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Types of learning settings

Supervised learning vs unsupervised

Online learning vs batch

Passive learning vs active

Stationary environment?
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Supervised learning
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Supervised learning

Setting:
Data come in pairs (x , y) of

x some input data, often a vector of numerical features or descriptors
(stimuli)

y some output data

Goal:
Given some examples of existing pairs (xi , yi ), “guess” some of the
statistical relation between x and y that are relevant to a task.
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Formalizing supervised learning

We will assume that we have some training data

Dn = {(x1, y1), . . . , (xn, yn)}.

Learning scheme or learning “algorithm”

is a functional A which

given some training data Dn

produces a predictor or decision function f̂ .

A : Dn 7→ f̂

We hope to get a “good” decision function

→ Need to define what we expect from that decision function.
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Decision theory

Abraham Wald (1939)
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Decision theoretic framework

X input data set

Y output data set

A action set

f : X → A decision function,
predictor, hypothesis

Goal of learning
Produce a decision function such that given a new input x the action
f (x) is a “good” action when confronted to the unseen corresponding
output y . What is a “good” action?

f (x) is a good prediction of y , i.e. close to y in some sense.

f (x) is action that has the smallest possible cost when y occurs.

Loss function
` : A× Y → R

(a, y) 7→ `(a, y)

measures the cost incurred when action a is taken and y has occurred.
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Formalizing the goal of learning as minimizing the risk

Risk
R(f ) = E

[
`(f (X ),Y )

]
Target function
If there exists a unique function f ∗ such that R(f ∗) = inff ∈AX R(f ),
then f ∗ is called the target function, oracle function or Bayes predictor.

Conditional risk

R(a | x) = E[`(a,Y ) | X = x ] =

∫
`(a, y) dPY |X (y |x).

If infa∈AR(a | x) is attained and unique for almost all x then the
function f ∗(x) = arg mina∈AR(a | x) is the target function.

Excess risk

E(f ) = R(f )−R(f ∗) = E
[
`(f (X ),Y )− `(f ∗(X ),Y )

]
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Example 1: ordinary least squares regression
Case where A = Y = R.

square loss: `(a, y) = (a− y)2

mean square risk: R(f ) = E
[
(f (X )− Y )2

]
Intuition? Let f̃ (X ) = E[Y | X ].

E
[
(Y − f (X ))2 | X

]
= E

[(
Y − E[Y |X ] + E[Y |X ]− f (X )

)2 | X
]

= E
[
(Y − E[Y |X ])2 | X

]
+ E

[(
E[Y |X ]− f (X ))2 | X

]
+ 2E

[(
Y − E[Y |X ]

)(
E[Y |X ]− f (X )

)
| X
]

= E
[
(Y − E[Y |X ])2 | X

]
+ E

[(
E[Y |X ]− f (X ))2 | X

]
+ 2E

[(
Y − E[Y |X ]

)(
E[Y |X ]− f (X )

)
| X
]︸ ︷︷ ︸

=0

E
[
E[(Y − f (X ))2 | X ]

]
= R(f̃ ) + E

[
(f̃ (X )− f (X ))2

]
.

So f ∗ = f̃
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Ordinary least squares regression: summary

Case where A = Y = R.

square loss:
`(a, y) = (a− y)2

mean square risk:

R(f ) = E
[
(f (X )− Y )2

]
= E

[
(f (X )− E[Y |X ])2

]
+ E

[
(Y − E[Y |X ])2

]
target function:

f ∗(X ) = E[Y |X ]
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Example 2: classification
Case where A = Y = {0, . . . ,K − 1}.

0-1 loss:
`(a, y) = 1{a 6=y}

What is the risk? E
[
1{f (X )6=Y }

]
= P

(
f (X ) 6= Y

)
.

Computing the target function as a minimizer of R(a | X = x).

R(a | X = x) = P(a 6= Y | X = x) = 1− P(a = Y | X = x).

So minaR(a | X = x) is equivalent to

max
a∈A

P(a = Y | X = x) = max
a∈A

P(Y = a | X = x)

f ∗(x) = arg max
1≤k≤K

P(Y = k | X = x)

f ∗ simply predicts the most probable value of Y given X .
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Classification: summary

Case where A = Y = {0, . . . ,K − 1}.

0-1 loss:
`(a, y) = 1{a 6=y}

the risk is the misclassification error

R(f ) = P(f (X ) 6= Y )

the target function is the assignment to the most likely class

f ∗(X ) = argmax1≤k≤K P(Y = k |X )
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Empirical Risk Minimization
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Empirical Risk Minimization

Idea: Replace the population distribution of the data by the empirical
distribution of the training data. Given a training set
{(x1, y1), . . . , (xn, yn)}, we define the

Empirical Risk

R̂n(f ) =
1

n

n∑
i=1

`(f (xi ), yi )

Empirical Risk Minimization principle

consists in minimizing the empirical risk.

Problem: The target function for the empirical risk is only defined at
the training points.
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Hypothesis space

For both computational and statistical reasons, it is necessary to
consider to restrict the set of predictors or the set of hypotheses
considered. Given a hypothesis space S ⊂ YX considered the
constrained ERM problem

min
f ∈S
R̂n(f )

linear functions

polynomial functions

spline functions

multiresolution approximation spaces (wavelet)
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Linear regression
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Linear regression

We consider the OLS regression for the linear hypothesis space.

We have X = Rp, Y = R and ` the square loss.

Consider the hypothesis space:

S = {fw | w ∈ Rp} with fw : x 7→ w>x.

Given a training set {(x1, y1), . . . , (xn, yn)} we have

R̂n(fw ) =
1

2n

n∑
i=1

(yi −w>xi )
2 =

1

2n
‖y − Xw‖2

2

with

the vector of outputs y> = (y1, . . . , yn) ∈ Rn

the design matrix X ∈ Rn×p whose ith row is equal to x>i .
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Polynomial regression and overfitting
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Polynomial regression: an instance of linear regression
Model of the form Y = w0 + w1X + w2X

2 + . . .+ wpX
p + ε

min
w

1

2n

n∑
i=1

(
yi − (w0 + w1xi + w2x

2
i + . . .+ wpx

p
i )
)2
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Overfitting: symptoms and characteristics
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Regularization

Decision Theory and Supervised Learning 28/51



Tikhonov regularization

min
f ∈S
R̂n(f ) + λ‖f ‖2

λ is the regularization coefficient or hyperparameter

Is the problem now well-posed?

If R̂n is convex

⇒ The solution exists and is unique.

⇒ λ 7→ f̂λ is a continuous function

If R̂n is bounded below

⇒ At least a solution exists

If R̂n is C2 with bounded curvature

⇒ Regularization eliminates weak local minima.
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Ridge regression

Is obtained by applying Tikhonov regularization to OLS regression.

min
w∈Rp

1

2n
‖y − Xw‖2

2 + λ‖w‖2
2

Problem now strongly convex thus well-posed

Thus with unique solution:

ŵ (ridge) = (X>X + λI )−1X>y

Shrinkage effect

Regularization improves the conditioning number of the Hessian

⇒ Problem now easier to solve computationally
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Polynomial regression with ridge
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Complexity
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Controlling the complexity of the hypothesis space

Explicit control

number of variables

maximal degree for polynomial functions

degree and number of knots for spline functions

maximal resolution in wavelet approximations.

bandwidth in RKHS

The complexity is fixed.

Implicit control with regularization (or using Bayesian formulations).
The complexity of the predictor results from a compromise between
fitting and increasing complexity.

Problem of model selection: How to choose the level of complexity?
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Risk decomposition: approximation-estimation trade-off

R(f̂S)−R(f ∗)︸ ︷︷ ︸
excess risk

= R(f̂S)−R(f ∗S )︸ ︷︷ ︸
estimation error

+R(f ∗S )−R(f ∗)︸ ︷︷ ︸
approximation error

Sometimes also called “bias-variance tradeoff
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Approximation-estimation tradeoff
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Logistic regression
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Maximum likelihood principle

Let PΘ =
{
pθ(x) | θ ∈ Θ

}
be a given

model

Let x be an observation

Likelihood:

L : Θ → R+

θ 7→ pθ(x)

Maximum likelihood estimator:

θ̂ML = argmax
θ∈Θ

pθ(x)
Sir Ronald Fisher

(1890-1962)
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MLE and Conditional MLE

Case of i.i.d data

If (xi )1≤i≤n is an i.i.d. sample of size n:

θ̂ML = argmax
θ∈Θ

n∏
i=1

pθ(xi ) = argmax
θ∈Θ

n∑
i=1

log pθ(xi )

Conditional MLE

If (xi , yi )1≤i≤n is an i.i.d. sample (or training set) of size n:

θ̂ML = argmax
θ∈Θ

n∏
i=1

pθ(yi |xi ) = argmax
θ∈Θ

n∑
i=1

log pθ(yi |xi )
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Logistic regression (Berkson, 1944)

Classification setting:

X = Rp,Y ∈ {−1, 1}.

Key assumption:

log
P(Y = +1 | X = x)

P(Y = −1 | X = x)
= w>x

Implies that

P(Y = 1 | X = x) = σ(w>x)

for

σ : z 7→ 1

1 + e−z
,

the logistic function.
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The logistic function is part of
the family of sigmoid functions.

Often called “the” sigmoid
function.

Properties:

∀z ∈ R, σ(−z) = 1− σ(z),
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Logistic function in 2D
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Likelihood for logistic regression

Let η := σ(w>x + b). W.l.o.g. we assume b = 0.
By assumption: 1{Y=1}|X = x ∼ Ber(η).

Likelihood

p(Y = y |X = x) =

{
σ(w>x) if y = 1

1− σ(w>x) = σ(−w>x) if y = −1

So that
p(Y = y |X = x) = σ(y w>x).
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Logistic regression final formulation

Log-likelihood of a sample:

Given an i.i.d. training set D = {(x1, y1), · · · , (xn, yn)}

`(w) =
n∑

i=1

log p(yi |xi ) =
n∑

i=1

log σ(yiw>xi ) = −
n∑

i=1

log
(
1+exp(yiw>xi )

)
Maximizing the log-likelihood is equivalent to solving

min
w

n∑
i=1

log
(
1 + exp(yiw>xi )

)
.

The negative log-likelihood takes the form of an empirical risk with loss

`(a, y) = h(ya) with h : z 7→ log
(
1 + e−ya

)
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Log-likelihood on toy example
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Simple validation and Cross-validation
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Validation
How to choose the hyperparameters?

Number of nearest neighbors

Regularization parameters

Bandwidth of convolution kernels

Simple validation

1 Split the original training set Dn in a new training set D̃n′ as
validation set V .

D̃n′ = {(x1, y1), . . . , (xn′ , yn′)} and V = {(xn′+1, yn′+1), . . . , (xn, yn)}

2 Learn a predictor f̂D̃n′
using only D̃n′

3 Estimate the risk with the validation set

R̂val
V (f̂D̃n′

) =
1

|V |
∑
i∈V

`
(
f̂D̃n′

(xi ), yi

)
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K -fold cross-validation
Partition data in blocks

B1 B2 B3 V B5

For each block

Use the block Bk as validation data

Use the rest Dn\Bk as training set

estimate the validation error

R̂val
Bk

(f̂Dn\Bk
) =

1

|Bk |
n∑

i∈Bk

`(f̂Dn\Bk
(xi ), yi )

Then compute the cross-validation error as the average of each of these
simple validation error

R̂K−fold =
1

K

K∑
k=1

R̂val
Bk

(f̂Dn\Bk
)
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Leave-one-out cross validation

Could be called n-fold cross-validation.

Consists in removing a single point from the training set at a time
and use it for validation.

R̂LOO =
1

n

n∑
i=1

R̂val
{(xi ,yi )}(f̂Dn\{(xi ,yi )})

=
1

n

n∑
i=1

`(f̂Dn\{(xi ,yi )}(xi ), yi )

For a number of ERM schemes the LOO error is convenient to
compute.
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Comments on cross-validation

How to choose K?

Difficult theoretical problem

In practice K = 5 or K = 10.

Performance of f̂ vs performance of A

Two natural questions

How well will perform my predictor f̂ on future data?

R(f̂ )

If f̂Dn = A (Dn), how well does my learning scheme perform

EDn

[
R(f̂Dn)

]
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