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RLSS, juillet 2019, Lille

Fundamental Concentration Inequalities 1/24



What and why?

What is the concentration of measure phenomenon?
This refers to the phenomenon that there are certain ways to combine

random variables that produce r.v. that are concentrated around their

expectation. One of the main case of interest are averages of independent

variables.

Why do we need it for reinforcement learning?
RL require to make decisions in the presence of “uncertain uncertainty”,

r.v.s whose distributions are not known initially. This requires to be able

to produce confidence intervals (or confidence regions) for these r.v. in

the environment that are not yet know, but that are typically being

learned in the RL algorithm.

Why is the central limit theorem not sufficient?
The CLT only produces asymptotic CIs with an error which is a priori not

quantified.

Fundamental Concentration Inequalities 3/24



Union bound
Let A1,A2, . . . ,Ak be events. We have

P(A1 ∪ A2 ∪ . . . ∪ Ak) ≤ P(A1) + P(A2) + . . .+ P(Ak)

Proof.

E
[
1A1∪A2∪...∪Ak

]
≤ E

[
1A1 + 1A2 + . . .+ 1Ak

]
.

Example

Let Xt ∼ N (0, σ2) (not necessarily independent)

P(max
t

Xt > x) = P
(⋃

t

{
Xt > x

})
≤

T∑
t=1

P(Xt > x) ≤ T exp
(
− x2

2σ2

)
So with probability 1− δ, we have

X ≤ σ
√

2 log
T

δ
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Markov, Chebychev and Chernoff

Markov inequality

If X ≥ 0 a.s. and t > 0, then P(X > t) ≤ E[X ]

t

Chebychev inequality

∀t > 0, P(X − E[X ] > t) ≤ Var(X )

t2

Chernoff inequality

P(X > t) ≤ inf
r≥0

e−rt E
[
erX
]

Note that r 7→ E
[
erX
]

is the moment generating function (MGF) of X .
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Cramér-Chernoff Method
∀r > 0,

P(X > t) ≤ e−rt E
[
erX
]

= exp
(
ψX (r)− rt

)
for ψX (r) = logE

[
erX
]

ψ is the log MGF of X , aka cumulant generating function if E[X ] = 0.

Since this true for all r ≥ 0 if

ψ∗X (t) = sup
r≥0

rt − ψX (r),

then we have

P(X > t) ≤ exp(−ψ∗X (t))

ψ∗X is called the Cramér transform of X

If t ≥ E[X ], then ψ∗X (t) = sup
r∈R

rt − ψX (r),

i.e., ψ∗X is the Fenchel-Legendre conjugate of ψX .
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Applying the Cramér-Chernoff to the Gaussian
Let X ∼ N (0, σ2), then

E[erX ] = e
r2σ2

2 , ψ(r) =
r2σ2

2
, ψ∗(t) =

t2

2σ2
,

So that 1− Φ(t) := P(X > t) ≤ e−ψ
∗(t) = e−

t2

2σ2 .

But it is well-known that for all t > 0,

(1

t
− 1

t3

)
· 1√

2πσ2
e−

t2

2σ2 ≤ 1− Φ(t) ≤ 1

t
· 1√

2πσ2
e−

t2

2σ2 .

In fact

sup
t≥0

(
1− Φ(t)

)
e

t2

2σ2 =
1

2
.

So the Cramér-Chernoff produces a relatively good bound.

Note that if for some r.v. Z we have ψZ (r) ≤ r2

2v
then we get the same

bounds as for the Gaussian. Such variables are called subgaussian.
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MGF inequality for bounded r.v.

Bernoulli r.v. X

For XB ∼ Ber(θ), we have E
[
esXB

]
= 1− θ + θes

Any bounded r.v. X on [0, 1]

If E[X ] = θ, ∀s ∈ R, we have E
[
esX
]
≤ E

[
(1−X ) + Xes

]
= 1− θ+ θes

So

E
[
esX
]
≤ E

[
esXB

]
= 1− θ + θes .

And

E
[
es(X−θ)

]
≤ E

[
es(XB−θ)

]
=
(
1− θ + θes

)
e−sθ = eφ(s),

with
φ(s) := log

(
1− θ + θes

)
− sθ.
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Key inequality (Hoeffding’s Lemma)

Let φ(s) := log
(
1− θ + θes

)
− sθ. We have φ(s) ≤ s2

8
.

Proof.

By Taylor-Lagrange φ(s) = φ(0) + sφ′(0) +
s2

2
φ′′(t) with t ∈ (0, s).

φ′(t) + θ =
θet

1− θ + θet
=

1

1 + αe−t
with α = 1−θ

θ .

φ′′(t) =
αe−t

(1 + αe−t)2
= φ′(t)

(
1− φ′(t)

)
≤ 1

4
since φ′(t) ≤ 1.

So φ(0) = 0, φ′(0) = 0 and, by T.-L.,

φ(s) ≤ s2

2
φ′′(t) ≤ s2

8
.
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Bounded r.v. are sub-Bernoulli and thus sub-Gaussian
Let

X be a r.v. on [0, 1] with E[X ] = θ

XB ∼ Ber(θ)

XG ∼ N (0, 14)

φ(s) := log
(
1− θ + θes

)
− sθ.

Then E
[
es(X−θ)

]
≤ E

[
es(XB−θ)

]
= eφ(s) ≤ e

s2

8 = E
[
esXG

]
.

Now, let

Y be a random variable on the interval [a, b]

X :=
Y − a

b − a
∈ [0, 1] so that Y = (b − a)X + a.

Ỹ = Y − E[Y ], X̃ = X − E[X ], X̃B = XB − E[XB ],

We have Ỹ = (b − a) X̃ and

E
[
esỸ
]

= E
[
es(b−a)X̃

]
≤ E

[
es(b−a)X̃B

]
= eφ(s(b−a)) ≤ e

s2(b−a)2

8 .
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We have Ỹ = (b − a) X̃ and

E
[
esỸ
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8 .
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Hoeffding inequality
Let Xi be independent bounded r.v. such that

E[Xi ] = 0 and Xi has support in [ai , bi ].

Let τ2 :=
1

n

∑
i

τ2i with τ2i :=
1

4
(bi − ai )

2. Note that Var(Xi ) ≤ τ2i .

Then ∀x ≥ 0, P
(
X ≥ x

)
≤ exp

(
− nx2

2τ2

)
with X :=

1

n

n∑
i=1

Xi .

Proof.P
(∑

iXi ≥ nx
)

= P
(

exp
(
s
∑

iXi

)
≥ exp(snx)

)
≤ e−snx E

[∏
i e

sXi

]
= e−snx

∏
i E
[
esXi

]
sub-G

≤ exp
(
− snx + s2

8

∑
i (bi − ai )

2
)

= exp
(
− snx + s2

2 nτ
2
)

Thus P
(∑

iXi ≥ nx
)
≤ exp

(
− nx2

2τ2

)
by setting s =

x

nτ2
≥ 0

which minimizes the RHS w.r.t. s.
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Comparing Hoeffding with the CLT
Let Xi be independent bounded r.v. such that

E[Xi ] = 0 and Xi has support in [ai , bi ].

Let τ2 :=
1

n

∑
i

τ2i with τ2i :=
1

4
(bi − ai )

2.

Let σ2 :=
1

n

∑
i

σ2i with σ2i = Var(Xi ) ≤ τ2i .

By the CLT:

√
n X

(d)−→ X ∗ with X ∗ ∼ N (0, σ2)

We can compare:

Hoeffding: P
(√

n X > x
)
≤ exp

(
− x2

2τ2

)
CLT: P

(√
n X ≥ x

)
−→
n→∞

P
(
X ∗ ≥ x

)
≤ 1

x

1√
2π

exp
(
− x2

2σ2

)
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High probability statement of Hoeffding’s inequality

As before let τ2 =
1

n

n∑
i=1

(bi − ai )
2.

Hoeffding inequality

P
(
X > x

)
≤ exp

(
− nx2

2τ2

)
By setting the RHS to δ, we obtain the following reformulation.

High probability statement:

With probability 1− δ, X ≤
√
τ2

n
· 2 log

(1

δ

)
.

Or equivalently
n∑

i=1

Xi ≤

√√√√ n∑
i=1

(bi − ai )2

√
2 log

(1

δ

)
.
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Sharper than Hoeffding: the Chernoff-Hoeffding inequality
If Xi are independent r.v. on [0,1] with E[Xi ] = θi , then

P
(
1
n

∑
iXi ≥ q

)
≤ exp

(
− nKL(q‖θ)

)
with KL(q‖θ) = q log q

θ + (1− q) log 1−q
1−θ .

Proof

P
(∑

iXi ≥ nq
)

= P
(

exp
(
s
∑

iXi

)
≥ exp(snq)

)
≤ e−snq E

[∏
i e

sXi

]
= e−snq

∏
i E
[
esXi

]
= e−snq

∏
i

(
1− θi + θie

s
)

≤ e−snq
(
1− θ + θes

)n
with θ = 1

n

∑
θi ,

by the arithmetico-geometric inequality.

Let ψ(s) = n log
(
1− θ + θes

)
. Then ψ′(s∗)− nq = 0 iff

θes
∗

1− θ + θes∗
= q ⇔ es

∗
=

q

1− q

1− θ
θ

.
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Sharper than Hoeffding: the Chernoff-Hoeffding inequality

We found ψ′(s∗)− nq = 0 iff

θes
∗

1− θ + θes∗
= q ⇔ es

∗
=

q

1− q

1− θ
θ

.

logP
(∑

iXi ≥ nq
)
≤ n log

(θes∗
q

)
− s∗nq

≤ n log θ
q + s∗n (1− q) = n log θ

q + n(1− q)
[

log 1−θ
1−q − log θ

q

]
= −nq log q

θ − n(1− q) log 1−q
1−θ = −nKL(q‖θ)
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Bennett’s inequality

Let Xi be independent bounded r.v. such that

E[Xi ] = 0 and P(Xi ≤ 1) = 1.

Let σ2 :=
1

n

∑
i

σ2i with σ2i = Var(Xi ) ≤ τ2i .

Then
P
(
1
n

∑
i Xi > x

)
≤ exp

(
− n σ2 h

( x

σ2

))
for h(u) = (1 + u) log(1 + u)

Or equivalently

P
(
1
n

∑
i Xi > x

)
≤ exp

(
− n (σ2 + x) log

(
1 +

x

σ2

))
see, e.g. Boucheron et al. (2003) for a proof.
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Bernstein’s Inequality

Bennett’s inequality: P
(
1
n

∑
i Xi > x

)
≤ exp

(
− n σ2 h

( x

σ2

))
for h(u) = (1 + u) log(1 + u) but h(u) ≥ 1

2

u2

1 + u/3
which implies

Bernstein’s inequality

P
(
1
n

∑
i Xi > x

)
≤ exp

(
− nx2

2(σ2 + x/3)

)

compare with Hoeffding’s inequality

P
(
1
n

∑
i Xi > x

)
≤ exp

(
− nx2

2τ2

)
If x � σ2 this captures the right asymptotic variance
If σ2 + x/3 ≥ τ2 then this is worse than Hoeffding
But when σ2 + x/3 < τ2 it captures relevant behavior for small σ2

e.g. Bin(n, λ/n)→ Poisson(λ) with tail in e−λ.
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High probability statement of Berstein’s inequality

Bernstein’s inequality

P
(
1
n

∑
i Xi > x

)
≤ exp

(
− nx2

2(σ2 + x/3)

)
By solving for x in t = nx2/

(
2(σ2 + x/3)

)
we get

x =
t

3n
+

√
t2

9n2
+

2σ2t

n
≥ t

3n
+

√
2σ2t

n
,

we get

P
(

1
n

∑
i Xi >

√
2σ2t

n
+

t

3n

)
≤ e−t

So that with probability 1− δ , we have

1
n

∑
i Xi >

√
2σ2 log(1δ )

n
+

log(1δ )

3n
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