SARSA

LSPI

Fitted-Q

Warnings

Deep
Q-Network

10 Introduction

11 Policy Evaluation

12 Control
SARSA
LSPI
Fitted-Q

13 Warnings

14 Deep Q-Network

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

SARSA

LSPI

Fitted-Q

Warnings

Deep
Q-Network

Mainly Policy Iteration

1 Learn approximation of Qπ ≈ Qθ
2 Improve policy (ε-greedy or Softmax)

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

SARSA

LSPI

Fitted-Q

Warnings

Deep
Q-Network

Approximate SARSA

Linear approximation of Qπ

Qθ(s, a) = θ>φ(s, a)

Linear SARSA

Init θ0

for n← 0 until Ntot − 1 do
sn ← StateChoice

an ← ActionChoice = f (Qθt (sn, a))
Perform action an and observe sn+1, r(sn, an)
begin

Perform action an+1 = f (Qθt (sn+1, a))
δn ← r(sn, an) + γθ>n φ(sn+1, an+1)− θnφ(sn, an)
θn+1 ← θn + αnδnφ(sn, an)
sn ← sn+1, an ← an+1

end
end for
return θNtot

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

SARSA

LSPI

Fitted-Q

Warnings

Deep
Q-Network

Least Square Policy Iteration

Include LSTD into a policy iteration loop

Build a data set with a random π: {si , ai , r(si , ai), s
′
i}Ni=1

Evaluate π with LSTD: Qθ

π ← greedy(Qθ)

(resample with pi = f (Qθ))

Iterate until convergence

Problem

Being greedy on approximation is unstable.

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

SARSA

LSPI

Fitted-Q

Warnings

Deep
Q-Network

Fitted-Q iteration

Replace V π by Q∗ [Riedmiller, 2005, Ernst et al., 2005]

Collect a set of transitions with π: {si , ai , r(si , ai), si+1}Ni=1

Initialise θ0

Build a data set: Dt = {(si , ai), T̂ ∗Qθt (si , ai)} =
{(si , ai), r(si , ai) + γmaxb Qθt (si+1, b)}Ni=1

Regress on Dt to find θt+1

(resample with π = f (Qθ(s, a))

Iterate until convergence

Output π = argmaxQθ(s, a)

Good point

There is no (yet) assumptions about parameterisation (no
linear)

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

10 Introduction

11 Policy Evaluation

12 Control

13 Warnings

14 Deep Q-Network

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Usage of value function approximation for control

Algorithm Look up Linear Non Linear

Monte Carlo 3 3 7

SARSA 3 3 7

Q-learning 3 7 7

LSPI 3 3 7

Fitted-Q 3 3 3

Table: Algorithms Comparison

3: Oscillate around optimal policy
3: With some tricks

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Main issues

Deadly Triad (Sutton)

Off-policy estimation

Too much generalisation (extrapolation)

Bootstrapping

Leemon Baird’s counter example [Baird, 1995]:

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

10 Introduction

11 Policy Evaluation

12 Control

13 Warnings

14 Deep Q-Network

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Deep Q-Network I

Problems to use Neural Nets

Correlated data (trajectories are made of state transitions
conditioned on actions)

Non stationary strategies (learning control while learning
value)

Extrapolate (bad for SARSA and Fitted-Q)

Residual methods are more suited but cost function is
biased

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Deep Q-Network II

Solution [Mnih et al., 2015]

Use two neural networks:
1 A slow-learning target network (θ−)
2 A fast learning Q-network (θ)

Use experience replay (fill in a replay buffer D with
transitions generated by π = f (Qθ(s, a))

Shuffle samples in the replay buffer and minimize:

J(θ) =
∑

(s,a,r ,s′)∈D

[(
r + γmax

b
Qθ−(s ′, b)

)
− Qθ(s, a)

]2

θ ← α(r + γmax
b

Qθ−(s ′, b)− Qθ(s, a))∇θQθ(s, a)

Every N training steps θ− ← θ

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Deep Q-Network III

Network Architecture

https://www.youtube.com/watch?v=V1eYniJ0Rnk

https://www.youtube.com/watch?v=V1eYniJ0Rnk

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Deep Q-Network IV

Results on 52 Atari games

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Improvements I

Double DQN [van Hasselt et al., 2016]

DQN:

θ ← α(r + γQθ−(s ′, argmax
b

Qθ−(s, b))− Qθ(s, a))∇θQθ(s, a)

Double DQN

θ ← α(r + γQθ−(s ′, argmax
b

Qθ(s, b))− Qθ(s, a))∇θQθ(s, a)

Decorrelates selection and evaluation and avoid overestimation
https://www.youtube.com/watch?v=OJYRcogPcfY

https://www.youtube.com/watch?v=OJYRcogPcfY

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Improvements II

Prioritized Experience Replay

Don’t sample uniformly

Sample with priority to high temporal differences:

‖r + γmax
b

Qθ−(s ′, b)− Qθ(s, a)‖

RL

Olivier
Pietquin

Introduction

Policy
Evaluation

Control

Warnings

Deep
Q-Network

Questions?

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Part IV

Policy Gradient Methods

RL

Olivier
Pietquin

Introduction

Why learn a
policy

Problem
definition

Policy
Gradient

Actor-Critic

15 Introduction
Why learn a policy
Problem definition

16 Policy Gradient

17 Actor-Critic

RL

Olivier
Pietquin

Introduction

Why learn a
policy

Problem
definition

Policy
Gradient

Actor-Critic

Reasons

Exemple: Mountain Car

Value Function is much more complex than the policy.

Continuous action space.

Occam’s Razor

RL

Olivier
Pietquin

Introduction

Why learn a
policy

Problem
definition

Policy
Gradient

Actor-Critic

Problem definition I

Gradient ascent on parameterized policies

Define a parametric policy πθ(s, a)

Suppose πθ(s, a) is differentiable and that ∇θπθ(s, a) is
known

Define an objective function to optimize J(θ) (s.t. η(θ))

J(θ) such that θ∗ = argmax
θ

J(θ)

Perform gradient ascent on the objective function:

θ ← θ + α∇θJ(θ)

RL

Olivier
Pietquin

Introduction

Why learn a
policy

Problem
definition

Policy
Gradient

Actor-Critic

Problem definition II

Objective function

Total return on episodic tasks:

Je(θ) = Eπθ

[
H∑
t=1

r(st , at)

]
= V πθ(s1)

Average value on continuing tasks:

Jv (θ) =
∑
s

dπθ(s)V πθ(s)

Average imediate reward

Jr (θ) =
∑
s

dπθ(s)
∑
a

πθ(s, a)r(s, a)

dπθ (s): stationarry distribution of the Markov Chain induced by πθ

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

15 Introduction

16 Policy Gradient
REINFORCE
Policy Gradient Theorem
PG with baseline

17 Actor-Critic

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

Episodic case I

Redifining Je(θ)

A sample is a trajectory (rollout) τ

Je(θ) =

∫
pπθ(τ)R(τ)dτ

with pπθ(τ) is the probability of observing trajectory τ under
policy πθ and R(τ) is the total return accumulated on
trajectory τ

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

Episodic case II

Likelhood trick

∇θJ(θ) =

∫
∇θpπθ(τ)R(τ)dτ

=

∫
pπθ(τ)

∇θpπθ(τ)

pπθ(τ)
R(τ)dτ

= E
[
∇θpπθ(τ)

pπθ(τ)
R(τ)

]
= E [∇θ log pπθ(τ)R(τ)]

Note

E
[
∇θpπθ (τ)

pπθ (τ) R(τ)
]
: increases probability of trajectory τ if it has

high return but not already high probability.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

Episodic case III

∇θJe(θ) is independent from the dynamics

Using Markov Property:

pπθ(τ) = p(s1)
H∏
t=1

p(st+1|st , at)πθ(st , at)

∇θ log pπθ(τ) =
H∑
t=1

∇θ log πθ(st , at)

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

In Practice: REINFORCE [Williams, 1992, Peters and Schaal, 2006]

Episodic REINFORCE gradient estimate

Using N rollouts (s i1, a
i
1, r

i
1, . . . , s

i
H , a

i
H , r

i
H)Ni=1 drawn from πθ:

∇̂θJe(θ) =
1

N

N∑
i=1

[(
H∑
t=1

∇θ log πθ(s it , a
i
t)

)(
H∑
t=1

r it

)]

Notes

Often one single rollout is enough

As it comes from a double sum, this estimate has a high
variance.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

Policy Gradient Theorem I

Intuition: Case of Jr (θ)

∇θJr (θ) = ∇θ
∑
s

d(s)
∑
a

πθ(s, a)r(s, a)

=
∑
s

d(s)
∑
a

∇θπθ(s, a)r(s, a)

=
∑
s

d(s)
∑
a

πθ(s, a)
∇θπθ(s, a)

πθ(s, a)
r(s, a)

=
∑
s

d(s)
∑
a

πθ(s, a)∇θ log πθ(s, a)r(s, a)

= E[∇θ log πθ(s, a)r(s, a)]

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

Policy Gradient Theorem II

Policy Gradient Theorem (Proof in [Sutton et al., 2000])

∇θJ(θ) =
∑
s

dπθ(s)
∑
a

∇θπθ(s, a)Qπθ(s, a)

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ(s, a)]

Notes

Generalisation to Je(θ) and Jv (θ)

Qπθ is the true Q-function of policy πθ which is unknown

In case of Jv (θ): dπθ(s) is the stationnary distribution of
Markov chain induced by πθ

In case of Je(θ): dπθ(s) is the probability of encoutering s
when starting from s1 and following πθ

In case of discounted Je(θ): dπθ(st) =
∑∞

t=0 γ
tp(st |s1, πθ)

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

REINFORCE with PG theorem Algorithm I

REINFORCE gradient estimate with policy gradient

Replace Qπθ by a MC estimate (and dπθ(s) by empirical
counts)

Draw N rollouts (s i1, a
i
1, r

i
1, . . . , s

i
H , a

i
H , r

i
H)Ni=1 from πθ:

∇̂θJe(θ) =
1

N

N∑
i=1

[(
H∑
t=1

∇θ log πθ(s it , a
i
t)

H∑
k=t

r ik

)]

Variant: G(PO)MDP

∇̂θJe(θ) =
1

N

N∑
i=1

[(
H∑

k=1

(
k∑

t=1

∇θ log πθ(s it , a
i
t)

)
r ik

)]

Both reduce the gradient estimate variance

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

REINFORCE with PG theorem Algorithm II

Algorithm 1 REINFORCE with PG theorem Algorithm

Initialize θ0 as random, Initialize step-size α0

n = 0
while no convergence do

Generate rollout hn = {sn1 , an1, rn1 , . . . , snH , anH , rnH} ∼ πθn
PGθ = 0
for t = 1 to H do

Rt =
∑H

t′=t r
n
t′

PGθ += ∇θ log πθn(st , at)Rt

end for
n++
θn ← θn−1 + αnPGθ
update αn (if step-size scheduling)

end while
return θn

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

Policy Gradient with Baseline I

Reducing variance

Gradient comes from a cumulative function

Substracting a constant (or a function of s) doesn’t
modify the solution

∇θJ(θ) =
∑

s d
πθ(s)

∑
a∇θπθ(s, a)(Qπθ(s, a)− b(s))∑

a∇θπθ(s, a)b(s) = b(s)∇θ
∑

a πθ(s, a) = b(s)∇θ1 = 0

var(q − b) = var(q)− 2cov(q, b) + var(b)

We reduce by 2cov(q, b)

RL

Olivier
Pietquin

Introduction

Policy
Gradient

REINFORCE

Policy Gradient
Theorem

PG with baseline

Actor-Critic

Policy Gradient with Baseline II

Baseline candidates

An arbitrary constant

The average reward of policy πθ (MC estimate)

The average reward until time step t

Intuition

Instead of using pure performance to compute the gradient,
let’s compare current performance with average. The gradient
increases (resp. decreases) the probability of actions that are
better (resp. worst) than average.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

15 Introduction

16 Policy Gradient

17 Actor-Critic
Compatible approximations
QAC algorithm
Advantage Actor-Critic

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Coming back to PG theorem

∇θJ(θ) = E[∇θ log πθ(s, a)Qπθ(s, a)]

Approximate Qπθ

If Qπθ(s, a) ≈ Qω(s, a)

do we have ∇θJ(θ) ≈ E[∇θ log πθ(s, a)Qω(s, a)] ?

If yes, πθ is an actor (behaves), Qω is a critic (suggests
direction to update policy)

Both can be estimated online: πθ with PG and Qω with
SARSA

It could lead to more stable (less variance) algorithms.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Compatible value function approximation I

Theorem: compatibility of approximations [Sutton et al., 2000]

If the two following conditions are satisfied:

1 The parameters ω minimize the mean square error:

ω∗ = argmin
ω

Eπθ
[
(Qπθ(s, a)− Qω(s, a))2

]
2 The value and the policy approximation are compatible:

∇ωQω = ∇θ log πθ

Then the policy gradient is exact:

∇θJ(θ) = E[∇θ log πθ(s, a)Qω(s, a)]

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Compatible value function approximation II

Proof

If mean square error is minimal, than its gradient w.r.t. to ω is
zero.

∇ωEπθ
[
(Qπθ(s, a)− Qω(s, a))2

]
= 0

Eπθ [(Qπθ(s, a)− Qω(s, a))∇ωQω(s, a)] = 0

Eπθ [(Qπθ(s, a)− Qω(s, a))∇θ log πθ(s, a)] = 0

Thus

∇θJ(θ) = Eπθ [∇θ log πθ(s, a)Qπθ(s, a)]

= Eπθ [∇θ log πθ(s, a)Qω(s, a)]

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Compatible value function approximation III

In practice

∇ωQω = ∇θ log πθ only holds for exponential policies
(almost never used in practice)

ω∗ = argminω Eπθ
[
(Qπθ(s, a)− Qω(s, a))2

]
is generally

not true neither as we don’t use through gradient descent
on residals in online settings and batch methods are not
convenient

Most DeepRL methods for PG do not meet these
assumptions, but they work in practice

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Actor-Critic Algorithm

Algorithm 2 QAC with linear critic

Qω(s, a) = ω>φ(s, a)
Initialize θ and ω as random
Set α, β
Initialise s
Sample a ∼ πθ(s, .)
for all steps do

Sample r(s, a) and s ′ ∼ p(.|a, s)
Sample a′ = πθ(s ′, .)
ω ← ω + β[r(s, a) + γQω(s ′, a′)− Qω(s, a)]φ(s, a)
θ ← θ + α∇θ log πθ(s, a)Qω(s, a)
a← a′,s ← s ′

end for
return θ

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Reducing variance with a baseline

Advantage function

Same intuition as before, we shoud rather compare to
average performance than measure absolute performance
to compute the gradient.

Average performance of πθ starting from state s is V πθ(s)

Advantage function: Aπ(s, a) = Qπ(s, a)− V π(s)

Advantage actor-critic

Qπθ(s, a) ≈ Qω(s, a) V πθ(s) ≈ Vψ(s)

Aω,ψ(s, a) = Qω(s, a)− Vψ(s)

∇J(θ) ≈ Eπθ [∇θ log πθ(s, a)Aω,ψ(s, a)]

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Estimating the Advantage function

Using the TD error

TD error: δπθ(s, a) = r(s, a) + γV πθ(s ′)− V πθ(s)

Eπθ [δπθ |s, a] = Eπθ [r(s, a) + γV πθ(s ′)|s, a]− V πθ(s)

= Qπθ(s, a)− V πθ(s)

= Aπθ(s, a)

With approximation: δψ(s, a) = r(s, a) + γVψ(s ′)− Vψ(s)

Policy gradient: ∇θJ(θ) ≈ Eπθ [∇θ log πθ(s, a)δψ(s, a)]

It only depends on θ and ψ parameters (no ω)

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Asyncronous Advantage Actor Critic (A3C) I

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Asyncronous Advantage Actor Critic (A3C) II

The agent learns a Value and a Policy with a shared
representation

Many agents are working in parallel

They send gradients to the learner

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Asyncronous Advantage Actor Critic (A3C) III

When the learner updates it copies its parameters to the
workers

PG:
∇θπθ(s, a)

(∑N
k=1 γ

k rt+k + γN+1Vθ(st+N+1)− Vθ(st)
)

Value:
∇θ
(∑N

k=1 γ
k rt+k + γN+1Vθ−(st+N+1)− Vθ(st)

)
https://www.youtube.com/watch?v=nMR5mjCFZCw

https://www.youtube.com/watch?v=nMR5mjCFZCw

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

AlphaGo I

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

AlphaGo II

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

AlphaGo III

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

AlphaGo IV

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

AlphaGo V

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Other Example

Language applications [Strub et al., 2017]

Optimize non differentiable objectives (like BLEU score)

Optimize long term dialogue strategies (GuessWhat?!
Game)

http://guesswhat.ai
http://guesswhat.ai

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Summary: Types of RL algorithms

Value or not Value

Critique: only value (SARSA, Q-learning)

Actor: only policy (Policy Gradient, REINFORCE)

Actor-Critic: policy and value (PG theorem, AAC)

Others

Online / Batch

On-Policy / Off-Policy

Model-based / Model-Free

Exact / Approximate

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Questions

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Bibliography I

Baird, L. (1995).

Residual algorithms: reinforcement learning with function
approximation.

In Proceedings of the Twelfth International Conference on
International Conference on Machine Learning, pages 30–37. Morgan
Kaufmann Publishers Inc.

Boyan, J. A. (1999).

Least-squares temporal difference learning.

In Proceedings of the Sixteenth International Conference on Machine
Learning, pages 49–56. Morgan Kaufmann Publishers Inc.

Bradtke, S. J. and Barto, A. (1996).

Linear least-squares algorithms for temporal difference learning.

Machine Learning, 22:33–57.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Bibliography II

Ernst, D., Geurts, P., and Wehenkel, L. (2005).

Tree-based batch mode reinforcement learning.

Journal of Machine Learning Research, 6(Apr):503–556.

Gordon, G. J. (1995).

Stable function approximation in dynamic programming.

In Proceedings of the Twelfth International Conference on
International Conference on Machine Learning, pages 261–268.
Morgan Kaufmann Publishers Inc.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,
Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K.,
Ostrovski, G., et al. (2015).

Human-level control through deep reinforcement learning.

Nature, 518(7540):529–533.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Bibliography III

Peters, J. and Schaal, S. (2006).

Policy gradient methods for robotics.

In Intelligent Robots and Systems, 2006 IEEE/RSJ International
Conference on, pages 2219–2225. IEEE.

Riedmiller, M. (2005).

Neural fitted q iteration-first experiences with a data efficient neural
reinforcement learning method.

In ECML, volume 3720, pages 317–328. Springer.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van
Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search.

Nature, 529(7587):484–489.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Bibliography IV

Strub, F., De Vries, H., Mary, J., Piot, B., Courville, A., and Pietquin,
O. (2017).

End-to-end optimization of goal-driven and visually grounded dialogue
systems harm de vries.

In International Joint Conference on Artificial Intelligence.

Sutton, R. S., McAllester, D. A., Singh, S. P., and Mansour, Y.
(2000).

Policy gradient methods for reinforcement learning with function
approximation.

In Advances in neural information processing systems, pages
1057–1063.

Tesauro, G. (1995).

Temporal difference learning and td-gammon.

Communications of the ACM, 38(3):58–69.

RL

Olivier
Pietquin

Introduction

Policy
Gradient

Actor-Critic

Compatible
approximations

QAC algorithm

Advantage
Actor-Critic

Bibliography V

van Hasselt, H., Guez, A., and Silver, D. (2016).

Deep reinforcement learning with double q-learning.

In Thirtieth AAAI Conference on Artificial Intelligence.

Williams, R. J. (1992).

Simple statistical gradient-following algorithms for connectionist
reinforcement learning.

Machine learning, 8(3-4):229–256.

	Reminder
	Introduction
	Problem description

	MDP
	Long term vision
	Policy
	Value Function

	Dynamic Programming
	Bellman Equations
	Algorithms

	Reinforcement Learning
	Introduction
	Problem Definition
	Monte Carlo Methods
	Temporal Differences
	Q-Learning
	Eligibility Traces

	Exploration Management
	Conclusion

	Value Function Approximation
	Introduction
	Policy Evaluation
	Direct methods
	Residual Methods
	Least-Square TD
	Fitted-Value Iteration

	Control
	SARSA
	LSPI
	Fitted-Q

	Warnings
	Deep Q-Network

	Policy Gradient Methods
	Introduction
	Why learn a policy
	Problem definition

	Policy Gradient
	REINFORCE
	Policy Gradient Theorem
	PG with baseline

	Actor-Critic
	Compatible approximations
	QAC algorithm
	Advantage Actor-Critic

