# Applied bandits: Supporting health-related research

Audrey Durand

July 2, 2019







### We are going to talk about

Bandits with structure  $\rightarrow$  Neuroscience research

Application to microscopy imaging parameters

Bandits with contexts  $\rightarrow$  Cancer research

Application to adaptive treatment allocation

#### Stochastic bandits



For each episode *t*:

- Select a action  $k_t \in \{1, 2, \dots, K\}$
- Observe outcome  $r_t \sim D(\mu_{k_t})$

#### Stochastic bandits



For each episode t:

- Select a action  $k_t \in \{1, 2, ..., K\}$
- Observe outcome  $r_t \sim D(\mu_{k_t})$

Goal: Maximize expected rewards

$$k^* = \operatorname{argmax} \mu_k$$
  
 $k \in \{1, 2, ..., K\}$ 

Minimize 
$$R(T) = \sum_{t=1}^{T} [\mu_{k^*} - \mu_{k_t}]$$

#### Exploration/Exploitation trade-off

Exploit: Potentially minimize regret

•  $k_t = \underset{k \in \{1,2,...,K\}}{\operatorname{argmax}} \hat{\mu}_k$ 

Explore: Gain information



#### Many strategies:

- $\epsilon$ -Greedy
- Optimism in front of uncertainty (UCB)
- Thompson Sampling
- Best Empirical Sampled Average (BESA)

Theory showing sublinear regret under proper assumptions

#### In practice

We cannot compute regret:  $\mathbb{E} \sum_{t=1}^{T} [\mu_{k^*} - \mu_{k_t}]$ 

- Instead we minimize cumulative *bad events*, e.g. system failures, fractures, patient dropout
- Or we maximize cumulative *good events*, e.g. clicks, minutes spent on website, lives saved

#### In practice

We cannot compute regret:  $\sum_{t=1}^{T} \left[ \mu_{k^*} - \mu_{k_t} \right]$ 

- Instead we minimize cumulative *bad events*, e.g. system failures, fractures, patient dropout
- Or we maximize cumulative *good events*, e.g. clicks, minutes spent on website, lives saved

We need to face constraints and challenges specific to applications

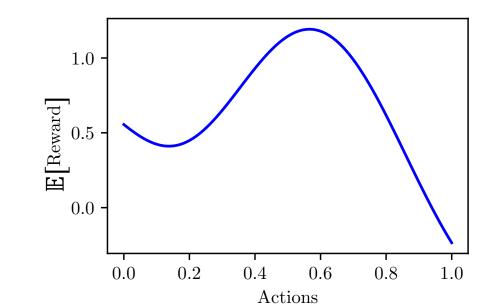
#### Many actions $\rightarrow$ Structured bandits

Expected reward is a function of the *action features* 

$$f: \mathcal{X} \mapsto \mathbb{R}$$

For each episode t:

- Select an action  $x_t \in \mathcal{X}$
- Obtain a reward  $r_t \sim \mathcal{D}(f(x_t))$



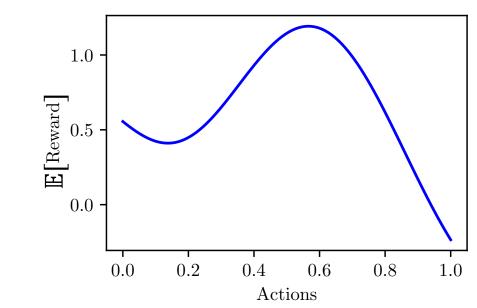
#### Many actions $\rightarrow$ Structured bandits

Expected reward is a function of the *action features* 

$$f: \mathcal{X} \mapsto \mathbb{R}$$

For each episode t:

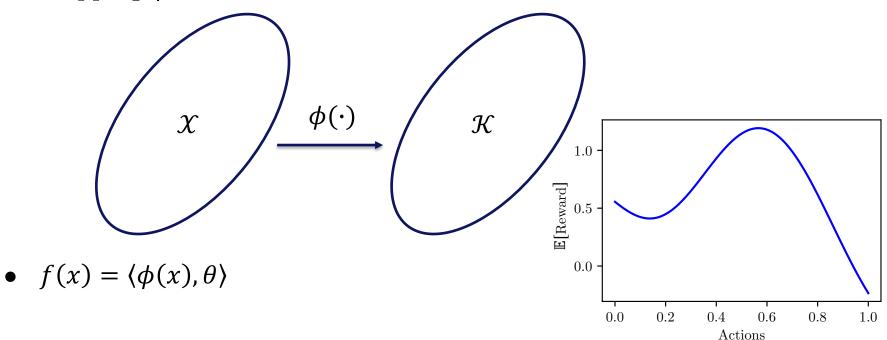
- Select an action  $x_t \in \mathcal{X}$
- Obtain a reward  $r_t \sim \mathcal{D}(f(x_t))$



Find 
$$x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} f(x)$$

#### Capture structure: Linear model

- Unknown  $\theta \in \mathbb{R}^d$
- Mapping  $\phi: \mathcal{X} \mapsto \mathbb{R}^d$

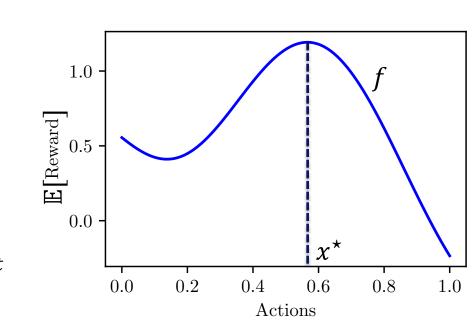


#### Online function approximation

- Unknown  $\theta \in \mathbb{R}^d$
- $f(x) = \langle \phi(x), \theta \rangle$
- $x^* = \underset{x \in \mathcal{X}}{\operatorname{argmax}} \langle \phi(x), \theta \rangle$

For each episode t:

- Select an action  $x_t \in \mathcal{X}$
- Observe outcome  $y_t = f(x_t) + \xi_t$ with noise  $\xi_t \sim \mathcal{N}(0, \sigma^2)$



Minimize  $\mathbb{E} \sum_{t=1}^{T} [f(x^*) - f(x_t)]$ 

# Kernel regression

$$\phi: \mathcal{X} \mapsto \mathbb{R}^d$$
d can be very large!

- Kernel  $k(x, x') = \langle \phi(x), \phi(x') \rangle$
- Gaussian prior  $\theta \sim \mathcal{N}_d(0, \Sigma)$  with  $\Sigma = \frac{\sigma^2}{\lambda} I$  for  $\lambda > 0$

$$\mathbf{K}_{N} = \left[ k(x_{i}, x_{j}) \right]_{1 \le i, j \le N} \quad \text{and} \quad \mathbf{k}_{N}(x) = \left( k(x, x_{i}) \right)_{1 \le i \le N}$$

$$\mathbb{P}[f|x_1,\ldots,x_N,y_1,\ldots,y_N] \sim \mathcal{N}\left(\left(f_N(x)\right)_{x\in\mathcal{X}},\left[k_N(x,x')\right]_{x,x'\in\mathcal{X}}\right)$$

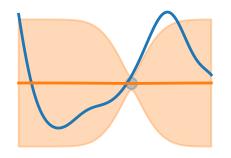
$$f_N(x) = \mathbf{k}_N(x)^{\mathsf{T}} (\mathbf{K}_N + \lambda I)^{-1} \mathbf{y}_N$$
$$k_N(x, x') = k(x, x') - \mathbf{k}_N(x)^{\mathsf{T}} (\mathbf{K}_N + \lambda I)^{-1} \mathbf{k}_N(x')$$

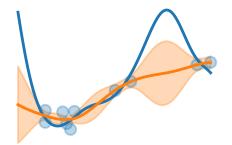
## Kernel regression

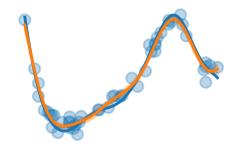
$$\phi: \mathcal{X} \mapsto \mathbb{R}^d$$

$$d \text{ can be very large!}$$

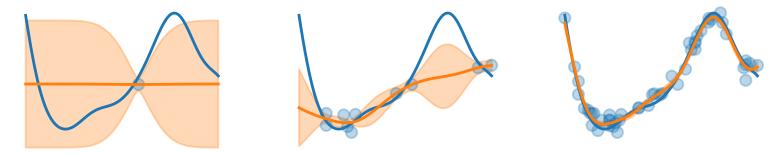
- Kernel  $k(x_i, x_j) = \langle \phi(x_i), \phi(x_j) \rangle$
- Gaussian prior  $\theta \sim \mathcal{N}_d(0, \Sigma)$  with  $\Sigma = \frac{\sigma^2}{\lambda}I$  for  $\lambda > 0$ For  $\lambda = \sigma^2 \to \text{Gaussian Process (Rasmussen and Williams, 2006)}$
- Example: Pointwise posterior mean and standard deviation







#### Streaming kernel regression



- Next input location  $x_t$  is selected based on the t-1 past observations
- Many algorithm variants bandits, e.g. Kernel UCB, Kernel TS, GP-UCB, GP-TS

Let's apply those bandits!



#### Optimizing super-resolution imaging parameters

#### Joint work with

- Flavie Lavoie-Cardinal
- Theresa Wiesner
- Anthony Bilodeau
- Paul De Koninck

- Louis-Émile Robitaille
- Marc-André Gardner
- Christian Gagné

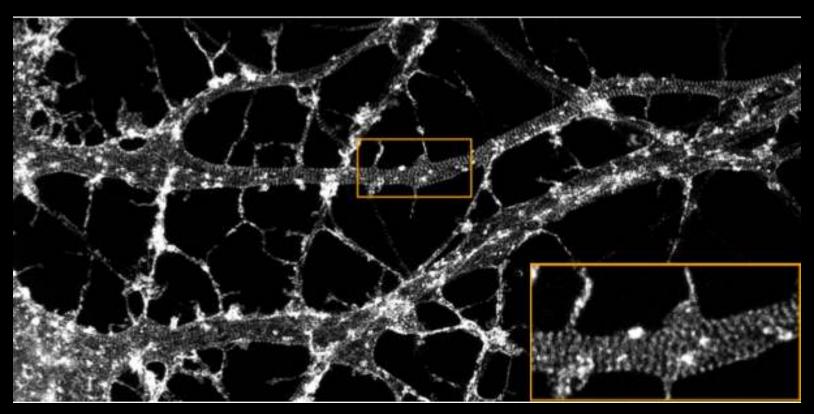




D., Wiesner, Gardner, Robitaille, Bilodeau, Gagné, De Koninck, and Lavoie-Cardinal (Nature Comm 2018)

# Observing structures at the nanoscale

(Hell and Wichmann, 1994)

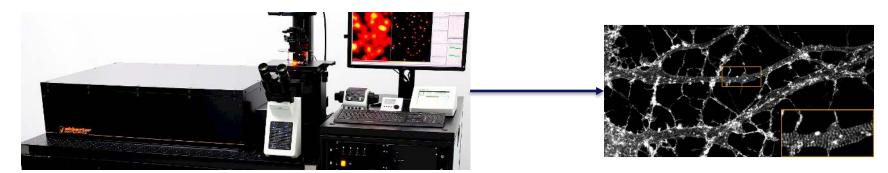


#### Problem

Biology: The optimal parameters are not always the same

#### Typical strategy:

- Split samples in two groups A and B
- Find *good* parameters on group A
- Perform imaging task on group B



From abberior-instruments.com

#### Structured bandit problem

Find good parameters during the imaging task

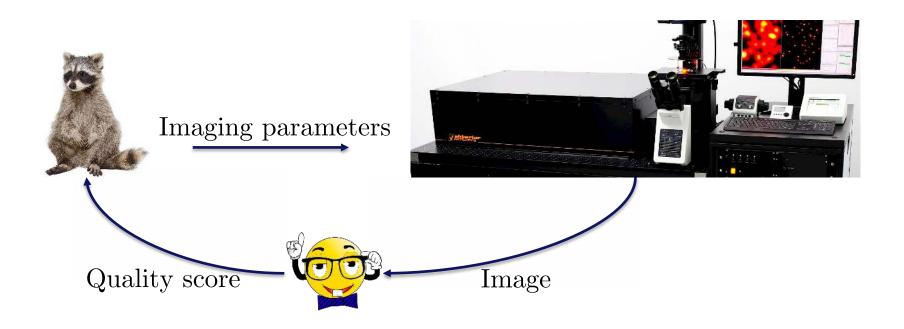
- Maximize the acquisition of useful images  $\rightarrow$  Identify best parameters
- Minimize trials of *poor* parameters  $\rightarrow$  Explore wisely

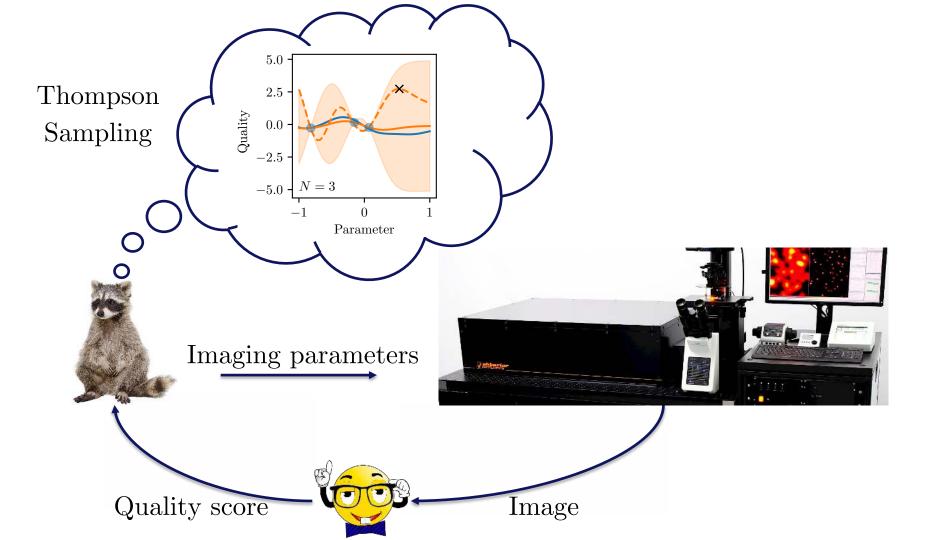


Feedback

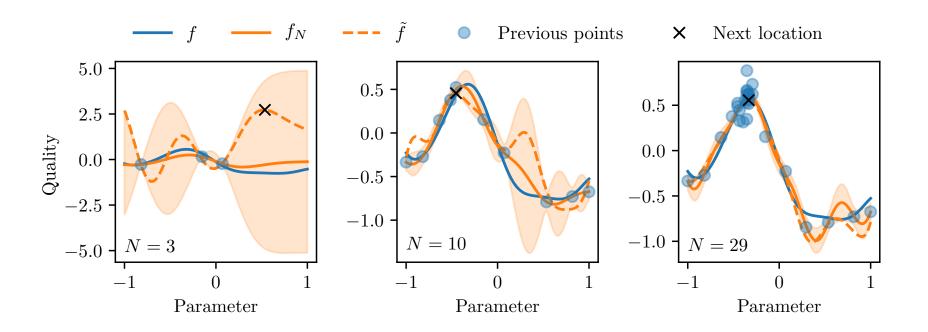
## Optimizing image quality

Recall goal: Maximize the acquisition of images useful to researchers



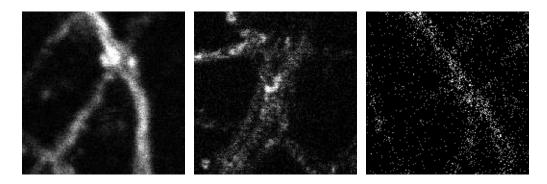


#### Thompson Sampling for selecting imaging parameters

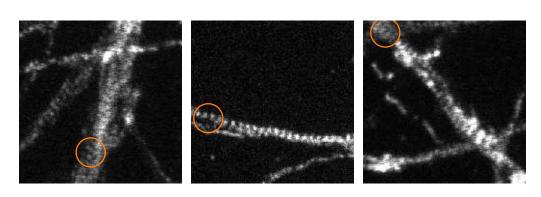


## What is good image quality?

Avoiding images like these:

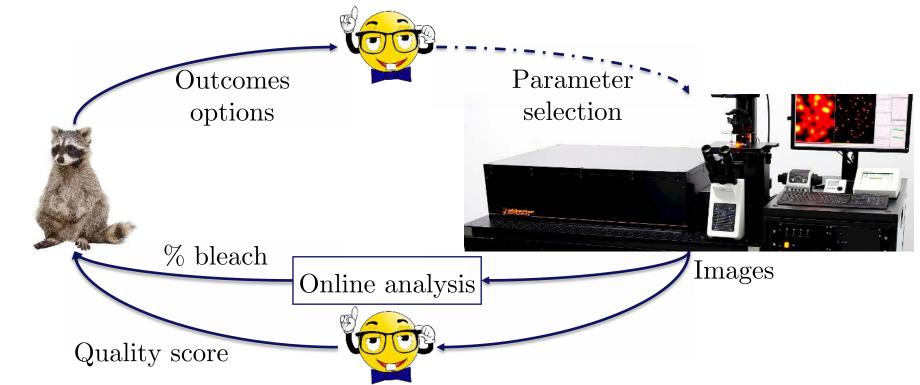


Getting more like these:



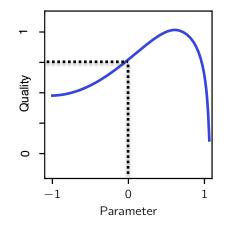
#### But imaging is a destructive process...

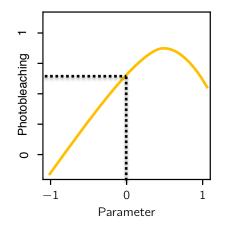
Trade-off image quality and photobleaching



#### Thompson Sampling for generating outcome options

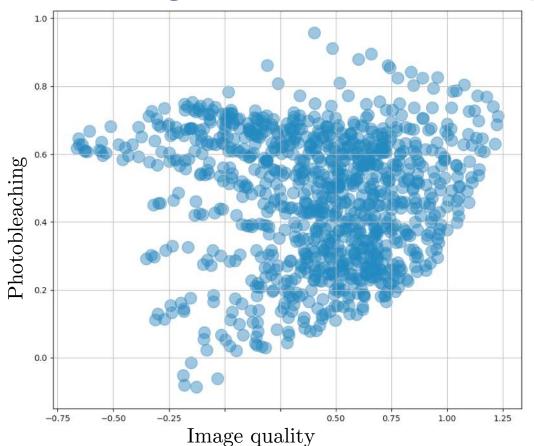
- ullet One kernel regression model  $\hat{f}_i$  per objective i
- Sample one function  $\tilde{f}_i$  per objective i
- Option  $\tilde{f}(x)$  at parameter x: Concatenate  $\tilde{f}_i(x)$  for all i





$$\tilde{f}(0) = (0.75, 0.65)$$

#### Presenting estimates to the expert



- Exploration/Exploitation in the cloud!
- Expert acts as an argmax on the preference function

#### Experiments on neuronal imaging

Three parameters (1000 configurations):

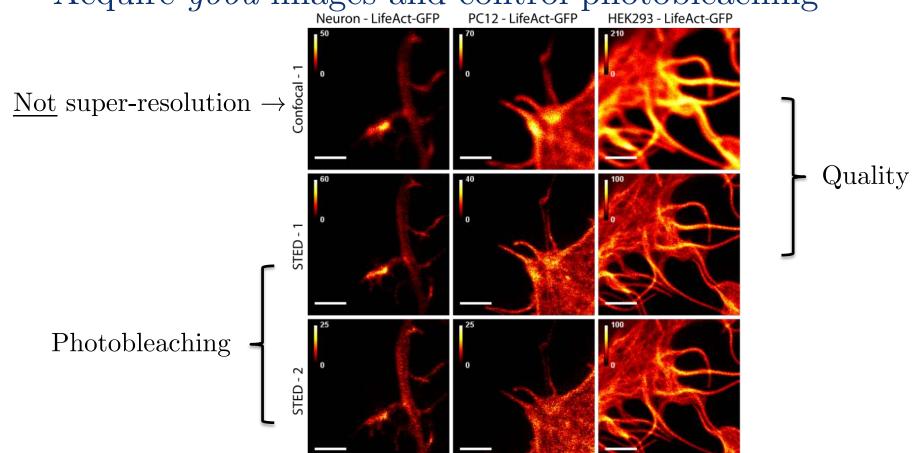
- Excitation laser power
- Depletion laser power
- Duration of imaging per pixel

#### Different imaging targets:

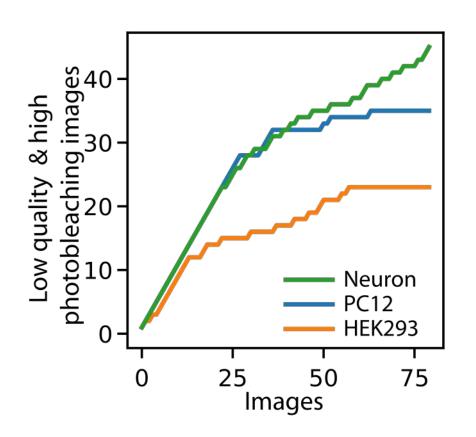
- Neuron: Rat neuron
- PC12: Rat tumor cell line
- HEK293: Human embryonic kidney cells

Acquire two STED images with  $\uparrow$  1<sup>st</sup> STED quality and  $\downarrow$  photobleaching

# Acquire good images and control photobleaching Neuron - LifeAct-GFP PC12 - LifeAct-GFP HEK293 - LifeAct-GFP



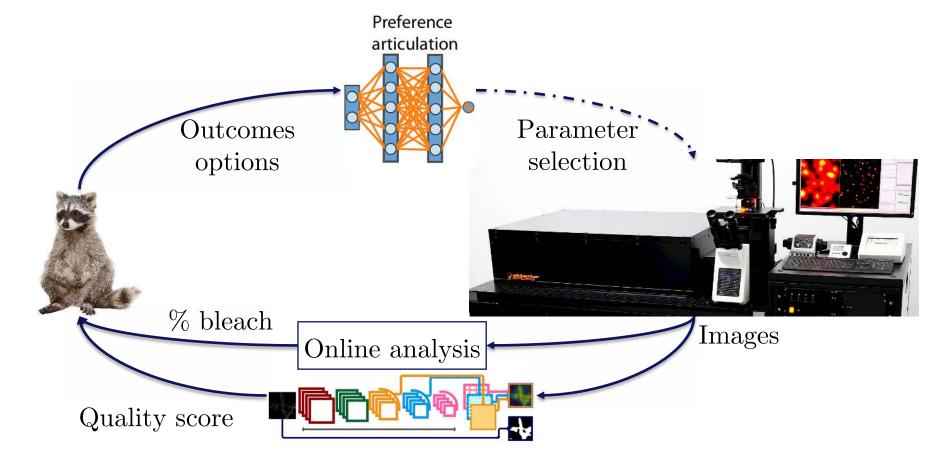
#### Sublinear regret, as suggested by theory



Different imaging targets:

- Neuron: Rat neuron
- PC12: Rat tumor cell line
- HEK293: Human embryonic kidney cells

#### Fully automated process

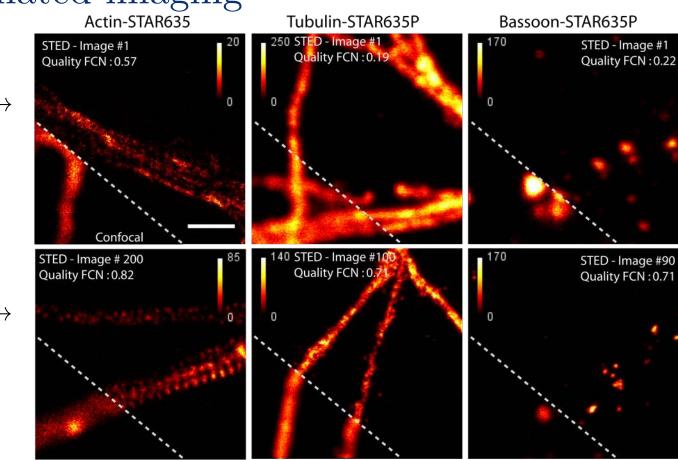


### Fully automated imaging

Beginning of optim  $\rightarrow$ 

End of optim  $\rightarrow$ 

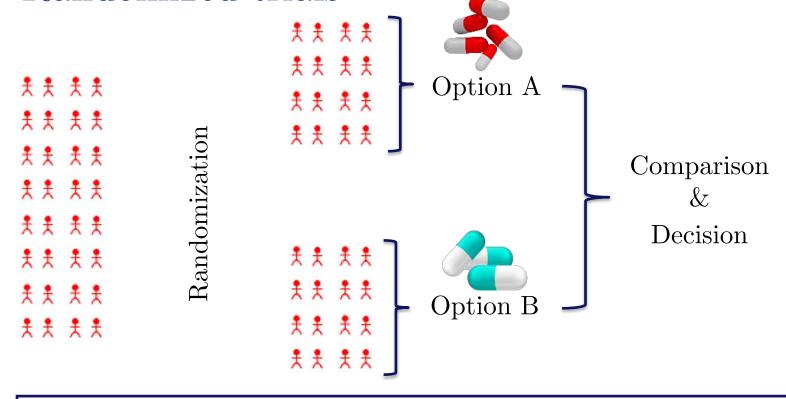
Bottom left corner:
Not super-resolution



#### Towards the next application: Getting closer to the patient



#### Randomized trials



Time

## Adaptive trials

Dynamically adapt the study design \* \* \* \* Effective based on previous observations \* \* \* \* \* \* \* \* \* \* Favorable \* \* \* \* \* \* \* \* \* \* **Promising** \* \* \* \* Unfavorable

#### Writing down the setting...

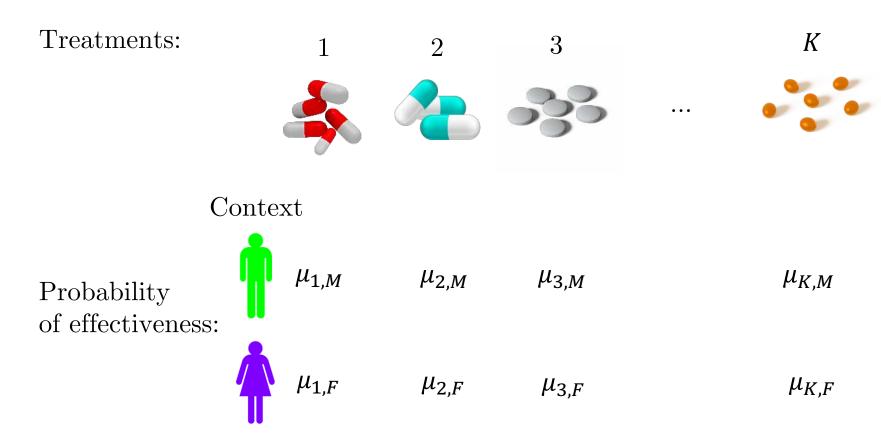
Treatments: 1 2 3 KProbability of effectiveness:  $\mu_1$   $\mu_2$   $\mu_3$   $\mu_K$ 

#### For each patient t:

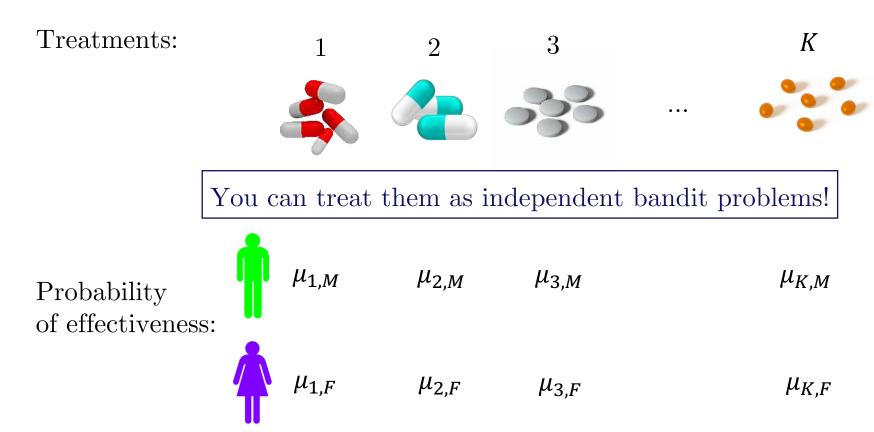
- Observe outcome  $r_t \sim D(\mu_{k_t})$

This is stochastic bandits!
(Thompson, 1933)

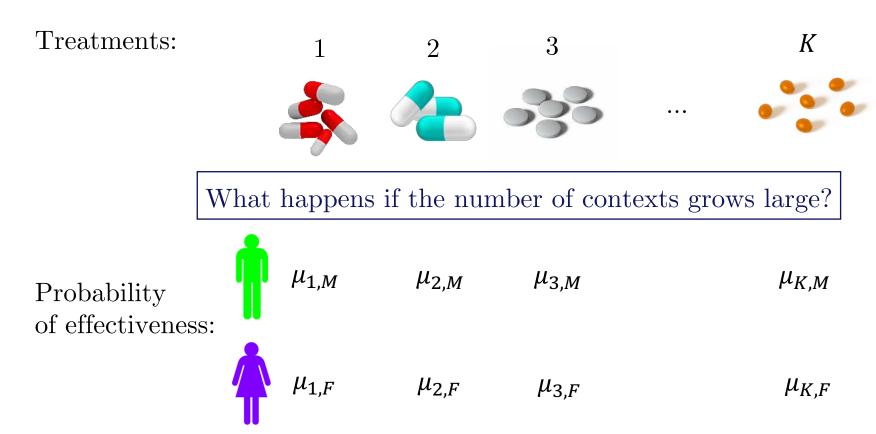
# In the absence of one size fits all strategy



# In the absence of one size fits all strategy

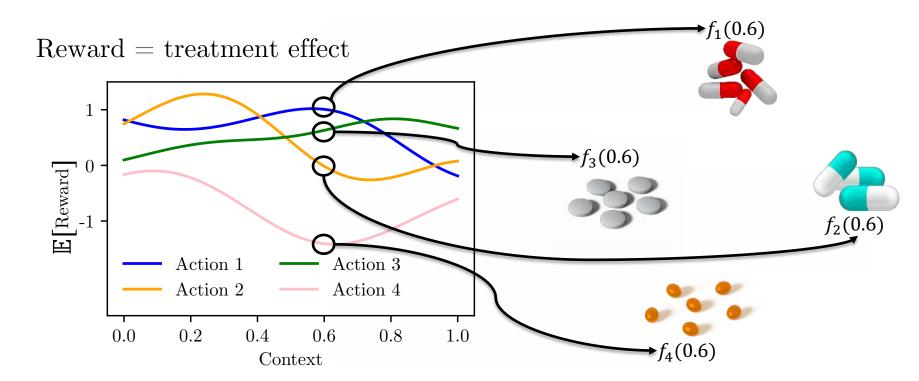


# In the absence of one size fits all strategy



#### Contextual bandits

Exploit the underlying structure on the context space



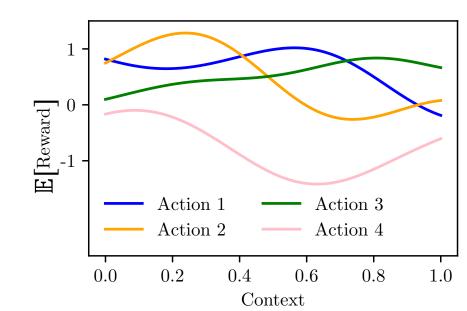
#### Contextual bandits

Expected reward of action k is a function  $f_k$  of the context features

$$f_k: \mathcal{S} \mapsto \mathbb{R}$$

For each episode *t*:

- Observe a context  $s_t \sim \Pi$
- Select an action  $k_t \in \{1, 2, ..., K\}$
- Observe a reward  $r_t \sim D(f_{k_t}(s_t))$



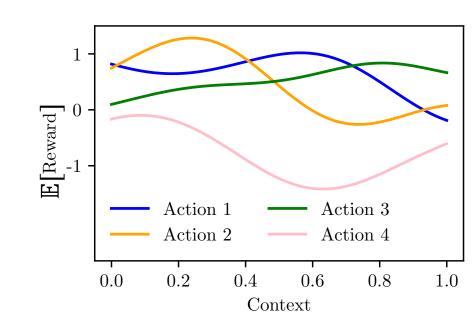
#### Contextual bandits

Expected reward of action k is a function  $f_k$  of the context

$$f_k: \mathcal{S} \mapsto \mathbb{R}$$

For each episode t:

- Observe a context  $s_t \sim \Pi$
- Select an action  $k_t \in \{1, 2, ..., K\}$
- $\bullet$  Observe a reward  $r_t{\sim}D(f_{k_t}(s_t))$



Goal: Maximize rewards

Find 
$$k_t^* = \underset{k \in \{1,2,\dots,K\}}{\operatorname{argmax}} f_k(s_t)$$

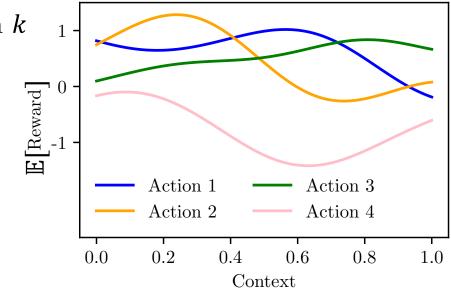
# Online function approximation

Minimize 
$$\mathbb{E} \sum_{t=1}^{T} [f_{k_t^*}(s_t) - f_{k_t}(s_t)]$$

- Unknown  $\theta_k \in \mathbb{R}^d$  for each action k
- $f_k(s) = \langle \phi(s), \theta_k \rangle$
- $k_t^* = \underset{k \in \{1,2,...,K\}}{\operatorname{argmax}} \langle \phi(s_t), \theta_k \rangle$

For each episode t:

- Observe a context  $s_t \sim \Pi$
- Select an action  $k_t \in \{1, 2, ..., K\}$
- Observe reward  $r_t = f_{k_t}(s_t) + \xi_t$ with noise  $\xi_t \sim \mathcal{N}(0, \sigma^2)$



### Adaptive treatment allocation for mice trials

Joint work with

- Georgios D. Mitsis
- Joelle Pineau

- Charis Achilleos
- Demetris Iacovides
- Katerina Strati





D., Achilleos, Iacovides, Strati, Mitsis, and Pineau (MLHC 2018)

#### Data acquisition problem

- Mice with induced cancer tumours
- Treatment options: 5FU, Imiquimod, 5FU+Imiquimod, None
- Treatment allocation twice a week

Which treatment should be allocated to patients with cancer given the stage of their disease?



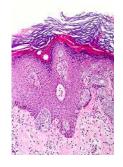
Squamous Cell Carcinoma

### Data acquisition problem

- Mice with induced cancer tumours
- Treatment options: 5FU, Imiquimod, 5FU+Imiquimod, None
- Treatment allocation twice a week

Which treatment should be allocated to patients with cancer given the stage of their disease?

Tumour volume



Squamous Cell Carcinoma

#### Phase 1: Randomized allocation (only exploration)

• 6 mice

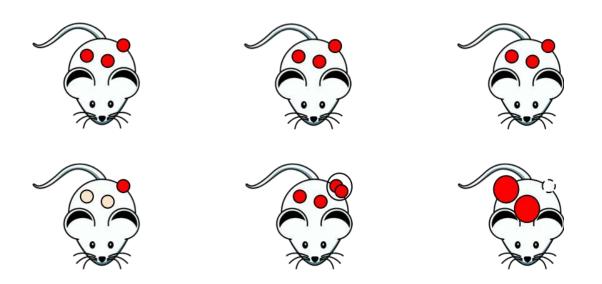
#### Processing a mouse:

- $\bullet$  2x/week:
  - Measure volume of tumours
  - If all tumours are below a critical level
    - » Randomly assign one of the four treatment options
  - Otherwise terminate this animal

#### Phase 1: Randomized allocation (only exploration)

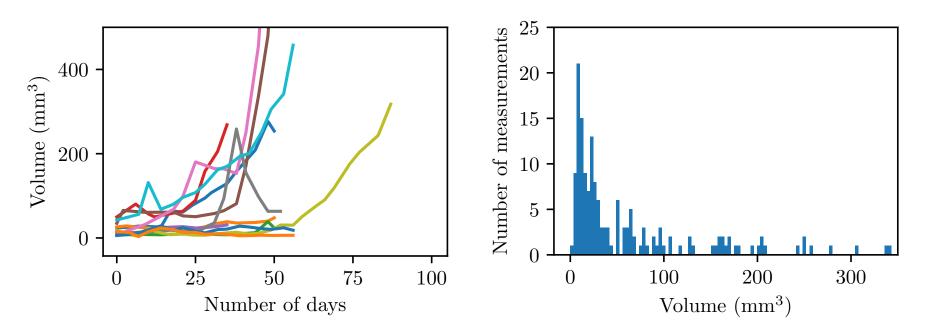
Result: 12 usable tumours

• 163 triplets (tumour volume, treatment, next tumour volume)



#### Phase 1: Randomized allocation (only exploration)

Exponential tumour growth  $\rightarrow$  Few data collected for larger tumours



#### Phase 2: Adaptive trial (exploration/exploitation)

- 10 mice
- Select treatment 2x/week

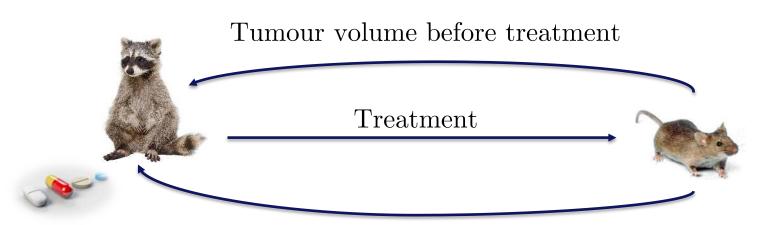
#### Adaptive Clinical Trial

- Do not fix the experiment design a priori
- Adapt treatment allocation based on previous observations
- Favor selection of better treatments
- Reduce exposition to less effective treatments

#### Contextual bandit problem

#### Improve treatment allocation online

- $\bullet$  Maximize amount of acquired data  $\rightarrow$  Identify best action given context
- Minimize trials of *poor* treatments  $\rightarrow$  Explore wisely



Tumour volume after treatment

#### Alert: Contexts are not independent of actions!

Recall contextual bandits:

For each episode t:

- Observe a context  $s_t \sim \Pi$
- Select an action  $k_t \in \{1, 2, ..., K\}$
- Obtain a reward  $r_t \sim \mathcal{D}(f_{k_t}(s_t))$

Beware of traps!

# Reward shaping

Natural reward definition could be  $r_t = s_t - s_{t+1}$ Tumour volume reduction

### Reward shaping

Natural reward definition could be  $r_t = s_t - s_{t+1}$ Tumour volume reduction

Controlling the disease, i.e. maintain tumour constant, has the same value independently of the tumour volume



# Reward shaping

Natural reward definition could be  $r_t = s_t - s_{t+1}$ Tumour volume reduction

Controlling the disease, i.e. maintain tumour constant, has the same value independently of the tumour volume

What we used instead:  $r_t = -s_{t+1}$ 

- Fair comparison of empirical estimators
- Opportunities for actions to show how good they are

| Samples $\#$ | Action 1 | Action 2 | Expected reward   |
|--------------|----------|----------|-------------------|
| 1            | 0        | 1        | $\widehat{\mu}_1$ |
| 2            | 1        | 0        | $-\hat{\mu}_2$    |
| 3            | 1        | 1        | $\mu_2$           |
| 4            |          | 0        |                   |
|              |          | •••      |                   |
| 100          |          | 1        |                   |

- Fair comparison of empirical estimators
- Opportunities for actions to show how good they are

| Samples $\#$ | Action 1 | Action 2 | Expected reward     |
|--------------|----------|----------|---------------------|
| 1            | 0        | 1        | $\widehat{\mu}_1$   |
| 2            | 1        | 0        | $\widehat{\mu}_{0}$ |
| 3            | 1        | 1        | $\mu_2$             |
| 4            |          | 0        |                     |
| •••          |          |          |                     |
| 100          |          | (1)      |                     |

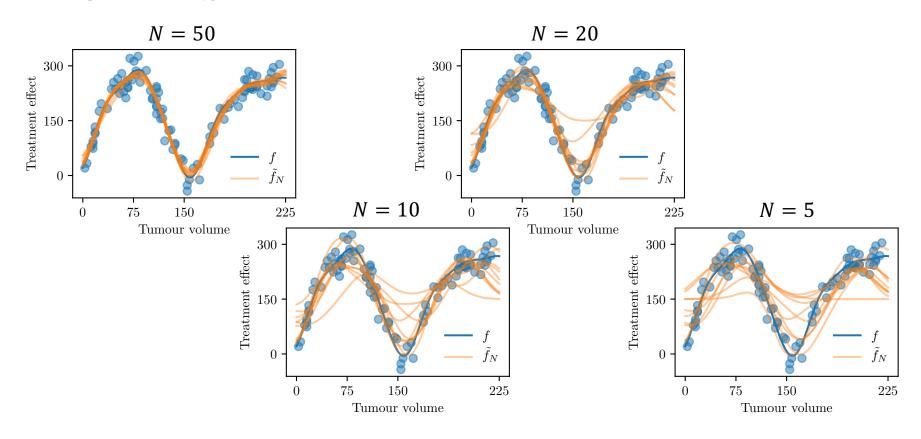
- Fair comparison of empirical estimators
- Opportunities for actions to show how good they are

| Samples $\#$ | Action 1 | Action 2   | Expected reward   |
|--------------|----------|------------|-------------------|
| 1            | 0        | 1          | $\widehat{\mu}_1$ |
| 2            | 1        | (0)        | $\widehat{\mu}_2$ |
| 3            | 1        | 1          | $\mu_2$           |
| 4            |          | 0          |                   |
|              |          | •••        |                   |
| 100          |          | $\bigcirc$ |                   |

- Fair comparison of empirical estimators
- Opportunities for actions to show how good they are

| Samples $\#$ | Action 1 | Action 2          | Expected reward   |
|--------------|----------|-------------------|-------------------|
| 1            | 0        | 1                 | $\widehat{\mu}_1$ |
| 2            | 1        | $\stackrel{-}{0}$ | $\widehat{\mu}_2$ |
| 3            | 1        | 1                 | $\mu_Z$           |
| 4            |          | 0                 |                   |
|              |          | <del></del>       |                   |
| 100          |          | (1)               |                   |

#### GP BESA: Extension to contextual bandits

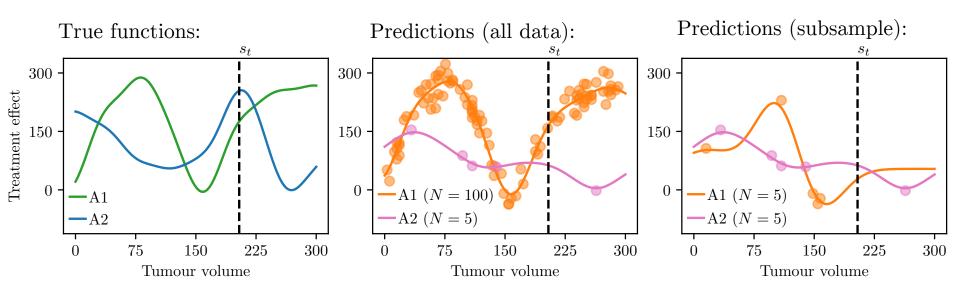


## Example of exploration

Action 1: 100 observations

Action 2: 5 observations



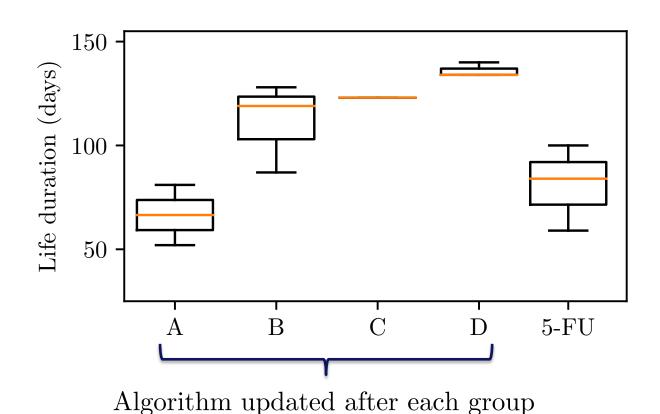


## Experimental setting

- 10 mice total
- Processing a group of mice (2-3 subjects)
  - Twice a week:
    - » For each mouse in the group:
      - Measure tumour  $\rightarrow$  reward for last treatment
      - Select treatment to assign now
  - Until death/sacrifice of all mice in group
- Update algorithm with tuples of (volume, treatment, next volume)
- Start next group



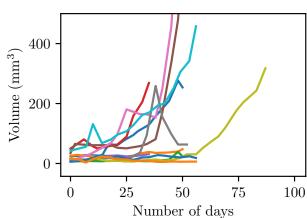
# Animals live longer

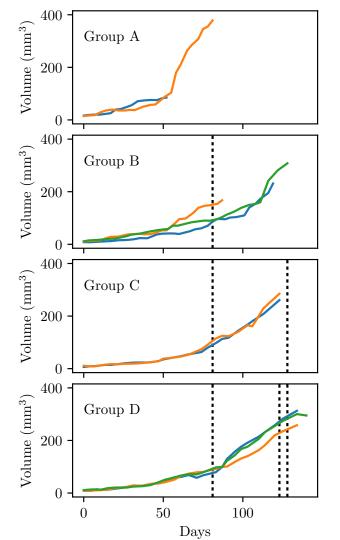


### Evolution of tumour volumes

Slowing the exponential growth

#### Recall phase 1:

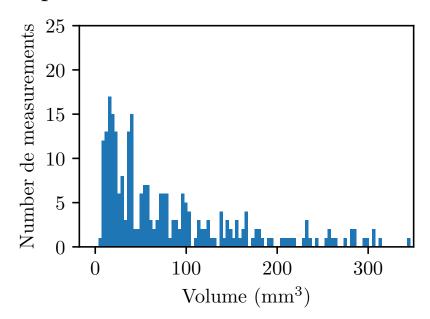




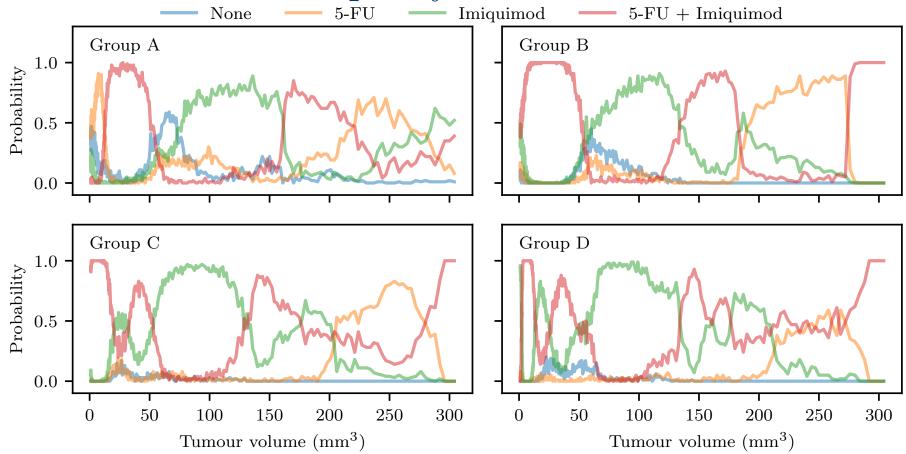
# A better state space covering

Using data in a next phase

- More information on the tumor growth process
- 40% more data points of volume > 70mm<sup>3</sup>



Evolution of the policy



#### Conclusion + Take homes

- Bandits is a nice framework for theory, but also has applications!
- We often break theoretical guarantees in practice  $\otimes$
- How to design algorithms that don't make unrealistic assumptions?
- Other aspects important in practice were not considered here, e.g.
  - Fairness in exploration
  - Safe exploration

# Huge thanks again to my collaborators!















Questions?

...and more