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We are going to talk about

Bandits with structure !  Neuroscience research

Application to microscopy imaging parameters

Bandits with contexts !  Cancer research

Application to adaptive treatment allocation



Stochastic bandits

For each episode ! :
¥ Select a action " # $ %& '& ( & )
¥ Observe outcome *#+,-. / 0
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Stochastic bandits

For each episode ! :
¥ Select a action " # $ %& '& ( & )
¥ Observe outcome *#+,-. / 0
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Goal: Maximize expected rewards

" 6 789: ;8<
/$=2&3&(&5>

. /

Minimize ? @ 7A#B2
C . / 6 D . / 0



Exploration/Exploitation trade-off

Exploit: Potentially minimize regret
¥ " # 7 89:;8<

/$=2&3&(&5>
E./

Explore: Gain information

Many strategies:
¥ F-Greedy
¥ Optimism in front of uncertainty (UCB)
¥ Thompson Sampling
¥ Best Empirical Sampled Average (BESA)

Theory showing
sublinear regret under

proper assumptions



In practice

We cannot compute regret: GA#B2
C . / 6 D . / 0

¥ Instead we minimize cumulative bad events, e.g. system failures, 
fractures, patient dropout

¥ Or we maximize cumulative good events, e.g. clicks, minutes spent on 
website, lives saved



In practice

We cannot compute regret: A#B2
C . / 6 D . / 0

¥ Instead we minimize cumulative bad events, e.g. system failures, 
fractures, patient dropout

¥ Or we maximize cumulative good events, e.g. clicks, minutes spent on 
website, lives saved

We need to face constraints and challenges specific to applications
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Expected reward is a function
of the action features

HI J K L

For each episode ! :
¥ Select an action M# $ J
¥ Obtain a reward *#+ N-H-M#11

G
O

P



0.0 0.2 0.4 0.6 0.8 1.0
Actions

0.0

0.5

1.0

R
ew

ar
d

Many actions !  Structured bandits

Expected reward is a function
of the action features

HI J K L

For each episode ! :
¥ Select an action M# $ J
¥ Obtain a reward *#+ N-H-M#11
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Goal: Maximize rewards Find M6 7 89:;8<
Q$J

H-M1
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Capture structure: Linear model

¥ Unknown R $ LS
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Online function approximation

¥ Unknown R $ LS

¥ H M 7 T M & R
¥ M6 7 89:;8<

Q$J
T M & R

For each episode ! :
¥ Select an action M# $ J
¥ Observe outcome W# 7 H-M#1 X Y#

with noise Z[ \ ]-^& _ 31

G
O

P
Minimize GA#B2

C H M6 D H-M#1

H

M6



Kernel regression

¥ Kernel " M&M` 7 T M & T-M1̀

¥ Gaussian prior R \ ] S ^& a with a 7
bc
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Kernel regression

¥ Kernel " Mj & Mk 7 T Mj & T-Mk1

¥ Gaussian prior R \ ] S ^& a with a 7
bc

d
e for f g ^

For f 7 v 3 !  Gaussian Process (Rasmussen and Williams, 2006)

¥ Example: Pointwise posterior mean and standard deviation

TI J K L S

u can be very large!



Streaming kernel regression

¥ Next input location M# is selected based on the ! D % past observations

¥ Many algorithm variants bandits, e.g.
Kernel UCB, Kernel TS, GP-UCB, GP- TS



LetÕs apply those bandits!



Optimizing super-resolution imaging parameters

¥ Flavie Lavoie-Cardinal
¥ Theresa Wiesner
¥ Anthony Bilodeau
¥ Paul De Koninck

¥ Louis-ƒmile Robitaille
¥ Marc-AndrŽ Gardner
¥ Christian GagnŽ

Joint work with

D., Wiesner, Gardner, Robitaille, Bilodeau, GagnŽ, De Koninck, and Lavoie-Cardinal
(Nature Comm 2018)



Observing structures at the nanoscale 
(Hell and Wichmann, 1994)



Problem

Biology: The optimal parameters are not always the same 

Typical strategy:
¥ Split samples in two groups A and B
¥ Find good parameters on group A
¥ Perform imaging task on group B

From abberior-instruments.com



Structured bandit problem

Find good parameters during the imaging task
¥ Maximize the acquisition of useful images 
¥ Minimize trials of poor parameters 

Imaging parameters

Feedback

!  Identify best parameters
!  Explore wisely



Optimizing image quality

Recall goal: Maximize the acquisition of images useful to researchers

Imaging parameters

ImageQuality score



Imaging parameters

ImageQuality score

Thompson
Sampling
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Thompson Sampling for selecting imaging parameters
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What is good image quality?

Avoiding images like these:

Getting more like these:



But imaging is a destructive processÉ

Trade-off image quality and photobleaching

Outcomes
options

Quality score

Parameter
selection

Online analysis Images% bleach



Thompson Sampling for generating outcome options

¥ One kernel regression model wHj per objective x

¥ Sample one function yHj per objective x

¥ Option yH-M1at parameter M: Concatenate yHj -M1for all x
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Presenting estimates to the expert
¥ Exploration/Exploitation 

in the cloud!

¥ Expert acts as an argmax
on the preference 
function

Image quality
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Experiments on neuronal imaging

Three parameters (1000 configurations): 
¥ Excitation laser power 
¥ Depletion laser power
¥ Duration of imaging per pixel

Different imaging targets:
¥ Neuron: Rat neuron
¥ PC12: Rat tumor cell line
¥ HEK293: Human embryonic kidney cells

Acquire two STED images with "  1st STED quality and # photobleaching



Acquire goodimages and control photobleaching

Not super-resolution !

Quality

Photobleaching



Sublinear regret, as suggested by theory

Different imaging targets:
¥ Neuron: Rat neuron
¥ PC12: Rat tumor cell line
¥ HEK293: Human 

embryonic kidney cells



Fully automated process

Outcomes
options

Quality score

Parameter
selection

Online analysis Images% bleach



Fully automated imaging

Bottom left corner:
Not super-resolution

Beginning of optim !

End of optim !



Towards the next application:
Getting closer to the patient



Randomized trials
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Adaptive trials

Dynamically adapt the study design
based on previous observations

Effective

Favorable

Promising

Unfavorable
Futile



Writing down the settingÉ

Treatments:

Probability
of effectiveness:

For each patient ! :
¥ Select a treatment " # $ %& '& ( & )
¥ Observe outcome *#+,-. / 0
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This is stochastic bandits!
(Thompson, 1933)



In the absence of one size fits all strategy

Treatments:

Probability
of effectiveness:

1 2 3
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Context



In the absence of one size fits all strategy

Treatments:

Probability
of effectiveness:

1 2 3
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You can treat them as independent bandit problems!



In the absence of one size fits all strategy

Treatments:

Probability
of effectiveness:

1 2 3
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What happens if the number of contexts grows large?



Contextual bandits

Exploit the underlying structure on the context space

Reward = treatment effect
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Contextual bandits

Expected reward of action " is a
function H/ of the context features

H/ I • K L

For each episode ! :
¥ Observe a context ‚ # \ ƒ
¥ Select an action " # $ %& '& ( & )
¥ Observe a reward *#+,-H / 0

-‚ #11
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Contextual bandits

Expected reward of action " is a
function H/ of the context

H/ I • K L

For each episode ! :
¥ Observe a context ‚ # \ ƒ
¥ Select an action " # $ %& '& ( & )
¥ Observe a reward *#+,-H / 0

-‚ #11
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¥ Unknown R/ $ L S for each action "
¥ H/ ‚ 7 T ‚ & R/
¥ " #
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T ‚ # & R/

For each episode ! :
¥ Observe a context ‚ # \ ƒ
¥ Select an action " # $ %& '& ( & )
¥ Observe reward *# 7 H/ 0

-‚ #1 X Y#

with noise Z[ \ ]-^& _ 31
G
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Adaptive treatment allocation for mice trials

¥ Georgios D. Mitsis
¥ Joelle Pineau

¥ Charis Achilleos
¥ Demetris Iacovides
¥ Katerina Strati

Joint work with

D., Achilleos, Iacovides, Strati, Mitsis, and Pineau (MLHC 2018)



Data acquisition problem

¥ Mice with induced cancer tumours

¥ Treatment options: 5FU, Imiquimod, 5FU+Imiquimod, None

¥ Treatment allocation twice a week

Which treatment should be allocated to patients with 
cancer given the stage of their disease? 

Squamous Cell

Carcinoma



Data acquisition problem

¥ Mice with induced cancer tumours

¥ Treatment options: 5FU, Imiquimod, 5FU+Imiquimod, None

¥ Treatment allocation twice a week

Which treatment should be allocated to patients with 
cancer given the stage of their disease? 

Squamous Cell

Carcinoma

Tumour volume



Phase 1: Randomized allocation (only exploration)

¥ 6 mice

Processing a mouse:
¥ 2x/week:

Ð Measure volume of tumours
Ð If all tumours are below a critical level

È Randomly assign one of the four treatment options
Ð Otherwise terminate this animal



Phase 1: Randomized allocation (only exploration)

Result: 12 usabletumours
¥ 163 triplets (tumour volume, treatment, next tumour volume)
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Phase 1: Randomized allocation (only exploration)

Exponential tumour growth !  Few data collected for larger tumours



Phase 2: Adaptive trial (exploration/exploitation)

¥ 10 mice
¥ Select treatment 2x/week

Adaptive Clinical Trial
¥ Do not fix the experiment design a priori
¥ Adapt treatment allocation based on previous observations
¥ Favor selection of better treatments
¥ Reduce exposition to less effective treatments 



Contextual bandit problem

Improve treatment allocation online
¥ Maximize amount of acquired data
¥ Minimize trials of poor treatments

Treatment

Tumour volume after treatment

Tumour volume before treatment

!  Identify best action given context
!  Explore wisely



Alert: Contexts are not independent of actions!

Recall contextual bandits:

For each episode ! :
¥ Observe a context ‚ # \ ƒ
¥ Select an action " # $ %& '& ( & )
¥ Obtain a reward *#+N-H/ 0

-‚ #11

Beware of traps!



Reward shaping

Natural reward definition could be *# 7 ‚ # D ‚ #„2

Tumour volume reduction



Reward shaping

Natural reward definition could be *# 7 ‚ # D ‚ #„2

Controlling the disease, i.e. maintain tumour constant, has th e same 
value independently of the tumour volume

Tumour volume reduction



Reward shaping

Natural reward definition could be *# 7 ‚ # D ‚ #„2

Controlling the disease, i.e. maintain tumour constant, has th e same 
value independently of the tumour volume

What we used instead: *# 7 D‚ #„2

Tumour volume reduction



Exploration/Exploitation strategy

Best Empirical Sampled Average: BESA (Baransi et al., 2014)

¥ Fair comparison of empirical estimators
¥ Opportunities for actions to show how good they are

Samples # Action 1 Action 2

1 0 1

2 1 0

3 1 1

4 0
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Exploration/Exploitation strategy

Best Empirical Sampled Average: BESA (Baransi et al., 2014)

¥ Fair comparison of empirical estimators
¥ Opportunities for actions to show how good they are

Samples # Action 1 Action 2

1 0 1

2 1 0

3 1 1

4 0
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GP BESA: Extension to contextual bandits
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Example of exploration

Action 1: 100 observations
Action 2: 5 observations
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Experimental setting

¥ 10 mice total

¥ Processing a group of mice (2-3 subjects)
Ð Twice a week:

È For each mouse in the group:
¥ Measure tumour !  reward for last treatment
¥ Select treatment to assign now

Ð Until death/sacrifice of all mice in group

¥ Update algorithm with tuples of (volume, treatment, next v olume)

¥ Start next group



Animals live longer

Algorithm updated after each group

None Random 5-FU GP BESA
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Evolution of tumour volumes 

Slowing the exponential growth

Recall phase 1:
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A better state space covering

Using data in a next phase
¥ More information on the tumor growth process
¥ 40% more data points of volume > 70mm3
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Conclusion + Take homes

¥ Bandits is a nice framework for theory, but also has applicat ions! !

¥ We often break theoretical guarantees in practice "

¥ How to design algorithms that donÕt make unrealistic assumptions?

¥ Other aspects important in practice were not considered here, e.g.
Ð Fairness in exploration
Ð Safe exploration



Huge thanks again to my collaborators!

Questions?
Éand more


