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Reinforcement Learning
2

RL agent

environment

action at state streward rt

“Reinforcement learning is learning
how to map states to actions so as to
maximize a numerical reward signal in
an unknown and uncertain environment.

In the most interesting and challenging
cases, actions affect not only the immedi-
ate reward but also the next situation and
all subsequent rewards (delayed reward).

The agent is not told which actions to take
but it must discover which actions yield
the most reward by trying them (trial-and-
error).”

— Sutton and Barto [1998]
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Why This Course?
3

Superhuman performance

Mnih et al. [2015]

10 million frames

Beating world champion

Silver et al. [2016]

4.9 million games

Even best RL algorithms are very sample inefficient
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Why This Course?
4

Better exploration may significantly improve the sample efficiency

*Optimism in face of uncertainty

Tang et al. [2017]

*Thompson sampling

Fortunato et al. [2017]

*inspired by
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Objective of the Course
5

Formalize the exploration-exploitation dilemma

Review design principles and present specific instances

Derive theoretical guarantees for regret minimization

Review sample efficient deep RL algorithms

Discuss open questions and research directions
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Organization 6

1 Setting the Stage

2 Lower Bounds

3 Optimism in Face of Uncertainty

4 Posterior Sampling

5 Asymptotically Optimal Algorithms

6 Summary of Theory of Exploration
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RL Agent-Environment Interaction 7

RL agent

environment

action at state streward rt
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Markov Decision Process
8

A discrete-time finite Markov decision process (MDP) is a tuple M = 〈S,A, r, p〉

State space S, |S| = S <∞

Action space A, |A| = A <∞

Transition distribution p(·|s, a) ∈ ∆(S)

}Markov

Reward distribution with expectation r(s, a) ∈ [0, rmax]

� The process generates history Ht = (s1, a1, . . ., st−1, at−1, st), with st+1 ∼ p(·|st, at)

� In (contextual) bandit, actions do not influence the evolution of states
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Policies
9

An agent acts according to a policy

stationary history-dependent

deterministic π : S → A πt : Ht → A

stochastic π : S → ∆(A) πt : Ht → ∆(A)
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Infinite Horizon Discounted
10

Value function of a deterministic stationary policy π

V π
M (s) = E

[ ∞∑
t=0

γtr(st, at)
∣∣∣s0 = s, at = π(st)

]
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Sample-Complexity
11

N(M? , A ) =

∞∑
t=0

I
{
V πt( st ) ≤ V ?(st)− ε

}

unknown true MDP M? = 〈S,A, r, p〉

algorithm A = {πt}

states traversed by A

A PAC-MDP algorithm satisfies

P
[
N(M?,A) = Õ

(
poly

(1

ε
, log(1/δ),

1

1− γ
, S,A

))]
≥ 1− δ
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Infinite Horizon Average Reward
12

Gain of a deterministic stationary policy π

gπM (s) = lim
T→∞

E

[
1

T

T−1∑
t=0

r(st, at)
∣∣∣s0 = s, at = π(st)

]
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Regret Minimization 13

reward rt

g?M?

T

reward

R(T, M? , A ) = Tg?M? −
T∑
t=1

rt

A no-regret algorithm satisfies E
[
R(T,M?,A)

]
= o(T )
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Sample Complexity vs Regret
14
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Sample Complexity vs Regret
15

PAC-MDP: easy
Regret minimization: easy
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Sample Complexity vs Regret
16

PAC-MDP: trivial
Regret minimization: impossible

Lazaric



Sample Complexity vs Regret
17

This course focuses on regret minimization*

*as we will see, most of the algorithmic principles apply to the discounted setting as well

Lazaric



What is Wrong with Q-learning with ε-greedy?
18

ε-greedy strategy

at =

{
arg max

a
Qθt(st, a) w.p. 1− ε

U(A) otherwise

Q-learning update

θt+1 = (1− αt)θt + αt
(
rt + γmax

a′
Qθt(st+1, a

′)−Qθt(st, a)
)
∇θQθt(st, a)

, The exploration strategy relies on biased estimates Qθt
, Samples are used once
, Dithering effect: exploration is not effective in covering the state space
, Policy shift: the policy changes at each step
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River Swim: Markov Decision Processes
Strehl and Littman [2008]

19

1 2 3 4 5 6

0.4 0.6 0.350.6

0.05

0.350.6

0.05

0.350.6

0.05

0.350.6

0.05

0.6

0.4

1
1 1 1 1 1r=0.01

r=1

S = {1, 2, 3, 4, 5, 6}, A = {L,R}
πL(s) = L, πR(s) = R
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River Swim: Q-learning w\ ε-greedy Exploration
20

εt = 1.0

εt = 0.5

εt =
ε0

(N(st)− 1000)2/3

εt =

1.0 t < 6000
ε0

N(st)1/2
otherwise

εt =

1.0 t < 7000
ε0

N(st)1/2
otherwise

1 2 3 4 5 6

N1
N2 N3 N4 N5 N6

Tuning the ε schedule is difficult and problem dependent
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River Swim: Q-learning w\ ε-greedy Exploration
21

Main drawbacks of Q-learning with ε-greedy*
Q-learning is model-free

, Inefficient use of samples

ε-greedy performs undirected exploration

, Non-informative samples

Model-based uncertainty-driven exploration-exploitation

*All of this can be said for large majority for model-free undirected exploration methods

Lazaric
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2 Lower Bounds

3 Optimism in Face of Uncertainty

4 Posterior Sampling

5 Asymptotically Optimal Algorithms

6 Summary of Theory of Exploration
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Classification
23

If an MDP M is
ergodic then it is possible to go from any state to any other state under any
deterministic stationary policy

∀s, s′, ∀π : S → A, ∃t <∞, s.t. PMπ
(
st = s′|s0 = s

)
> 0

communicating then it is possible to go from any state to any other state under a
specific deterministic stationary policy

∀s, s′, ∃π : S → A, ∃t <∞, s.t. PMπ
(
st = s′|s0 = s

)
> 0

� A communicating MDP has finite diameter

DM = max
s,s′∈S

min
π:S→A

E
[
TMπ (s, s′)

]
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23
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ergodic then it is possible to go from any state to any other state under any
deterministic stationary policy

∀s, s′, ∀π : S → A, ∃t <∞, s.t. PMπ
(
st = s′|s0 = s

)
> 0

communicating then it is possible to go from any state to any other state under a
specific deterministic stationary policy

∀s, s′, ∃π : S → A, ∃t <∞, s.t. PMπ
(
st = s′|s0 = s

)
> 0

� A communicating MDP has finite diameter

DM = max
s,s′∈S

min
π:S→A

E
[
TMπ (s, s′)

]
shortest path
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River Swim: Markov Decision Processes
Strehl and Littman [2008]

24

1 2 3 4 5 6

0.4 0.6 0.350.6

0.05

0.350.6

0.05

0.350.6

0.05

0.350.6

0.05

0.6

0.4

1
1 1 1 1 1r=0.01

r=1

S = {1, 2, 3, 4, 5, 6}, A = {L,R}
πL(s) = L, πR(s) = R

M ⊕ πR is ergodic but M ⊕ πL is not ergodic
TMπL(6, 1) = 5, DM = E

[
TMπR(1, 6)

]
≈ 14.7
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Gain and Bias
25

Gain of a deterministic stationary policy π

gπM (s) = lim
T→∞

E

[
1

T

T−1∑
t=0

r(st, at)
∣∣∣s0 = s, at = π(st)

]

Bias of a deterministic stationary policy π

hπM (s) := C- lim
T→∞

E

[
T∑
t=1

(
r(st, at)− gπM (st)

)∣∣∣s0 = s, at = π(st)

]

Span of the bias function

sp
(
hπM
)

= max
s
hπM (s)−min

s
hπM (s)

Lazaric



Bellman operators
26

Bellman operator LaM : RS → RS

LaMh(s) = r(s, a) + p(·|s, a)Th

Optimal Bellman operator L?M : RS → RS

L?Mh(s) = max
a∈A

{
r(s, a) + p(·|s, a)Th

}
Optimality gap of action a at s

δ?M (s, a) = L?Mh
?
M (s)− LaMh?M (s)

=
∑
s′

p(s′|s, a)h(s′)

a.k.a. advantage function

Lazaric



Optimality
27

Optimal policy and optimal gain

π?M ∈ arg max
π

gπM (s) g?M = gπ
?

M (s) ∀s ∈ S

Optimality equation
h?M (s) + g?M = L?Mh

?
M (s)

Greedy policy w.r.t. h?M is optimal

π?M (s) ∈ arg max
a∈A

{
r(s, a) + p(·|s, a)Th?M

}
Set of optimal actions in state s

Π?
M (s) = arg max

a∈A

{
r(s, a) + p(·|s, a)Th?M

}

*In communicating MDPs
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Optimality
27

Optimal policy and optimal gain

π?M ∈ arg max
π

gπM (s) g?M = gπ
?

M (s) ∀s ∈ S

Optimality equation
h?M (s) + g?M = L?Mh

?
M (s)

Greedy policy w.r.t. h?M is optimal

π?M (s) ∈ arg max
a∈A

{
r(s, a) + p(·|s, a)Th?M

}
Set of optimal actions in state s

Π?
M (s) = arg max
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{
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}

deterministic stationary
constant gain*

*In communicating MDPs
Lazaric



River Swim: Optimality
28
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rL

r=1
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h?(s3)

h?(s4)

h?(s5)

h?(s6)

span

π? = πR

If rL = 0.01, g? ≈ 0.43, sp(h?) ≈ 6.4

If rL = 0.4, g? ≈ 0.43, sp(h?) ≈ 5.5

Lazaric



River Swim: Optimality
28

1 2 3 4 5 6

0.4
0.6 0.35

0.6

0.05

0.35
0.6

0.05

0.35
0.6

0.05

0.35
0.6

0.05

0.6

0.4

1
1 1 1 1 1

rL

r=1

h?(s1) h?(s2)

h?(s3)

h?(s4)

h?(s5)

h?(s6)

span

π? = πR

If rL = 0.01, g? ≈ 0.43, sp(h?) ≈ 6.4

If rL = 0.4, g? ≈ 0.43, sp(h?) ≈ 5.5

Lazaric



River Swim: Optimality
28
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D is constant
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Value Iteration
29

initialize v0(s) = 0 ∀s ∈ S, n = 0, ε

repeat
for s ∈ S do

vn+1(s) = L?Mvn(s) = max
a∈A

{
r(s, a) + p(·|s, a)Tvn

}
end
n = n+ 1

until sp(vn+1 − vn) < ε

return greedy policy

πε(s) = arg max
a∈A

LaMvn(s) = arg max
a∈A

{
r(s, a) + p(·|s, a)Tvn

}
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Value Iteration
30

Theorem (Thm. 8.5.5 [Puterman, 1994])

In any communicating MDP M , value iteration is such that

convergence: for any ε, there exists nε s.t. the stopping condition is met

optimality: policy πε is ε-optimal

gπεM (s) ≥ g?M − ε

Lazaric



Problem-Dependent Lower Bound
31

Let M = 〈S,A, r, p〉 and M ′ = 〈S,A, r, p′〉

Difference between M and M ′ at s, a (w.l.o.g. assuming reward known)

KLM,M ′(s, a) = KL
(
p(·|s, a)‖p′(·|s, a)

)
Set of alternative (confusing) models w.r.t. M

Malt
M (s, a) =

{
M ′ : p′(·|s′, a′) = p(·|s′, a′), for all (s′, a′) 6= (s, a),

a /∈ Π?
M (s) , a ∈ Π?

M ′(s)
}

sub-optimal in M optimal in M ′

same everywhere but in (s, a)
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Problem-Dependent Lower Bound
32

Theorem (Thm. 1 Burnetas and Katehakis [1997], Thm. 2 Ok et al. [2018])

Let A be s.t. R(T,M,A) = o(Tα) for all α > 0 and ergodic MDP M . For any ergodic
MDP M? with rmax = 1, the expected regret is lower bounded as

lim inf
T→∞

R(T,M?,A)

log T
≥ KM?

where

KM? = inf
η≥0

∑
s,a

η(s, a)δ?M?(s, a)

s.t.
∑
s,a

η(s, a)KLM?,M (s, a) ≥ 1 ∀M ∈Malt
M?(s, a)

cumulative regret

“evidence” of difference between M? and M
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32

Theorem (Thm. 1 Burnetas and Katehakis [1997], Thm. 2 Ok et al. [2018])

Let A be s.t. R(T,M,A) = o(Tα) for all α > 0 and ergodic MDP M . For any ergodic
MDP M? with rmax = 1, the expected regret is lower bounded as

lim inf
T→∞

R(T,M?,A)

log T
≥ KM?

where

KM? = inf
η≥0

∑
s,a

η(s, a)δ?M?(s, a)

s.t.
∑
s,a

η(s, a)KLM?,M (s, a) ≥ 1 ∀M ∈Malt
M?(s, a)

cumulative regret

“evidence” of difference between M? and M

� Similar to [Lai and Robbins, 1985] for MAB but alternative models and regret are different.
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Problem-Dependent Lower Bound
32

Theorem (Thm. 1 Burnetas and Katehakis [1997], Thm. 2 Ok et al. [2018])

Let A be s.t. R(T,M,A) = o(Tα) for all α > 0 and ergodic MDP M . For any ergodic
MDP M? with rmax = 1, the expected regret is lower bounded as

lim inf
T→∞

R(T,M?,A)

log T
≥ KM?

where

KM? ≤ 2

(
C + 1

)2
mins,a δM?(s, a)

SA C = sp(h?M?)
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Minimax Lower Bound
33

Theorem (Thm. 5 Jaksch et al. [2010])

For any communicating MDP M? with rmax = 1, S,A ≥ 10, D ≥ 20 logA S, any
algorithm A at any time T ≥ DSA suffers a regret

sup
M?

R(T,M?,A) ≥ 0.015
√
DSAT

Lazaric



Minimax Lower Bound
33

Theorem (Thm. 5 Jaksch et al. [2010])

For any communicating MDP M? with rmax = 1, S,A ≥ 10, D ≥ 20 logA S, any
algorithm A at any time T ≥ DSA suffers a regret

sup
M?

R(T,M?,A) ≥ 0.015
√
DSAT

� In MAB Ω(
√
AT ) since D = 1 and S = 1.
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Open Questions 34

1 Asymptotic regime and ergodicity assumption

PπM
[
NT (s) ≥ ρT

]
≥ 1− C exp(−ρT/2) [Prop.2 Burnetas and Katehakis [1997]]

2 Span vs. diameter

R(T,M?,A) ≥ 0.015

√
D SAT

3 Number of states vs branching factor Γ = max
s,a
|supp(p(·|s, a))|

R(T,M?,A) ≥ 0.015

√
D S AT

C could be arbitrarily large
(C = ∞ for non ergodic)

D = 2sp(h?) in the proof

Γ = 2 in the proof
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1 Setting the Stage

2 Lower Bounds

3 Optimism in Face of Uncertainty

4 Posterior Sampling

5 Asymptotically Optimal Algorithms

6 Summary of Theory of Exploration
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The Optimism Principle: Intuition



The Optimism Principle: Intuition
37

Exploration vs. Exploitation

Optimism in Face of Uncertainty

When you are uncertain, consider the best possible world (reward-wise)

If the best possible world is correct

=⇒ no regret

If the best possible world is wrong

=⇒ learn useful information
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The Optimism Principle: Intuition
37

Exploration vs. Exploitation

Optimism in Face of Uncertainty

When you are uncertain, consider the best possible world (reward-wise)

If the best possible world is correct

=⇒ no regret

If the best possible world is wrong

=⇒ learn useful information
Exploitation Exploration

Optimism in gain
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History: OFU for Regret Minimization in RL
38

FH: finite-horizon
AR: average reward
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Gain Optimism: Example
39

s a1, r(s, a1)?

a2, r(s, a2)?

a0, r(s, a0)?

Deterministic policies:
• π0(s) = a0
• π1(s) = a1
• π2(s) = a2

Reward r(s, ai) = gain gπi

Upper confidence bound

UCB(gπi) = UCB(r(s, ai))

Optimism

π̃ = arg max
πi

UCB(gπi)

� UCB algorithm (Bandit)
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√
log(1/δ)

N(s, a1)

a2, r̂(s, a2) + rmax

√
log(1/δ)

N(s, a2)

a0, r̂(s, a0) + rmax

√
log(1/δ)

N(s, a0)

estimated reward

num visits

confidence

Deterministic policies:
• π0(s) = a0
• π1(s) = a1
• π2(s) = a2

Reward r(s, ai) = gain gπi

Upper confidence bound

UCB(gπi) = UCB(r(s, ai))

Optimism

π̃ = arg max
πi

UCB(gπi)

� UCB algorithm (Bandit)

Lazaric



Gain Optimism: Example
39

s a1, r̂(s, a1) + rmax

√
log(1/δ)

N(s, a1)

a2, r̂(s, a2) + rmax

√
log(1/δ)

N(s, a2)

a0, r̂(s, a0) + rmax

√
log(1/δ)

N(s, a0)

estimated reward

num visits

confidence

Deterministic policies:
• π0(s) = a0
• π1(s) = a1
• π2(s) = a2

Reward r(s, ai) = gain gπi

Upper confidence bound

UCB(gπi) = UCB(r(s, ai))

Optimism

π̃ = arg max
πi

UCB(gπi)

� UCB algorithm (Bandit)

Lazaric



Gain Optimism: Implementation
40

Tentative algorithm
Observe s1

for t = 1, 2, . . . do

Compute πt ← arg max
π

UCBt(gπ)

Take action at = πt(st)
Observe reward rt and next state st+1

Compute UCBt+1(gπ) for all π based on UCBt(gπ) and 〈st, at, rt, st+1〉
end
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� Upper confidence bounds: construct UCBt(gπ) with unknown dynamics

� Computational complexity : exponential number of policies

� Frequent policy update: inefficient exploration
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Bounded Parameter MDP: Definition
41

Bounded parameter MDP [Strehl and Littman, 2008]

Mt =
{〈
S,A, r, p

〉
: r(s, a) ∈ Br

t (s, a), p(·|s, a) ∈ Bp
t (s, a),∀(s, a) ∈ S ×A

}
Compact confidence sets

Br
t (s, a) :=

[
r̂t(s, a)− βrt (s, a), r̂t(s, a) + βrt (s, a)

]
Bp
t (s, a) :=

{
p(·|s, a) ∈ ∆(S) : ‖p(·|s, a)− p̂t(·|s, a)‖1 ≤ βpt (s, a)

}

Confidence bounds based on [Hoeffding, 1963] and [Weissman et al., 2003]

βrt (s, a) ∝

√
log(Nt(s, a)/δ)

Nt(s, a)

βpt (s, a) ∝

√
S log(Nt(s, a)/δ)

Nt(s, a)
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Bounded Parameter MDP: Optimism
42

M t

M t

M?

gπM Fix a policy π

Mt
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Bounded Parameter MDP: Optimism
42

M t

M t

M?

gπM Fix a policy π

Mt

UCBt(gπ)Optimism: UCBt(gπ) = max
M∈Mt

gπM≥gπM?

Lazaric



Gain Optimism: Implementation
43

Tentative algorithm
Observe state s1

for t = 1, 2, . . . do

Compute πt ← arg max
π

UCBt(gπ)

Take action at = πt(st)
Observe reward rt and next state st+1

Compute UCBt+1(gπ) for all π based on UCBt(gπ) and 〈st, at, rt, st+1〉
end

o 3 major issues:
� Upper confidence bounds: construct UCBt(gπ) with unknown dynamics? Ë

� Computational complexity : exponential number of policies

� Frequent policy update: inefficient exploration
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Extended MDP
[Strehl and Littman, 2008, Jaksch et al., 2010]

44

Theorem (Bounded parameter MDP ⇐⇒ Extended MDP)

LetM+
t :=

〈
S,A+

t , r
+, p+

〉
be an extended MDP such that

A+
t (s) = A(s)×Br

t (s, a)×Bp
t (s, a)

with a+ = (a, r, p) ∈ A+
t (s), r+(s, a+) = r, p+(·|s, a+) = p.

Then the optimal gain ofM+
t satisfies

g∗M+
t

:= max
π

{
max
M∈Mt

gπM

}
Let π+

t = arg max
π

gπM+
t
, then

πt = arg max
π

{
max
M∈Mt

gπM

}
s.t. πt(s) = π+

t (s)[a]

Continuous compact
action space
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Extended MDP
[Strehl and Littman, 2008, Jaksch et al., 2010]

44

Theorem (Bounded parameter MDP ⇐⇒ Extended MDP)

LetM+
t :=

〈
S,A+

t , r
+, p+

〉
be an extended MDP such that

A+
t (s) = A(s)×Br

t (s, a)×Bp
t (s, a)

with a+ = (a, r, p) ∈ A+
t (s), r+(s, a+) = r, p+(·|s, a+) = p.

Then the optimal gain ofM+
t satisfies

g∗M+
t

:= max
π

{
max
M∈Mt

gπM

}
Let π+

t = arg max
π

gπM+
t
, then

πt = arg max
π

{
max
M∈Mt

gπM

}
s.t. πt(s) = π+

t (s)[a]

Continuous compact
action spaceAbuse of notation: Mt denotes the extended MDP
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Extended Value Iteration
45

Value iteration onMt

vn+1(s) = Ltvn(s) = max
(a,r,p)∈A(s)×Brt (s,a)×Bpt (s,a)

{
r + pTvn

}
= max

a∈A(s)

{
max

r∈Brt (s,a)
r + max

p∈Bpt (s,a)
pTvn

}
= max

a∈A(s)

{
r̂t(s, a) + βrt (s, a) + max

p∈Bpt (s,a)
pTvn

}

πt = Greedy policy w.r.t. vn
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Gain Optimism: Implementation
46

Tentative algorithm
Observe state s1

for t = 1, 2, . . . do

Compute πt ← arg max
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Observe reward rt and next state st+1

Compute UCBt+1(gπ) for all π based on UCBt(gπ) and 〈st, at, rt, st+1〉
end

o 3 major issues:
� Upper confidence bounds: construct UCBt(gπ) with unknown dynamics Ë

� How to efficiently compute max
M∈Mt

gπM for every π? Ë

� Computational complexity : exponential number of policies Ë

� Frequent policy update: inefficient exploration
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Optimism: the Risk of Cycling
[Ortner, 2010]

47

s′ sDeterministic MDP

a0, r = 0

a1, r =
1

2

a0, r = 0

a1, r =
1

2

, Optimism with frequent policy updates may suffer linear regret
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Optimism: the Risk of Cycling
[Ortner, 2010]

47

s′ s

Known

“Optimisitc” rewards

a0, r = 0

r =
1

2
+

1√
N ′1︸ ︷︷ ︸

=g∗

a0, r = 0

r =
1

2
+

1√
N1

a0, r = 0

N ′1 > N1: the agent moves to s

N ′1 < N1: the agent moves to s′

, Optimism with frequent policy updates may suffer linear regret

� Cannot happen in Bandit

agent keeps cycling every two steps
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Optimism: Frequency of Policy Updates
48

Proposition [Ortner, 2010]

There exists an MDP s.t.

Ω(T ) number of policy updates =⇒ linear regret.

=⇒ o(T ) number of policy updates
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Final Algorithm: UCRL2
49

Initialize t← 1
Observe state s1

Initialize empirical means r̂1 = rmax and p̂1 = (1/S, . . . , 1/S)T

Initialize visit counts N1 = 0
for episodes k = 1, 2, . . . do

Set tk ← t
Build extended MDPMk :=Mtk

Using EVI, compute optimistic policy πk and (hk, gk) ∈ RS × [0, rmax] such that

LMkhk = Lπk
Mk

hk = hk + gke with gk = g?Mk
≥ g?M?

while Nt(st, at) < max{1, Ntk (st, at)} do

Take action at = πk(st)
Observe reward rt and next state st+1

Compute new empirical means r̂t+1(st, at) and p̂t+1(·|st, at)
Compute new visit count Nt+1(st, at)
t← t+ 1

end
end
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Initialize empirical means r̂1 = rmax and p̂1 = (1/S, . . . , 1/S)T
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Final Algorithm: UCRL2
49

Initialize t← 1
Observe state s1

Initialize empirical means r̂1 = rmax and p̂1 = (1/S, . . . , 1/S)T

Initialize visit counts N1 = 0
for episodes k = 1, 2, . . . do

Set tk ← t
Build extended MDPMk :=Mtk

Using EVI, compute optimistic policy πk and (hk, gk) ∈ RS × [0, rmax] such that

LMkhk = Lπk
Mk

hk = hk + gke with gk = g?Mk
≥ g?M?

while Nt(st, at) < max{1, Ntk (st, at)} do

Take action at = πk(st)
Observe reward rt and next state st+1

Compute new empirical means r̂t+1(st, at) and p̂t+1(·|st, at)
Compute new visit count Nt+1(st, at)
t← t+ 1

end
end

Optimism

Stopping condition of an episode

Bellman equation inMk
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UCRL2: Regret Guarantees 50

Theorem (Thm.2 of [Jaksch et al., 2010])

There exists a numerical constant β > 0 such that in any communicating MDP
M? = 〈S,A, r, p〉, with probability at least 1− δ, UCRL2 suffers a regret bounded as

∀T ≥ 1, R(T,M?,UCRL2) ≤ β·rmaxDS

√
AT log

(
T

δ

)
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UCRL2: Regret Guarantees 50

Theorem (Thm.2 of [Jaksch et al., 2010])

There exists a numerical constant β > 0 such that in any communicating MDP
M? = 〈S,A, r, p〉, with probability at least 1− δ, UCRL2 suffers a regret bounded as

∀T ≥ 1, R(T,M?,UCRL2) ≤ β·rmaxDS

√
AT log

(
T

δ

)
Comparison to lower bound

R(T,M?,UCRL) ≥ 0.015
√
DSAT

Can the gap between upper and lower bound be closed? � More on this later
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UCRL2: Regret Guarantees (cont’d.)
51

Theorem (Thm.4 of [Jaksch et al., 2010])

There exists a numerical constant β > 0 such that in any ergodic MDP
M? = 〈S,A, r, p〉, for all T ≥ 1, UCRL2 (with δ = 1/T ) suffers a regret bounded as

R(T,M?,UCRL2) ≤ β·rmax
D2S2A log (T )

δ?g
+ Big constant independent of T

with
δ?g := g?M? − max

s∈S,π

{
gπM?(s) < g?M

}
∼ “gap in gain”
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UCRL2: Regret Guarantees (cont’d.)
51

Theorem (Thm.4 of [Jaksch et al., 2010])

There exists a numerical constant β > 0 such that in any ergodic MDP
M? = 〈S,A, r, p〉, for all T ≥ 1, UCRL2 (with δ = 1/T ) suffers a regret bounded as

R(T,M?,UCRL2) ≤ β·rmax
D2S2A log (T )

δ?g
+ Big constant independent of T

with
δ?g := g?M? − max

s∈S,π

{
gπM?(s) < g?M

}
∼ “gap in gain”

Comparison to lower bound

lim inf
T→∞

R(T,M?,A)

log T
≥ KM? , with KM? .

D2SA

min
s,a

δ?M?(s, a)
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UCRL2: Regret Guarantees (cont’d.)
51

Theorem (Thm.4 of [Jaksch et al., 2010])

There exists a numerical constant β > 0 such that in any ergodic MDP
M? = 〈S,A, r, p〉, for all T ≥ 1, UCRL2 (with δ = 1/T ) suffers a regret bounded as

R(T,M?,UCRL2) ≤ β·rmax
D2S2A log (T )

δ?g
+ Big constant independent of T

with
δ?g := g?M? − max

s∈S,π

{
gπM?(s) < g?M

}
∼ “gap in gain”

Comparison to lower bound

lim inf
T→∞

R(T,M?,A)

log T
≥ KM? , with KM? .

D2SA

min
s,a

δ?M?(s, a)

how do they compare?
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Qualitative Regret Shape
52

T

R(T,M?,UCRL2) T O
(
DS
√
AT log(T )

)
O
(
D2S2A

δ?g
log(T )

)

0 T1 T2

Regret upper-bound

*illustrative plot
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Refined Confidence Bounds
53

UCRL2 with Bernstein bounds (instead of Hoeffding/Weissman):

R(T,M?,UCRL2B) = O

(√
DΓSAT log

(
T

δ

)
log (T )

)

, Still not matching the lower bound!

- For most MPDs: Γ� S

Kullback-Leibler UCRL [Filippi et al., 2010, Talebi and Maillard, 2018]:

R(T,M?,UCRL-KL) = O

(√∑
s,a

VX∼p?(·|s,a) (h?M?(X))︸ ︷︷ ︸
≤D2SA

ST log

(
T

δ

)
+D
√
T

)

, Only for ergodic MDPs!
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Infinite Diameter (weakly communicating MDPs)
54

Known bound on the optimal bias span C ≥ sp(h?M?)
[Bartlett and Tewari, 2009, Fruit et al., 2018b]

R(T,M?, SCAL) = O

(√
CΓSAT log

(
T

δ

)
log(T )

)

, Requires prior knowledge!

No prior knowledge: TUCRL [Fruit et al., 2018a]:

R(T,M?, SCAL) = O

(√
DcomScomΓAT log

(
T

δ

)
log(T )

)

, Never achieves logarithmic regret! Intrinsic limitation of the setting!
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Infinite Diameter (weakly communicating MDPs)
54

Known bound on the optimal bias span C ≥ sp(h?M?)
[Bartlett and Tewari, 2009, Fruit et al., 2018b]

R(T,M?, SCAL) = O

(√
CΓSAT log

(
T

δ

)
log(T )

)

, Requires prior knowledge!

No prior knowledge: TUCRL [Fruit et al., 2018a]:

R(T,M?, SCAL) = O

(√
DcomScomΓAT log

(
T

δ

)
log(T )

)

, Never achieves logarithmic regret! Intrinsic limitation of the setting!
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Open Questions 55

1 Tightness of minimax O(
√
T ) regret bounds for infinite horizon problems

• Dependency on Γ: regret + sample complexity bounds?
• Analysis not tight vs. change in the algorithm?
• Lower bound not tight?

2 Finite time logarithmic upper and lower regret bounds
• Non-asymptotic lower bounds
• Tighter analysis of UCRL-like algorithms? New algorithms?
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1 Setting the Stage

2 Lower Bounds

3 Optimism in Face of Uncertainty

4 Posterior Sampling

5 Asymptotically Optimal Algorithms

6 Summary of Theory of Exploration
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Posterior Sampling
a.k.a. Thompson Sampling [Thompson, 1933]

57

Keep Bayesian posterior for the unknown MDP

� A sample from the posterior is used as an
estimate of the unknown MDP

Few samples =⇒ uncertainty in the
estimate

Exploration

More samples =⇒ posterior concentrates
on the true MDP

Exploitation

Posterior
distribution µt

Set of MDPs
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History: PS for Regret Minimization in RL
58

FH: finite-horizon
AR: average reward
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Posterior Sampling
59

t← 1
for episode k = 1, 2, . . . do

tk ← t

Mk ∼ µtk
πk ∈ arg max

π
{gπMk

}

while not enough knowledge do
Take action at ∼ πk(·|st)
Observe reward rt and next state st+1

Compute µt+1 based on µt and
(st, at, rt, st+1)
t← t+ 1

end
end

Prior distribution:

∀Θ, P(M∗ ∈ Θ) = µ1(Θ)

Posterior distribution:

∀Θ, P(M∗ ∈ Θ|Ht, µ1) = µt(Θ)

Priors
Dirichlet (transitions)
Beta, Normal-Gamma, etc. (rewards)
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Bayesian Regret 60

RB(T, µ1,A) = EM?∼µ1

[
R(T,M?,A)︸ ︷︷ ︸

:=E
[
R(T,M?,A)

]
]

= E

[
T∑
t=1

g?M? − r(st, at)

]
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TSDE: Thompson Sampling with Dynamic Episodes
[Ouyang et al., 2017]

61

Episode length lk = tk+1 − tk is dynamically determined by

1 Doubling of visits (stochastic)

2 Increasing length of previous episode by one (deterministic)

tk+1 = min

{
t > tk : ∃(s, a), Nt(s, a) > 2Ntk(s, a)︸ ︷︷ ︸

(ST1)

or t > tk + lk−1︸ ︷︷ ︸
(ST2)

}

� (ST2) is σ(Htk)-measurable

lk ≤ lk−1 + 1
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TSDE: Regret Guarantees 62

Theorem ([Ouyang et al., 2017])
There exists a numerical constant β > 0 such that for any prior µ1 whose support is a
subset of communicating MDPs, TSDE suffers a regret bounded as

∀T ≥ 1, RB(T, µ1,TSDE) ≤ β ·
(
CS
√
AT log(AT )

)
where

µ1 is such that sup
M?∼µ1

{
sp(h?M?)

}
≤ C < +∞ (ASM-SP)
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OPT-PSRL: Optimistic Posterior Sampling
[Agrawal and Jia, 2017]

63

OFU

PSRL

frequentist regret

gain optimism

1. Sample posterior ψ = Õ(S) times

pisa ∼ µtk(s, a), i = 1, . . . , ψ

Mk is an discrete extended MDP

p̃(·, s, ai) = pis,a, ai ∈ A× {1, . . . , ψ}

2. SolveMk for πk
g?Mk
≥ g?M? − Õ

(
D
√
SA/T

)
Lazaric



OPT-PSRL: Regret Guarantees 64

Theorem ([Agrawal and Jia, 2017])
There exists a numerical constant α, β > 0 such that in any communicating MDP M?,
with probability at least 1− δ and for any T ≥ αDA log2(T/δ), Opt-PSRL suffers a
regret bounded as:

R(T,M?,Opt-PSRL) ≤ βrmax ·

(
DS

√
AT log

(
T

δ

)
+ poly(S,A)DT 1/4 log

(
T

δ

))
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Open Questions 65

1 The nature of bounded bias span assumption (Asm. ASM-SP)
• Used in [Ouyang et al., 2017, Theocharous et al., 2018]

• supp(µ1) is continuous, then sup
M?∼µ1

{sp(h?M?)} = +∞ [e.g., Fruit et al. [2018a]]

2 Statistical efficiency of PSRL

• Claimed efficient Bayesian or frequentist Õ(D
√
SAT ) regret bound

• Not supported by proofs, incorrect Lem. C.1 [Osband and Roy, 2016a] and Lem.

C.2 [Agrawal and Jia, 2017] [� see tutorial website]
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1 Setting the Stage

2 Lower Bounds

3 Optimism in Face of Uncertainty

4 Posterior Sampling

5 Asymptotically Optimal Algorithms

6 Summary of Theory of Exploration
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History: Asymptotic Regret Minimization 67
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∞
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∞
)
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)

Tewari and
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)
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Asymptotic Lower-Bound
68

Theorem (Thm. 2, [Burnetas and Katehakis, 1997])

Any algorithm A s.t. R(T,M,A) = o(Tα) for all α > 0 and ergodic MDP M should
satisfy

∀(s, a) :Malt
M?(s, a), lim inf

T→∞

E[NT (s, a)]

log T
≥ 1

infM∈Malt
M? (s,a) KLM?,M (s, a)

� Should be satisfied by optimal algorithms
necessary to be uniformly good on all the possible alternative models
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BKIA: Burnetas-Katehakis Index Algorithm
[Burnetas and Katehakis, 1997]

69

for t = 1, . . . , T do

Dt(s)← {a ∈ A(s) : Nt(s, a) ≥ log2(Nt(s))}
(gt, ht)← solve M̂t = 〈S, Dt, p̂t, r〉

if ∃a ∈ Π?

M̂t
(st), Nt(st, a) ≥ log2(Nt(st) + 1) then

at ∈ arg max
a∈A(st)

{bt(s, a;ht)}

else
at ∈ arg min

a∈Π?
M̂t

(st)

{Nt(s, a)}

end
Observe reward rt and next state st+1

end

A Solve empirical MDP M̂t on a
restricted action set

C Force exploration of
“underestimated” actions

B Select maximum index action
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BKIA: Interpretation
70

B Exploration & Exploitation

at ∈ arg max
a∈A

{bt(st, a)}

bt(s, a) = sup
q∈∆(S)

{
Laqh

?
M̂t

(s) : Nt(s, a) KL(p̂t(·|st, a)‖q) ≤ log(t)

}
related to − inf

M∈Malt
M̂t

(s,a)

{
δ?
M̂t

(s, a) : Nt(s, a) KL
M̂t,M

(s, a) ≤ log(t)
}

o A not so explicit way of controlling the lower bound

Ý

Optimistic greedy
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BKIA: Interpretation
70

B Exploration & Exploitation

at ∈ arg max
a∈A

{bt(st, a)}

bt(s, a) = sup
q∈∆(S)

{
Laqh

?
M̂t

(s) : Nt(s, a) KL(p̂t(·|st, a)‖q) ≤ log(t)

}
related to − inf

M∈Malt
M̂t

(s,a)

{
δ?
M̂t

(s, a) : Nt(s, a) KL
M̂t,M

(s, a) ≤ log(t)
}

o A not so explicit way of controlling the lower bound

� Computing bt is similar to KL-UCB [Garivier and Cappé, 2011] for MAB.

Ý

Optimistic greedy
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BKIA: Interpretation
71

C Forced Exploration

when ∀a ∈ Π?
M̂t

(st), Nt(st, a) < log2(Nt(st) + 1)

BKIA prevents that all optimal actions will become under-explored

=⇒ at ∈ Π?
M̂t

(st)

� Asymptotic monotonic property

P
(
g?M?(Dt+1) ≥ g

?
M?(Dt)

)
= 1− o

(
1

t

)
as t→∞
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BKIA: Regret Guarantees 72

Theorem (Thm. 1, [Burnetas and Katehakis, 1997])
For any ergodic MDP M?, the expected regret of BKIA is upper bounded as

lim sup
T→∞

R(T,M?, BKIA)

log T
≤ K?

M?

� OLP [Tewari and Bartlett, 2007] replaces the KL constraint with an L1
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log T
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� OLP [Tewari and Bartlett, 2007] replaces the KL constraint with an L1
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Open Questions 73

The role of forced exploration

• Why do we need to force exploration?

• Is it due to the lack of long-term optimism?

• Is it really required at algorithmic level?

Finite Time Analysis

Refined lower bound

• Current lower bound is derived from a bandit perspective
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5 Asymptotically Optimal Algorithms

6 Summary of Theory of Exploration
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Summary 75

Alg. Asymptotic (ergodic) Finite-time (comm.)

Lower bound
C2SA

mins,a δ?M? (s, a)
ln(T )

√
DSAT

UCRL2B
D2S2A

δ?g
ln(T )

√
DSΓAT ln(T )

SCAL
C2S2A

δ?g
ln(T )

√
CSΓAT ln(T )

TSDE ? CS
√
AT ln(T )

BKIA/DEL
C2SA

mins,a δ?M? (s, a)
ln(T ) ?

Γ = max
s,a
|supp(p(·|s, a))|

DM = max
s,s′∈S

min
π:S→A

E
[
TMπ (s, s′)

]
C ≥ sp(h?)

δ?M (s, a) = L?Mh
?
M (s)− LaMh

?
M (s)

δ?g := g?M − max
s∈S,π

{
gπM? (s) < g?M

}
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Open Question: Summary 76

Alg. Asymptotic (ergodic) Finite-time (comm.)

Lower bound
C2SA

mins,a δ?M? (s, a)
ln(T )

√
DSAT

UCRL2B
D2S2A

δ?g
ln(T )

√
DSΓAT ln(T )

SCAL
C2S2A

δ?g
ln(T )

√
CSΓAT ln(T )

TSDE ? CS
√
AT ln(T ) (Bayes)

BKIA
C2SA

mins,a δ?M? (s, a)
ln(T ) ?

Closing the gap between upper and lower bounds and settings (ergodic/asymptotic vs
communicating/worst-case)

� Many lessons learned from bandit but need to deal with dynamical nature of
the problem.
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Extensions 77

TODO
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Other Settings
78

Non-realizable approximated MDP (e.g. [Jiang et al., 2017])

Non-stationary/adversarial environments (e.g. [Even-Dar et al., 2009, Neu et al., 2014])

MDPs with arbitrary structure (e.g. [Gopalan and Mannor, 2015])

Hierarchical exploration (e.g. [Fruit and Lazaric, 2017, Fruit et al., 2017])

Low-exploration MDPs (e.g. [Zanette and Brunskill, 2018])

Active/unsupervised exploration (e.g. [Lim and Auer, 2012, Hazan et al., 2018,
Tarbouriech and Lazaric, 2019])

Partially observable MDPs and beyond (e.g. [Jiang et al., 2017, Azizzadenesheli et al.,
2016])
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Resources 80

Reinforcement Learning
Books
• Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.

John Wiley & Sons, Inc., New York, NY, USA, 1994

• Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998

• Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, Vol. II.
Athena Scientific, 3rd edition, 2007

• Csaba Szepesvari. Algorithms for Reinforcement Learning.
Morgan and Claypool Publishers, 2010

Courses (with good references for exploration)
• Nan Jiang. Cs598 statistical reinforcement learning.

http://nanjiang.cs.illinois.edu/cs598/

• Emma Brunskill. Cs234 reinforcement learning winter 2019.
http://web.stanford.edu/class/cs234/index.html

• Alessandro Lazaric. Mva reinforcement learning.
http://chercheurs.lille.inria.fr/˜lazaric/Webpage/Teaching.html

• Alexandre Proutiere. Reinforcement learning: A graduate course.
http://www.it.uu.se/research/systems_and_control/education/2017/relearn/
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Resources 81

Exploration-Exploitation and Regret Minimization

Books

• Sébastien Bubeck and Nicolò Cesa-Bianchi. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems.
Foundations and Trends R© in Machine Learning, 5(1):1–122, 2012

• Tor Lattimore and Csaba Szepesvári. Bandit algorithms.
Pre-publication version, 2018.
URL http://downloads.tor-lattimore.com/banditbook/book.pdf

Lazaric
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Yasin Abbasi-Yadkori and Csaba Szepesvári. Bayesian optimal control of smoothly parameterized systems. In
UAI, pages 1–11. AUAI Press, 2015.

Rajeev Agrawal. Adaptive control of markov chains under the weak accessibility. In 29th IEEE Conference on
Decision and Control, pages 1426–1431. IEEE, 1990.

Shipra Agrawal and Randy Jia. Optimistic posterior sampling for reinforcement learning: worst-case regret
bounds. In NIPS, pages 1184–1194, 2017.

Peter Auer and Ronald Ortner. Logarithmic online regret bounds for undiscounted reinforcement learning. In
NIPS, pages 49–56. MIT Press, 2006.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforcement learning.
In ICML, volume 70 of Proceedings of Machine Learning Research, pages 263–272. PMLR, 2017.

Kamyar Azizzadenesheli, Alessandro Lazaric, and Animashree Anandkumar. Reinforcement learning of pomdps
using spectral methods. In COLT, volume 49 of JMLR Workshop and Conference Proceedings, pages
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