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We are going to talk about

Bandits with structure ! Neuroscience research

Application to microscopy imaging parameters

Bandits with contexts | Cancer research

Application to adaptive treatment allocation



Stochastic bandits

For each episode!:
¥ Select a action" 4 $ {%& '& (&)

¥ Observe outcome®y+,-. ;1



Stochastic bandits

For each episode!:

¥ Selecta action" 4 $ {%&'& (&)
¥ Observe outcome*,+,-.

Goal: Maximize expected rewards
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Exploration/Exploitation trade-off
Exploit: Potentially minimize regret
¥ "7 89:8<

/$=2&3&(&5>

Explore: Gain information

Many strategies:

¥ FGreedy

¥ Optimism in front of uncertainty (UCB)
¥ Thompson Sampling

¥ Best Empirical Sampled Average (BESA)

Theory showing
— sublinear regret under
proper assumptions




In practice

We cannot compute regret: GAggz[. 16D. /0]

¥ Instead we minimize cumulative bad events e.g. system failures,
fractures, patient dropout

¥ Or we maximize cumulative good eventse.g. clicks, minutes spent on
website, lives saved



In practice

We cannot compute regret: Ang[. 16D. /0]

¥ Instead we minimize cumulative bad events e.g. system failures,
fractures, patient dropout

¥ Or we maximize cumulative good eventse.g. clicks, minutes spent on
website, lives saved

We need to face constraints and challenges specific to apptiations



Many actions ! Structured bandits

Expected reward is a function o
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Many actions ! Structured bandits

Expected reward is a function
of the action features

HIJKL

For each episode!:
¥ Select an actionM: $ J
¥ Obtain a reward *,+ N-H-M,11
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Goal: Maximize rewards

Find M7 89::8< H-M1
Q$J




Capture structure: Linear model

¥ UnknownR $LS
¥ Mapping TIJKL S
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Online function approximation

¥ UnknownR $LS

¥ HM 7(T(M &R

¥ M7 89:8< (T(M &R
Q%$J

For each episode!:

¥ Select an actionM: $ J

¥ Observe outcomeW. 7 H-My1 X Y;
with noise Z \]-"&_ 31

Minimize GA%g,[H(M) D H-M1]

0.0 0.2 0.4 0.6 0.8 1.0
Actions




Kernel regression TIIKL S
u can be very large!

¥ Kernel " (M&) 7 (T(M & T™1)
¥ Gaussian priorR\] (&3 with a7 Z—Cefor fgn
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Kernel regression TIIKL S

u can be very large!

¥ Kernel " (M&M) 7 (T(M)& T-M)

C
¥ Gaussian priorR\] (&3 with a7 IC’Fefor fgn
For f7v 31 Gaussian ProcesgRasmussen and Williams, 2006)

¥ Example: Pointwise posterior mean and standard deviation

BA | A




Streaming kernel regression

A | A\

\_—

¥ Next input location M is selected based on the D % past observations

¥ Many algorithm variants bandits, e.qg.
Kernel UCB, Kernel TS, GP-UCB, GP- TS



LetOs apply those bandits!




Optimizing super-resolution imaging parameters

Joint work with

¥ Flavie Lavoie-Cardinal ¥ Louis-fmile Robitaille
¥ Theresa Wiesner ¥ Marc-AndrZ Gardner
¥ Anthony Bilodeau ¥ Christian GagnZ

¥ Paul De Koninck
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QUEREC

D., Wiesner, Gardner, Robitaille, Bilodeau, GagnZ, De Koninck, and Lavoie-Cardinal
(Nature Comm 2018)



Observing structures at the nanoscale
(Hell and Wichmann, 1994)




Problem

Biology: The optimal parameters are not always the same

Typical strategy:

¥ Split samples in two groups A and B
¥ Find goodparameters on group A

¥ Perform imaging task on group B

From abberior-instruments.com



Structured bandit problem

Find good parameters during the imaging task
¥ Maximize the acquisition of useful images! Identify best parameters

¥ Minimize trials of poor parameters! Explore wisely

Imaging parameters

Feedback



Optimizing image quality

Recall goal: Maximize the acquisition of images useful to resarchers

Imaging parameters

. i
Quality score \ Image

Yt
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Thompson Sampling for selecting imaging parameters
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What is good image quality?

Avoiding images like these:

Getting more like these:



But imaging is a destructive processkE

Trade-off image quality and photobleaching
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Thompson Sampling for generating outcome options

¥ One kernel regression modeHVper objective x
¥ Sample one functionly per objective x

¥ Option N-Mlat parameter M Concatenate K-M1for all x
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Photobleaching
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Presenting estimates to the expert

1.0 A

¥ Exploration/Exploitation
in the cloud!

¥ EXxpert acts as an argmax
on the preference
function



Experiments on neuronal imaging

Three parameters (1000 configurations):
¥ Excitation laser power

¥ Depletion laser power

¥ Duration of imaging per pixel

Different imaging targets:

¥ Neuron: Rat neuron

¥ PC12: Rat tumor cell line

¥ HEK293: Human embryonic kidney cells

Acquire two STED images with " 15t STED quality and # photobleaching



Acquire goodimages and control photobleaching

Neuron - LifeAct-GFP PC12 - LifeAct-GFP HEK293 - LifeAct-GFP

Not superresolution !

Confocal - 1

- Quality

STED -1

Photobleaching -

STED-2




Sublinear regret, as suggested by theory

Different imaging targets:
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Fully automated process

Preference
articulation
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Fully automated imaging

Beginning of optim !

End of optim !

Bottom left corner:
Not superresolution



Towards the next application:
Getting closer to the patient



Randomized trials

Randomization

— Option A —

S—

- OptionB —

Comparison
&

Decision

Time




Adaptive trials

Dynamically adapt the study design
based on previous observations

Promising

Unfavora ble



Writing down the settingE

Treatments: 1 2 3 )
E

Probability

of effectiveness: . 2 .3 . 4 -5

For each patient !
¥ Select atreatment” 4 $ {%& '& (&)
¥ Observe outcome*,+,-. ;1

This Is stochastic bandits!
(Thompson, 1933)
lo



In the absence ofone size fits all strategy

Treatments: 1 2 3 )

Context

Probability Kl 38~ A8 o8&
of effectiveness:

+ 2&e - 3&e - 4&e - 5&e



In the absence ofone size fits all strategy

Treatments: 1 2 3 )

You can treat them as independent bandit problems!

Probability Kl 38~ A8 $ o8&
of effectiveness:

» 2&e - 3&e - 4&e - 5&e



In the absence ofone size fits all strategy

Treatments: 1 2 3 )

What happens if the number of contexts grows large?

Probability Kl 38~ A8 o8&
of effectiveness:

» 2&e - 3&e - 4&e - 5&e



Contextual bandits

Exploit the underlying structure on the context space
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Contextual bandits

Expected reward of action " Is a
function H of the context features

Hls KL

For each episode!:

¥ Observe a context, »\ f

¥ Select an action" 4 $ {%&'& (&)
¥ Observe a reward*y+,-H ; -, 411
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Contextual bandits

Expected reward of action " is a .
function H of the context
: =
° ™~
le KL S
H é _1 |
O
For each episode!: —— Actonl  —— Action 3
¥ Observe a context, 4\ f pction 2 Action 4
¥ Select an action" 4 $ {%&'& (&) 00 02 04 06 08 10

Context

¥ Observe a reward*y+,-H ; -, 411

Goal: Maximize rewards

Find "87 89::8< H-, .1
[$=2&3&(&5>




Online function approximation

Minimize GAggy[H 6(,4) D H -, 4]

¥ Unknown R $L °for each action" 11 < >
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Context

¥ Observe reward*; 7 H -, 1 X ¥;
with noise Z \]-"&_ 31




Adaptive treatment allocation for mice trials

Joint work with
¥ Georgios D.Mitsis ¥ Charis Achilleos

¥ Joelle Pineau ¥ Demetris lacovides
¥ Katerina Strati

McGill

D., Achilleos, lacovides, Strati, Mitsis, and Pineau (MLHC 2018)



Data acquisition problem

¥ Mice with induced cancer tumours
¥ Treatment options: 5FU, Imiquimod, 5SFU+Imiquimod, None

¥ Treatment allocation twice a week

Which treatment should be allocated to patients with
cancer given the stage of their disease?

Squamous Cell
Carcinoma



Data acquisition problem

¥ Mice with induced cancer tumours
¥ Treatment options: 5FU, Imiquimod, 5SFU+Imiquimod, None

¥ Treatment allocation twice a week

Which treatment should be allocated to patients with
cancer given the‘stage of their diseas'e?
1
Tumour volume

Squamous Cell
Carcinoma



Phase 1. Randomized allocation (only exploration)

¥ 6 mice

Processing a mouse:
¥ 2x/week:
P Measure volume of tumours
b If all tumours are below a critical level
E Randomly assign one of the four treatment options

P Otherwise terminate this animal



Phase 1. Randomized allocation (only exploration)

Result: 12 usabletumours
¥ 163 triplets (tumour volume, treatment, next tumour volume)



Volume (mm?3)

Phase 1: Randomized allocation (only exploration)

Exponential tumour growth ! Few data collected for larger tumours
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Phase 2: Adaptive trial (exploration/exploitation)

¥ 10 mice
¥ Selecttreatment 2x/week

Adaptive Clinical Trial

¥ Do not fix the experiment design a priori

¥ Adapt treatment allocation based on previous observations
¥ Favor selection of better treatments

¥ Reduce exposition to less effective treatments



Contextual bandit problem

Improve treatment allocation online
¥ Maximize amount of acquired data ! Identify best action given context

¥ Minimize trials of poor treatments ! Explore wisely

Tumour volume before treatment

— T

Treatment

\ _—

Tumour volume after treatment




Alert. Contexts are not independent of actions!

Recall contextual bandits:

For each episode! .

¥ Observe a context, 4\ f

¥ Select an action" 4 $ {%&'& (&)
¥ Obtain a reward *4+N-H, -, 411

Beware of traps!



Reward shaping

Natural reward definition could be *4 7‘, #D, 5o |

Y
Tumour volume reduction




Reward shaping

Natural reward definition could be *4 7‘, #D, 5o |

Y
Tumour volume reduction

Controlling the disease, i.e. maintain tumour constant, has the same
value independently of the tumour volume



Reward shaping

Natural reward definition could be *4 7‘, #D, 5o

Y
Tumour volume reduction

Controlling the disease, i.e. maintain tumour constant, has the same
value independently of the tumour volume

What we used instead: *; 7 D, -



Exploration/Exploitation strategy

Best Empirical Sampled Average: BESA (Baransi et al., 2014)
¥ Fair comparison of empirical estimators
¥ Opportunities for actions to show how good they are

Samples # Action 1 Action 2 Expected reward

1 0) 1 =
2 1 0
— B—
3 1 1
4 0
E E

100 1



Exploration/Exploitation strategy

Best Empirical Sampled Average: BESA (Baransi et al., 2014)
¥ Fair comparison of empirical estimators
¥ Opportunities for actions to show how good they are

Samples # Action 1 Action 2 Expected reward
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Exploration/Exploitation strategy

Best Empirical Sampled Average: BESA (Baransi et al., 2014)
¥ Fair comparison of empirical estimators
¥ Opportunities for actions to show how good they are

Samples # Action 1 Action 2 Expected reward

1 0 1 5
2 1 @

3 1 1 &

4 ©

E E
100 (D



Exploration/Exploitation strategy

Best Empirical Sampled Average: BESA (Baransi et al., 2014)
¥ Fair comparison of empirical estimators
¥ Opportunities for actions to show how good they are

Expected reward

Samples # Action 1 Action 2
1 0 @ 3
2 1 0 5
3 1 1
4 ©
E E
100 (D



Treatment e! ect

GP BESA: Extension to contextual bandits

7 |/\ 7 N

300 300
3
@
e

150 £ 150
E
©
o

0 "0

0 75 150 225 75 150 225
Tumour volume Tumour volume
300 300
3] 3]
(O] (]
) ) )
$ 150 S 150
= IS
I <
Qo Qo
= 0 [= 0
0 75 150 225 0 75 150 225

Tumour volume Tumour volume



Treatment e! ect

300

150

Example of exploration

Action 1: 100 observations

Action 2: 5 observations

True functions:
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Experimental setting

¥ 10 mice total

¥ Processing a group of mice (2-3 subjects)
b Twice a week:
E For each mouse in the group:
¥ Measure tumour! reward for last treatment
¥ Select treatment to assign now
b Until death/sacrifice of all mice in group

¥ Update algorithm with tuples of (volume, treatment, next v olume)

¥ Start next group



Animals live longer
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Algorithm updated after each group



Volume (mm?3)

Evolution of tumour volumes

Slowing the exponential growth

Recall phase 1.:
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A better state space covering

Using data in a next phase

¥ More information on the tumor growth process
¥ 40% more data points of volume > 70mm?3
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Evolution of the policy

- None = 5-FU = |miquimod = 5-FU + Imiquimod
Group A Group B
1.0
2
2
o 0.5
o
o
0.0
Group C Group D
1.0
2z
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2 0.5
o
o
0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
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Conclusion + Take homes

¥ Bandits is a nice framework for theory, but also has applications!!
¥ We often break theoretical guarantees in practice"

¥ How to design algorithms that donOt make unrealistic assumptiors?
¥ Other aspects important in practice were not considered here, e.qg.

b Fairness in exploration
b Safe exploration



Huge thanks again to my collaborators!

Questions?

Eand more



