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Motivation for generalization in
reinforcement learning
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Objective

From experience in an environment,
an artificial agent

should be able to learn a sequential decision making task
in order to achieve goals.

Agent

Environment
st → st+1

at ωt+1 rt

t ∈ N0,
st ∈ S,
at ∈ A,
ωt ∈ Ω,

rt ∈ R

Experience may be constrained
(e.g., limited data or not ac-

cess to an accurate simulator)
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Motivation : Overview

5



Generalization

In an RL algorithm, generalization refers to either

I the capacity to achieve good performance in an environment
where limited data has been gathered, or

I the capacity to obtain good performance in a related
environment. This latter case is usually tackled with specific
transfer learning techniques.
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Performance evaluation

In an MDP (S,A,T ,R, γ), the expected return V π(s) : S → R (π ∈ Π,
e.g., S → A) is defined such that

V π(s) = E
[∑∞

k=0
γk rt+k | st = s, π

]
, (1)

with γ ∈ [0, 1).

From the definition of the expected return, the optimal expected return
can be defined as

V ∗(s) = max
π∈Π

V π(s). (2)

and the optimal policy can be defined as :

π∗(s) = argmax
π∈Π

V π(s). (3)
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Formalization of generalization

In the online setting, one mini-batch gradient update is usually
done at every step (number of learning steps=number of
transitions observed). Sample efficiency refers to how fast the
algorithm learns in terms of performance for a given number of
steps.

In that context, the result depends on many different elements :

I the gradient descent algorithm and its hyper-parameters,

I the possible variance of the target,

I the exploration/exploitation tradeoff, etc.

Finally, it also depends on the actual generalization capabilities.

To formalize generalization, we consider the offline or batch
setting.
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Overview

To understand generalization in RL from limited data, we will

I recall the concept in supervised learning, and

I introduce the formulation in RL.

We’ll then discuss how an agent can have a good generalization in
RL.
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Generalisation from limited data in
supervised learning
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Bias and overfitting in supervised learning

A supervised learning algorithm can be viewed as a mapping from

a dataset DLS of learning samples (x , y)
i.i.d.∼ (X ,Y ) into a

predictive model f (x | DLS).
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Bias and overfitting in supervised learning
For one given x ∼ X , the predictive model f (x | DLS) can be
illustrated as follows for unseen data y ∼ (Y | X = x) :

Low overfitting High overfitting

Low bias

High bias

Figure – Illustration of bias and overfitting for unseen tuples, where Y
is a 2D continuous RV for visualisation purposes.
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Bias and overfitting in supervised learning
There are many choices to optimize the learning algorithm and
there is usually a tradeoff between the bias and the overfitting
terms to reach to best solution.

Low variance
=low overfitting

High variance
=high overfitting

Low bias

High bias

More data
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Bias and overfitting in supervised learning
Assuming a random sampling scheme DLS ∼ DLS , f (x | DLS) is a
random variable, and so is its average error over the input space.
The expected value of this quantity is given by :

I [f ] = E
X

E
DLS

E
Y |X

L (Y , f (X | DLS)), (4)

where L(·, ·) is the loss function. If L(y , ŷ) = (y − ŷ)2, the error
naturally gives the bias-variance decomposition :

E
DLS

E
Y |X

(Y − f (X | DLS))2 = σ2(x) + bias2(x), (5)

where

bias2(x) ,
(
EY |x(Y )− EDLS

f (x | DLS)
)2
,

σ2(x) , EY |x
(
Y − EY |x(Y )

)2︸ ︷︷ ︸
Internal variance

+EDLS

(
f (x | DLS)− EDLS

f (x | DLS)
)2

︸ ︷︷ ︸
Parametric variance = overfitting

.
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Bias and overfitting in reinforcement learning

This bias-variance decomposition highlights a tradeoff between

I an error directly introduced by the learning algorithm (the
bias) and

I an error due to the limited amount of data available (the
parametric variance).

Note that there is no such direct bias-variance decomposition for
loss functions other than the L2 loss ! It is however always possible
to decompose the prediction error with a term related to the lack
of expressivity of the model (the bias) and a term due to the
limited amount of data (overfitting comes from the variance of
f (x | DLS) on the loss when DLS ∼ DLS but 6= statistical variance
if loss function is not L2).
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Generalisation from limited data in
reinforcement learning
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Bias and overfitting in RL

The off-policy learning algorithm in RL can be seen as mapping a
dataset D ∼ D into a policy πD (independently of whether the
policy comes from a model-based or a model-free approach) :

D → πD .

In an MDP, the suboptimality of the expected return can be
decomposed as follows :

E
D∼D

[V π∗(s)− V πD (s)] = (V π∗(s)− V πD∞ (s))︸ ︷︷ ︸
asymptotic bias

+ E
D∼D

[(V πD∞ (s)− V πD (s))︸ ︷︷ ︸
error due to finite size of the dataset Ds

referred to as overfitting

].
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How to obtain the best policy ?

Data
Policy
class

% of the
error

due to
overfitting

% of the
error due to
asymptotic

bias

Figure – Schematic representation of the bias-overfitting tradeoff.
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How to improve generalization ?
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How to improve generalization ?
We can optimize the bias-overfitting tradeoff thanks to the
following elements :

I an abstract representation that discards non-essential
features,

I the objective function (e.g., reward shaping, tuning the
training discount factor) and

I the learning algorithm (type of function approximator and
model-free vs model-based).

And of course, if possible :

I improve the dataset (exploration/exploitation dilemma in an
online setting)

More details : V François-Lavet, et al.”An introduction to deep
reinforcement learning”. Foundations and Trends in ML.
https://arxiv.org/abs/1811.12560
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1. Abstract representation
The appropriate level of abstraction plays a key role in the
bias-overfitting tradeoff and one of the key advantages of using a
small but rich abstract representation is to allow for improved
generalization.

I When considering many features on which to base the policy,
an RL algorithm may take into consideration spurious
correlations, which leads to overfitting.

I Removing features that discriminate states with a very
different role in the dynamics introduces a bias.

s(6)

s(3)

s(0)

s(7)

s(4)

s(1)

s(8)

s(5)

s(2)

y

x

Environment

(0, 2)

(0, 1)

(0, 0)

(1, 2)

(1, 1)

(1, 0)

(2, 2)

(2, 1)

(2, 0)

States
representation
with a set of

features (x , y)

(0)

(0)

(0)

(1)

(1)

(1)

(2)

(2)

(2)

Feature
selection where

only the x-coordinate
has been kept

Figure – Illustration of the abstract representation.
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1. Abstract representation

In POMDPs, policies are based on a state representation built from
histories of observations, actions and rewards.

With Ht = Ω× (A×R× Ω)t , H =
∞⋃
t=0
Ht , we consider a

mapping φ : H → φ(H), where φ(H) = {φ(H)|H ∈ H}.
I On the one hand, a mapping φ with a low cardinality |φ(H)|

reduces the risk of overfitting (|Πφ(H)| ≤ |A||φ(H)|).

I On the other hand, when φ discards information from the
history, the state representation φ(H) might depart from
sufficient statistics, which creates an asymptotic bias.
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2. Modifying the objective function

In order to improve the policy learned by a deep RL algorithm, one
can optimize an objective function that diverts from the actual
objective. By doing so, a bias is usually introduced but this can in
some cases help with generalization. The main approaches to
modify the objective function are either

I to modify the reward of the task to ease learning (reward
shaping), or

I tune the discount factor at training time.
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2. Modifying the objective function (online setting)

Motivation from neurosciences :

I Empirical studies of cognitive mechanisms in delay of
gratification : The capacity to wait longer for the preferred
rewards seems to develop markedly only at about ages 3-4
(“marshmallow experiment”).

In the online setting, the optimal tradeoff evolves as more
data is obtained. There is for instance an interest of increasing
the discount factor when more data of interest if gathered.

24



2. Modifying the objective function (online setting)

Increasing the discount factor (e.g., in the DQN algorithm) from
0.95 to 0.99 through learning can significantly improve learning.

Figure – Illustration for the game q-bert of a discount factor γ held fixed on
the right and an adaptive discount factor on the right.
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3. Choice of the learning algorithm and function
approximator selection

In general, an RL agent may include one or more of the following
components :
I a representation of a value function that provides a prediction

of how good is each state or each couple state/action,
I a direct representation of the policy π(s) or π(s, a), or
I a model of the environment in conjunction with a planning

algorithm.

Experience

Value/policyModel

Acting
Model

learning

Planning

Modef-free
RL

Model-based
RL

Value-based
RL

Policy-based
RL

Deep learning has brought its generalization capabilities to RL.
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3. Choice of the learning algorithm and function
approximator selection

I The function approximator in deep learning characterizes how
the features will be treated into higher levels of abstraction. A
fortiori, it is related to feature selections (e.g., an attention
mechanism), etc.

I Depending on the task, finding a performant function
approximator is easier in either a model-free or a model-based
approach. The choice of relying more on one or the other
approach is thus also a crucial element to improve
generalization.
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3. Choice of the learning algorithm

The respective strengths of the model-free versus model-based
approaches depend on different factors.

I If the agent does not have access to a generative model of the
environment, the learned model will have some inaccuracies.

I Second, a model-based approach requires working in
conjunction with a planning algorithm, which is often
computationally demanding.

I Third, for some tasks, the model of the environment may be
learned more efficiently due to the particular structure of the
task.
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3. Choice of the learning algorithm

V ∗(s) = Q∗(s, a = π∗) = Eπ∗ [r0 + γr1 + · · · ]
st

st+1

st+2

at , rt

at+1, rt+1

π∗,
r = r0

π∗,
r = r1

π∗

Figure – Illustration of model-based.
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3. Choice of the learning algorithm : a parallel with
neurosciences

In cognitive science, there is a dichotomy between two modes of
thoughts (D. Kahneman. (2011). Thinking, Fast and Slow) :

I a ”System 1” that is fast and instinctive and

I a ”System 2” that is slower and more logical.

Figure – System 1 Figure – System 2

In deep reinforcement, a similar dichotomy can be observed when
we consider the model-free and the model-based approaches.
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Best practices in deep RL
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How to benchmark deep RL ?

I Test an algorithm’s effectiveness with an average across a few
learning trials. If possible study the results with techniques
derived from significance testing.

Stochasticity plays a large role in deep RL, both from randomness
within initializations of neural networks and stochasticity in
environments. Results may vary significantly simply by changing
the random seed.
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How to benchmark deep RL ?

I Do not to over-interpret the results.

It is possible that a hypothesis can be shown to hold for one or
several given environments and under one or several given set of
hyperparameters, but fail in other settings.
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How to benchmark deep RL ?

I Ensure a fair comparison between learning algorithms.

Ensuring that a novel algorithm is indeed performing much better
requires proper scientific procedure when choosing such
hyperparameters
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How to benchmark deep RL ?

I When choosing metrics to report, it is important to select
those that provide a fair comparison.

Using the top-K trials is usually inadequate for fair comparisons.
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Combining model-based and
model-free via abstract

representations
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Combining model-based and model-free via abstract
representations

Why are we interested in learning everything through one abstract
representation ?

I it can help enforce a good generalization,

I planning is computationally efficient,

I it facilitates interpretation of the decisions taken by the agent,

I it enables strategies for transfer learning, and

I it can be used to improve exploration.

More details : Combined Reinforcement Learning via Abstract
Representations, V. Francois-Lavet, Y. Bengio, D. Precup, J.
Pineau, 2018 (AAAI).

37

https://arxiv.org/abs/1809.04506
https://arxiv.org/abs/1809.04506


Combined Reinforcement via Abstract Representations
(CRAR)

s0 s1 s2environment environment

a0 a1

encoder encoder encoder

model-based model-based

transition
model

transition
model

reward
model

reward
model

abstract
state

abstract
state

abstract
state

r0 r1

model-
free

model-
free

model-
free

Q Q Q

. . .

Figure – Illustration of the integration of model-based and model-free
RL in the CRAR architecture.

The value function and the model are trained using off-policy data,
via the abstract representation and without auto-encoder.
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Learning the value function

Training of the value function is done with DDQN :

Y DDQN
k = r + γQ

(
e(s ′; θ−e ), argmax

a∈A
Q(e(s ′; θe), a; θQ); θ−Q

)
,

The training is done by minimizing the loss

Lmf(θe , θQ) =
(
Q(e(s; θe), a; θQ)− Y DDQN

k

)2
.

This loss trains the weights of both the encoder and the model-free
component.
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Learning the model

We have one loss for learning the reward, one for the discount
factor and one for learning the transition :

Lρ(θe , θρ) =| r − ρ(e(s; θe), a; θρ) |2,

Lg (θe , θg ) =| γ − g(e(s; θe), a; θg ) |2,

Lτ (θe , θτ ) =| (e(s; θe) + τ(e(s; θe), a; θτ )− e(s ′; θe)) |2 .

These losses train the weights of both the encoder and the
model-based components.
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In practice, there is a pressure to decrease the amount of
information being represented.
In our model, we introduce :

Ld1(θe) = exp(−Cd‖e(s1; θe)− e(s2; θe)‖2),

where s1 and s2 are random states stored in the replay memory and
Cd is a constant.
The risk of obtaining very large values for the features of the state
representation is avoided by the following loss that penalizes
abstract states that are out of an L∞ ball of radius 1 :

Ld2(θe) = max(‖e(s1; θe)‖2
∞)− 1, 0).

The loss Ld , called the representation loss, is a combination of
both losses.
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Simple labyrinth
Representation of one state for a labyrinth task
(without any reward).

150 100 50 0 50 100 150 200

200

100

0

100

200

Figure – 2D representation
using t-SNE (blue represents
states where the agent is on the
left part, green on the right part
and orange in the junction).

1.0 0.5 0.0 0.5 1.0
X1

1.0

0.5

0.0

0.5

1.0

X 2

 Estimated transitions (action 0, 1, 2 and 3): 

Figure – The CRAR agent is able
to reconstruct a sensible
representation of its environment in
2 dimensions.
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Interpretability
Interpretability can mean that some features of the state
representation are distinctly affected by some actions. The
following optional loss makes the predicted abstract state change
aligned with the chosen embedding vector v(a) :

Linterpr (θe , θτ ) = −cos
(
τ(e(s; θe), a; θτ )0:n, v(a)

)
,

where cos stands for the cosine similarity.

1.0 0.5 0.0 0.5 1.0
X1

1.0

0.5

0.0

0.5

1.0

X 2

 Estimated transitions (action 0, 1, 2 and 3): 

Figure – With enforcing Linterpr and v(a0) = [1, 0]

43



Catcher

This environment has only a few important features :
(i) the position of the paddle and
(ii) the position of the blocks.
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Without interpretability loss.
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Figure – With interpretability loss :
v(a(1)) = (1, 1) and v(a(2)) = (−1, 1).
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Planning
The dynamics for some sequence of actions is estimated recursively
as follows for any t ′ :

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ ), if t ′ > t
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Figure – Expansion from
current state representation x0.
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A set A∗ of best potential
actions is considered based on
Q(x̂t , a; θQ) (A∗ ⊆ A).
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We define recursively the depth-d estimated expected return as

Q̂d(x̂t , a) =


ρ(x̂t , a; θρ) + g(x̂t , a; θg ) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0
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Figure – Backup.
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Planning - summary

x̂t′ =

{
e(st ; θe), if t ′ = t
x̂t′−1 + τ(x̂t′−1, at′−1; θτ ), if t ′ > t

Q̂d(x̂t , a) =


ρ(x̂t , a; θρ) + g(x̂t , a; θg ) max

a′∈A∗
Q̂d−1(x̂t+1, a

′),

if d > 0
Q(x̂t , a; θk), if d = 0

To obtain the action selected at time t, we use a hyper-parameter D ∈ N
and use a simple sum of the Q-values obtained with planning up to a
depth D :

QD
plan(x̂t , a) =

D∑
d=0

Q̂d(x̂t , a).

The optimal action is given by argmax
a∈A

QD
plan(x̂t , a).

47



Meta-learning with limited off-policy data
The CRAR agent is successfully able to learn
from a small set of off-policy data (2× 105 tuples)
in a complex distribution of tasks, while using
planning in an abstract state space.
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Figure – Meta-learning score on a distribution of labyrinths where the
training is done with a limited number of transitions obtained off-line by
a random policy. 2× 105 tuples, ∼ 500 labyrinths.
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Another important challenge : transfer learning

Figure – Transfer learning between different renderings. Picture from
”Playing for Data : Ground Truth from Computer Games”, Richter, S.
and Vineet, V., et al
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Transfer learning with the CRAR agent

s0 s1 s2environment environment

a0 a1

encoder encoder encoder

model-based model-based

transition
model

transition
model

reward
model

reward
model

abstract
state

abstract
state

abstract
state

r0 r1

model-
free

model-
free

model-
free

Q Q Q

. . .

Figure – The abstract state can be enforced to be the same for
semantically identical observations.
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Transfer learning with the CRAR agent

to

Figure – After the first 250 epochs, training and test are done on the
same distribution of tasks but the pixels have the opposite values.
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Figure – Without transfer
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Figure – With transfer

51



Conclusions
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Conclusion

Generalization is a central concept in the field of machine learning,
and reinforcement learning is no exception.

Today, we have seen

I what generalization is in RL,

I how an agent can have a good generalization,

I what the best practices are when evaluating RL algorithms,

I why it is interesting to combine model-free and model-based
via abstract representations.

More information can be found in the following book :

V François-Lavet, et al.”An introduction to deep reinforcement
learning”. Foundations and Trends in ML.
https://arxiv.org/abs/1811.12560
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Questions ?
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