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Eco-sustainable decision making
» Plant health-care:
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FAVORITE BANDIT APPLIC

Eco-sustainable decision making

» Plant health-care:

Medical decision companion

» Emergency admission filtering:

+
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» Suggest medical consultation or treatment based on smart meters.

» Time series, hidden variables, risk-aversion.
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: GENE THERAPY =

» Recommend drug dosage w.r.t. genome of individuals.
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: GENE THERAPY =

» Recommend drug dosage w.r.t. genome of individuals.
» Huge dimension, Gene interactions.
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& % free education for all < UDACITY
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Massive Open Online Course

» Recommend exercises that maximize learning progression
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Massive Open Online Course

» Recommend exercises that maximize learning progression

» Non-stationary rewards, few interactions
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~ SUSTAINABLE FARMING

» Recommend good practice between farms/share knowledge.

» Strong correlations, hidden variables, delayed feedback.
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» Time Series, HMMs, Autoregressive models, etc.
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STRUCTURES
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Custom Search € 21 @ UCSD Computer Vision ¢ Web Search
Camera Calibration Toolbox for Matlab Google™
This is a release of a Camera Calibration Toolbox for Matiab® with a complete: Custom Sesecn

‘documentation. This document may also be used as a tutorial on camera...
‘www.vision.caltech.edu/bouguetj/calib_doc/ - 14k - Cached

Omnivis 2003: Omnidirectional Vision and Camera Networks
A complete paper, not longer than six (6) pages including ngnm and references, should be
submitted in camera-ready IEEE 2-column format of single-s| -
www.cs wustl.edu/~pless/omnivis 2003/ - 5k - Cached

Camera Calibration Toolbox for Matlab
‘A Camera Calibration Toolbox from the Institute of Robotics and Mechatronics, Germany -
DLR CalDe and DLR CalLab s a very complete tool for camera .

.« himi - 16K - Cached

The Page of Omnidirectional Vision
iccv mnivis05Sixth Workshop
Suvellance Using Omidiectional and Actve Cameras a he Trr Lab,
www.cis.upenn. edu/~kostas/omni.htmi - 35k - Cached

s necessary to if you full use of all of the
functions available on your camera.

- 10k - Cached

ror A Comparison of PMD-¢ Camlﬂs and Stereo-Vision for the Task of ...
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The PMD camera wil b com- pared i secion 4 Saeka o ove
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» Actions: List of items.
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Go gle fcamera Search

Custom Search € 21 @ UCSD Computer Vision ¢ Web Search

Camera Calibration Toolbox for Matiab Google™
This is a release of a Camera Calibration Toolbox for Matlab® with a complete Custom Sesrch
‘documentation. This document may also be used as a tutorial on camera...
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The Page of Omnidirectional Vision
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functions available on your camera.
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ision.middlebury.

» Actions: List of items.
» Reward/loss: Ranking of preferred item.
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Go 8le fcamera Search

Custom Search € 21 @ UCSD Computer Vision ¢ Web Search

Camera Calibration Toolbox for Matiab Google™
This is a release of a Camera Calibration Toolbox for Matlab® with a complete Custom Sesrch
‘documentation. This document may also be used as a tutorial on camera...
‘www.vision.caltech.edu/bouguetj/calib_doc/ - 14k - Cached

A complete paper, not longer than six (6) pages including figures and references, should be
submitted in camera-ready IEEE 2-column format of single-spaced
www.cs wustl.edu/~pless/omnivis 2003/ - 5k - Cached
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DLR CalDe and DLR CalLab is a very complete tool for camer:
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The Page of Omnidirectional Vision

ICCV 2005 Omnivis 05Sixth Workshop. i Automatic
Surveillance Using Omnidirectional and Active Cameras e PRIE Lab, ..
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ILis necessary to know your camera characteristics If you intend to make full use of all of the
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» Actions: List of items.
» Reward/loss: Ranking of preferred item.
» Ordering
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Destination

120 [sec] 150 [sec]
Initial point

120 e

Path B

» Actions: (valued) Paths.
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D TRUCTURE. o PATHS

Destination

120 [sec] 150 [sec]
Initial point

» Actions: (valued) Paths.
» Reward/loss: cumulative value on the path.
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D TRUCTURE. o PATHS

Destination

120 [sec] 150 [sec]

120 el

» Actions: (valued) Paths.
» Reward/loss: cumulative value on the path.

» Paths have edges in common.
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» Actions: x € R
» Reward/loss: f(x)+ &
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~ STRUCTURE: SMOOTH REWARD
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» Actions: x € R

» Reward/loss: f(x)+ &

» Regularity.
l e - BRI
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LINEAR BANDITS
Regression
Linear UCB, Linear TS
Graph-linear Bandits
Extension to Kernels
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Sequential optimization game

At each time t € N, sample at x; € X, receive y; € R, where

= fi (x¢)+
Yt * ( t) £t
target noise

Goal:Minimize cumulative regret

-
Ry Z f(x) — fi(xt) where x € Argmax f,(x).
t=1
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Sequential optimization game

At each time t € N, sample at x; € X, receive y; € R, where

= f (x¢)+
Yt * ( t) ft
target noise

Goal:Minimize cumulative regret

-
Ry Z f(x) — fi(xt) where x € Argmax f,(x).
t=1

» Actions: x € X.

TCAL SEQUENTIAL DECISION MAKING 12/101



Sequential optimization game

At each time t € N, sample at x; € X, receive y; € R, where

= fi (x¢)+
Yt * ( t) ft
target noise

Goal:Minimize cumulative regret

-
Ry Z f(x) — fi(xt) where x € Argmax f,(x).

» Actions : x € X.
» Means : f,(x). Mean at x and x’ not arbitrarily different !
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» Set of arms X
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» Set of arms X
> At time t, pick X; € X, receive

Y = f(Xe) + &

where &; is centered and further conditionally sub-Gaussian.

f. belongs to a linear function space:
Fo = {fb ‘x0T p(x),0 € @}where ©cRyp: X -+ R?.

0: Parameter, ¢: Feature function.
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» Set of arms X
> At time t, pick X; € X, receive

Y = f(Xe) + &

where &; is centered and further conditionally sub-Gaussian.

f. belongs to a linear function space:
Fo = {fb ‘x0T p(x),0 € @}where ©cRyp: X -+ R?.

0: Parameter, ¢: Feature function.

» Unknown parameter 6, € RY.
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» Set of arms X
> At time t, pick X; € X, receive

Ye=fi(Xe) + &
where &; is centered and further conditionally sub-Gaussian.
f. belongs to a linear function space:

.7-'@:{fb:x'—>9Tg0(x),t9€@}where@ERd,<p:X—>Rd.

0: Parameter, ¢: Feature function.

» Unknown parameter 6, € RY.

> Best arm x, = argmax,c y (6, ¢(x))
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> Polynomials: X =R, ¢(x) = (1,x,x2,...,x971), © = By 4(0,1) unit
Euclidean ball of RY.

» Bandits: X = A= {1,..., A}, p(a) = e; € RA, © = [0, 1]A.

> Shortest path: X C Al (paths of length L), Pa0)(x) = I{x = a},
© = [0, 1]*1.
X C {0,1}9, paths in graph with d edges, p(x) = x, © C [0,1]¢ mean travel
time for each edge (Combes et al. 2015).

» Contextual bandits: X =C x A, ¢((c,a)) =(1,c,a,ca,...)

» Smooth function on graph: X = nodes of a graph with adjacency matrix G,
o = eigenfunctions of the Graph-Laplacian.

l h,u’a_‘_ ODALRIC-AMBRYM MAILLARD
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» Linear space: F = {fg L fy(x) = {0, p(x)),0 € R, 0 € @}.
Ex: p(x) = (L,x,x2), fy(x) =2+ 3x —2x%, 0 = (2,1/2,-2).
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» Linear space: F = {fg L fy(x) = {0, p(x)),0 € R, 0 € @}.
Ex: p(x) = (L,x,x2), fy(x) =2+ 3x —2x%, 0 = (2,1/2,-2).

> Loss: Uy,y') = _(y_zy/)2
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» Linear space: F = {fg : fy(x) = (0, 0(x)),0 € R, 0 € @}.
Ex: o(x) = (1,x,x2), fy(x) =2+ &x —2x2, 0 = (2,1/2,-2).
> Loss: U(y,y') = w

» Objective : from (xn, ¥n)n<n Optimize

N
min gﬁ(yn, fe(xn)) :

n=1

min > <yn — 9T¢(Xn)>2 : (1)

TICAL SEQUENTIAL DECISION MAKING 15/101



» Any solution to (1) must satisfy

N N

GnO = ©(xn)yn, where Gy =) ©(xn)o(xa) " (d % d matrix).
n=1 n=1
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» Any solution to (1) must satisfy

N N
GnO = ©(xn)yn, where Gy =) ©(xn)o(xa) " (d % d matrix).

n=1 n=1

» Matrix notations:
YN = (}/17 cee 7yN)T S RN,
Oy =(e"(x1),...,2" (xn))" (N x d matrix).

Gnb = Yy, where Gy = O by .
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JARY LEAST-SQUARES: SOLI

» Specific solution: ol = G,J(,CDI, Yn where G,]:,: pseudo-inverse of Gy.
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INARY LEAST-SQUARES: SOLU’

» Specific solution: G}LV = G,J{,CDI, Yy where G,]:,: pseudo-inverse of Gy.
» Solutions:
Oy = {0e0: Gy —0)=0}
= {0], + ker(Gy)} N O.
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DINARY LEAST-SQUARES: SOLUT

» Specific solution: G}LV = G,J(,CDI, Yy where G,]:,: pseudo-inverse of Gy.

» Solutions:

Oy = {0e0: Gy —0)=0}
= {G}L\,-I-ker(GN)}ﬂ@.

» When © = R? and Gy is invertible, G,J[, = Gﬁl,

(Ordinary Least-squares) Oy = Gy, 1<DL Yy.

CAL SEQUENTIAL DECISION MAKING
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» FError control:
Vx € X, [fi(x) = fo, ()] < 105 = Onllallp(x) || a1 - (2)

for each invertible matrix A, where ||x||a = VxT Ax.
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» FError control:

Vx € X, [fi(x) = fo (X)| <1105 = Onllallp(x) L a-1 - (2)

for each invertible matrix A, where ||x||a = VxT Ax.
» Matrix A = Gy has natural interpretation: for § € © (solution),

N N

> (Flxm) —fo(xn))?= D (07 —0) wlxn)(x) (07 0) = [|6* ~0][3, .

n=1 n=1

(Over-fitting is V0 € Oy, ||6* — 0]/, = 0).

[ Study 16, — Onfley |
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When Gy is not invertible, introduce regularization parameter A € R} .
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When Gy is not invertible, introduce regularization parameter A € R} .
» Regularized solution

Oy = G,g’l/\dﬂ, Yy where Gy = GAOy + My .
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When Gy is not invertible, introduce regularization parameter A € R} .
» Regularized solution

HN,)\ = G/V’]}\q)—ll\—/ YN where GN,)\ = ¢1/\—1¢N + )‘Id .

» Bayesian interpretation:
For Prior 6 ~ N'(0,X), i.i.d. setup, Gaussian noise (§, ~ N(0, a?)),
Posterior: fn(x)|x, X1, Y1, -+, XNy s yn ~ N (un(x), 03(x)) where
pn(x) = () (Oydn + 07T oL Yy
on(x) = o%p(x) (Pydn +0?T ) p(x).
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When Gy is not invertible, introduce regularization parameter A € R} .
» Regularized solution

HN,)\ = G/\_I’]}\q)—ll\—/ YN where GN,)\ = (b—ll\—lq)N + )\[d .

» Bayesian interpretation:
For Prior 6§ ~ N(0,X), i.i.d. setup, Gaussian noise (£, ~ N(0,02)),
Posterior: fn(x)|x, X1, Y1, -+, XNy s yn ~ N (un(x), 03(x)) where
pn(x) = () (Oydn + 07T oL Yy
on(x) = o%p(x) (Pydn +0?T ) p(x).

» Prior ¥ = "Tzld gives regularized least-squares ppn(x) = @(x) Oy .
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When Gy is not invertible, introduce regularization parameter A € R} .
» Regularized solution

On oy = G,\_,’l/\d)—,\r, Yn where Gy )\ = d)—',\—lch + My

» Bayesian interpretation:
For Prior § ~ N(0,X), i.i.d. setup, Gaussian noise (&, ~ N(0,02)),

Posterior: fa(X)|x, X1, Y1, - - -, Xns » yn ~ N (%), 03(x)) where
pn(x) = o) (PnPN + 2 D TIoN Yy
on(x) = o%p(x) (PO +o?T ) ().

» Prior ¥ = "Tzld gives regularized least-squares ppn(x) = @(x) Oy .

» Interpret )\ as prior value on variance.

[ Study 10 — Ovollon, |
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REGRESSION SETUP: NOISE

Standard regression noisr assumptions

» jid samples (xt); are i.i.d., (§t)¢ are i.i.d., independent from (x;):.
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Standard regression noisr assumptions

» jid samples (xt); are i.i.d., (§t)¢ are i.i.d., independent from (x;):.
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" RECGRESSION SETUP: NOISE

Standard regression noisr assumptions

» jid samples (xt); are i.i.d., (§t)¢ are i.i.d., independent from (x;):.

» sub-Gaussian noise: For some 02>0,

2 2
Vt € N,Vy € R, In]E[exp(fyft)] <

Yo
> .
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Standard regression noisr assumptions

» jid samples (xt); are i.i.d., (§t)¢ are i.i.d., independent from (x;):.

» sub-Gaussian noise: For some 02>0,
2%

VteN,VyER, InE[exp(y&)] < %
» = for N(0,02) [Exercice]

Sequential regression noise assumption

» Predictable sequence (not iid): x; is Ht_1-measurable and y; is H;-measurable.
H:: history.
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Standard regression noisr assumptions
» jid samples (xt); are i.i.d., (§t)¢ are i.i.d., independent from (x;):.
» sub-Gaussian noise: For some 02>0,
Vt € N, ¥y € R, |n1E[exp(7§t)] <
> = for N(0,0?) [Exercice]

720.2

2

Sequential regression noise assumption

» Predictable sequence (not iid): x; is Ht_1-measurable and y; is H;-measurable.
H:: history.
» Conditionally sub-Gaussian noise: For some 2 >0,
Vt € N,¥y € R, InE[exp('y&)”Ht_l] < % .

SEQUENTIAL DECISION MAKING 20/101



LINEAR BANDITS
Regression
Linear UCB, Linear TS
Graph-linear Bandits
Extension to Kernels
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» Least-squares (regularized) estimate of 6,:

0cx = [0 Or + My 1] Vs
G,
t, A

)

» Choose X;11 = argmax, ¢y (0¢ x, (X)) -
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» Least-squares (regularized) estimate of 6,:

0cx = [0 Or + My 1] Vs
G,
t, A

)

» Choose X;11 = argmax, ¢y (0¢ x, (X)) -

— Exploitation only !
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Optimism in Face of Uncertainty - Linear

Yasin Abbasi-Yadkori, David Pal, and Csaba Szepesvari "Improved Algorithms for
Linear Stochastic Bandits”
NIPS, 2011.

—




X¢p1 = argmax max {f[g(x) 10 is plausible}
xXeEX
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X¢p1 = argmax max {fb(x) 10 is plausible}
xXeEX

> Plausible: Ci(8) = {0: [0 — 0eall6,, < Bi(9))}
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X¢p1 = argmax max {fb(x) 10 is pIausibIe}
xXeEX

> Plausible: Ci(8) = {0: [0 — 0eall6,, < Bi(9))}
» Confidence ellipsoid such that P(6, € C¢(d)) > 1 — 6.
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X¢p1 = argmax max {fg(x) 10 is plausible}
xXeEX

> Plausible: Ci(8) = {0: [0 — 0eall6,, < Bi(9))}
» Confidence ellipsoid such that P(6, € C:(d)) > 1 —9.

» Explicit solution
Xeyy = argmax(fe x, o(x)) + Be(9) [ (x)ll g1 -
S b

= UCB-style exploitation and exploitation trade-off!

SEQUENTIAL DECISION MAKING 23/101



How to build B¢(d) ?
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How to build B¢(d) ?
> (Dani, Kakade 2008) By(8) = \/max(128d In(t) In(£2/3), 64/9 In(£2/5)
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How to build B¢(d) ?

> (Dani, Kakade 2008) By(8) = \/max(128d In(t) In(£2/3), 64/9 In(£2/5)
» (Rusmevichientong, Tsitsiklis 2009)

By(5) = C\/_In(t)\/dln (ome el 1) 4 1n(1/5)
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How to build B¢(d) ?

> (Dani, Kakade 2008) By(8) = \/max(128d In(t) In(£2/3), 64/9 In(£2/5)
» (Rusmevichientong, Tsitsiklis 2009)

By(5) = C\/_In(t)\/dln (3omens L2012 ) 1 1n(1/5)
» OFUL (Abbasi et al, 2011)

Bo(8) = VA[0*[1» + \/2 " (d(;L/W)

ODALRIC-AMBRYM MAILLARD
Hal ATHEM 4 F STATISTICAL SEQUENTIAL DECISION MAKING 24/101



() = o 0 < 102 = Bl ()61

Decomposition lemma

16+ — Onall Gy, < VAIO* ]2 + II¢EENIIG51A
where Ey = (&1,...,¢én)T € RV,

Key observation: sum of conditionally centered vector variables

N
ONEN =D @(xn)én € RY.

n=1

= Concentration inequality for vectors !

Make use of self-normalized concentration inequalities.
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0" — Gy APA YN
0* — Gy 5PN (ONO* + En)
(I = GyAGN)O" — GyAPNEN
GuA(Grx — Gn)0* — Gy A ONEN .
AGK0* — GyAPNEN -
—_——— N——

(1) )

)\Gfl 9* x| ~—
| N, “GN,)\ )‘\/9 GN,lA GN,A Gﬁ})ﬂ*
A

\/ €i8min(Gn,2)

16712 < VX612

2 —1 4T
(2) ”GN,/\q)NEN”GN,)\ = ||¢I/EN“G—1 :
N,X




What it means to be self-normalized ?
In dimension D=1, A=0, Gy = 2N, o(x,)?

T | Zn—l W(Xn)5n| | Z —1 Zn|
[®REnllgy: =+
\/Zn:l QO(XH)2 \/Zn 1 02

Basic self-normalized (Gaussian) concentration inequality

For fixed t, Z1, ..., Z:, independent, Z, ~ N(0,02), 6 € (0,1]

P( h1Zn m)

Et 10
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asic (Gaussian) concentration inequality For fixed t, Z;,..., Z; i.i.d.
(0,02), § € (0,1]

1< 2021n(1/6)
PN Z, > ——"2) <3¢
(tnzl ¢ t )

ikewise, using the Chernoff-method, we can show for fixed t, Z1,..., Z;,
ndependent, Z, ~ N(0,02), 6 € (0,1]

t

IP’(ZZ,, > J2§U%In(l/5)> <9

n=1

Sl s ) <o




e AL A M HOD

Extension to dimension d by the Laplace method (De la Pefia et al., 2004).

Let Z € RY random vector, B a d x d random matrix such that
1
(Sub-Gaussian) Vv € R, InElexp(y' Z — EfyTB'y)] <0.

Then for any deterministic d x d matrix C, w.p. > 1—,

det(B + C)1/2
1Zll(g+c)—1 < \/2|n (W> :

ODALRIC-AMBRYM MAILLARD
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B L AP LA M HOD

Extension to dimension d by the Laplace method (De la Pefia et al., 2004).

Let Z € RY random vector, B a d x d random matrix such that
1
(Sub-Gaussian) Vv € R, InElexp(y' Z — EfyTB'y)] <0.

Then for any deterministic d x d matrix C, w.p. > 1—,

det(B + C)1/2
1Zll(g+c)—1 < \/2|n (W> :

> Application: Z =N | o(x,)¢ B = Gno C = My.
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) Quantity

1
M7 = exp ((,2) = 5IIM)

s a super martingale such that for all t, E[M]] < 1.




) Quantity

1
M7 = exp ((,2) = 5IIM)

s a super martingale such that for all t, E[M]] < 1.

) Choice of 47 Replace optimization with integration (Laplace) !
ntroduce distribution A ~ A/(0, C™1), and M2




1
M7 = exp ((,2) = 5IIM)

s a super martingale such that for all t, E[M]] < 1.

) Choice of 74? Replace optimization with integration (Laplace) !
ntroduce distribution A ~ A/(0, C™1), and M2

a) E[MM <1

b) E[M{] = E[E[M{|Fw]] and

EIMY Pl = [ exp ((2:2) = IIB)FO)A

here f denotes the pdf of A ~ NV (0, C1).




) Direct calculations show that

det(C 1
=i = (g ) o (3170orar)

det(C) Y2 1, 0
N — <
Then E[(det(8+ C)> . <2||Z||(B+C)l)] <1

) Markov inequality yields:

det(B + C)1/2
(12 > 2 (L))

L det(B + C)1/2
= IP’(exp (§||Z||(B+C)1> - W) =0




> Application: Z =N | o(x,)¢n B = Gno C = My.

det(GN )\)1/2
-
P(”“’NEN”G&IA 2 2ln (5)\—"/2)) < 4.
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> Application: Z =N | o(x,)¢n B = Gno C = My.

det(GN)\)l/2
T )
IP><||<1>,\,E,\,||G&lA > 21n <—5W2 )) <.

» Time-uniform bound (VN): handles random stopping time N.
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> Application: Z =N | o(x,)¢n B = Gno C = My.

de'C(GN)\)l/2
T )
IP><||<1>,\,E,\,||G&lA > 21n <—5W2 )) <.

» Time-uniform bound (VN): handles random stopping time N.
» Property:

= Confidence ellipsoid on 6,:

det(G;+\1)1/2
sad/2 ’

Ci(5) = {016~ Bralle,. < VAIO']l2 + \/mn (
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Information gain vt

Log-determinant Lemma

o (det(GTa)) ,
T_ln(det()\ld> Z (1 + lle(xellg, )
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Information gain vt

Log-determinant Lemma

T=In(%> S n L el )

t=1

» det(A/y): volume before observing data; det(Gr »): volume after observing
X1y oo Xt-

ICAL SEQUENTIAL DECISION MAKING 33/101



Information gain vt

Log-determinant Lemma

T:In(%) ;ln L el )

» det(Aly): volume before observing data; det(Gr »): volume after observing
X1y oo Xt-
» Captures how much the "volume” of information is modified by samples

X1yeo o Xt
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Information gain vt

Log-determinant Lemma

.
=i () = S @ el )

det(\y) )~ & 1

» det(Aly): volume before observing data; det(Gr »): volume after observing

X1y oo Xt-
» Captures how much the "volume” of information is modified by samples
X1yeo o Xt

» ~1 = O(dIn(T)) for d-dimensional linear space.
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= det(G,, 1\ aF QP(Xn)(P(XH)T)
det(Gy-12) det (1-+ 6, {2 ) 000) (6,23 )eln)) )
det(Gp_1.2)(1 + IIso(Xn)!HGn—gm)

n

det(\) [T (1 + oGl 2 )

t=1

det(Gp ) S ¢
,\—dn) = ; In (1 + llo(xe)lllr )




>  We have good confidence bounds: let us exploit them!
>  Simplest approach:

Xer1 = argmaxmax{(f, o(x)) : 6 € C¢(d)}.

xXeEX

= argmax ;" (x)
xeX

If f(x) € [-1,1] for all x, then w.p. higher than 1 — ¢,

Ry = 0(1/ T’yT(HQ*Hz + 0\/2 In(1/0) + 2’YT)>

> Is this optimal way of exploiting linear structure?

ODALRIC-AMBRYM MAILLARD
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nstantaneous regret r; (note: r; < 2)

re fo(xe) — fuxe)
f,t1(xt) — fi(x¢) with high probability
[£:21 () — e (o) + [ e-1(0xe) — filxe))|
2]l p(xe)ll -1 Be-1(6) -

hus, we deduce that with probability higher than 1 — ¢:

-
Rr = Y r< Z2m|n{||g0(xt l6-2Be-1(9). 1}
t=1 t=1

-
2Bt (9 me{\lw(xt)\lc 1,1}

2BT(5)¢ TZ min{[l(xe)lI%-1, 1} -
=il ks

e conclude remarking that min{A, 1} < IHI(J(Z)A) for all A> 0.




Thompson in Sampling for Linear - Bandits
Shipra Agrawal, Navin Goyal "Thompson Sampling for Contextual Bandits with

Linear Payoffs”
arXiv:1209.3352, 2014.

—




> Bayesian model:
Ve =x; 0+er, 0 ~ N(0,K%ly), er ~ N(0,0°).
Explicit posterior: p(0|xi,y1,...,X¢, yt) = /\/’(g(t), Y,).
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> Bayesian model:
Ve =x; 0+er, 0 ~ N(0,K%ly), er ~ N(0,0°).
Explicit posterior: p(0|x1,y1, ..., x¢,yt) = /\/’(g(t), 1)

» Thompson Sampling

0(t) ~ N(0(t), %),

Xep1 = argmax x ! (t).
Xx€D¢11

[Li et al. 12],[Agrawal & Goyal 13]
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LINEAR BANDITS

Regression
Linear UCB, Linear TS

Graph-linear Bandits

Extension to Kernels
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APHS AND GRAPH LLAPLAC]

G = (V, &) graph with set of notes V = {1,..., N}, and edges £ C V x V.
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G = (V, &) graph with set of notes V = {1,..., N}, and edges £ C V x V.

» W = (w;)ij Weight matrix (non-negative weights)
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G = (V, &) graph with set of notes V = {1,..., N}, and edges £ C V x V.

» W = (w;)ij Weight matrix (non-negative weights)
» D = Diag((X; wi,)i) Degree matrix
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G = (V, &) graph with set of notes V = {1,..., N}, and edges £ C V x V.

» W = (w;)ij Weight matrix (non-negative weights)
» D = Diag((X; wi,)i) Degree matrix
» L =D — W graph Laplacian matrix
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DAPH |

A graph function is seen as a vector f € RV assigning values to nodes.

fFTLf = % Z WiJ(ﬂ _ f;)2

ij<N

Properties:
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A graph function is seen as a vector f € RV assigning values to nodes.
1
fILf = 5 > wig(fi — )
ij<N
Properties:

» L is symmetric, positive, semi-definite.
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A graph function is seen as a vector f € RV assigning values to nodes.
1
fILf = 5 > wig(fi — )
ij<N
Properties:

» L is symmetric, positive, semi-definite.

» Smallest eigenvalue is 0, corresponding vector 1y
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A graph function is seen as a vector f € RV assigning values to nodes.

FILf = % > wi(fi— £)?.
ij<N
Properties:
» L is symmetric, positive, semi-definite.
» Smallest eigenvalue is 0, corresponding vector 1y
» Eigenvalues: 0= X1 < A <... < Ay

ODALRIC-AMBRYM MAILLARD
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~ (GRAPH SMOOTHNESS

Let L = QTAQ where
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~ (#sRAPH MOOTHNESS

Let L = QTAQ where
» A: N x N diagonal matrix with eigenvalues of L
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Let L = QTAQ where
» A: N x N diagonal matrix with eigenvalues of L
» Q: N x N matrix chose columns are eigenvectors of L.

Any graph-function f decomposes as f = Qa form some «, that is
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Let L = QTAQ where
» A: N x N diagonal matrix with eigenvalues of L
» Q: N x N matrix chose columns are eigenvectors of L.
Any graph-function f decomposes as f = Qa form some «, that is

> (i) =2 jev i Qij = (o, q(i)) where q(i) = (Qi); is ith eigenvector.
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Let L = QTAQ where
» A: N x N diagonal matrix with eigenvalues of L
» Q: N x N matrix chose columns are eigenvectors of L.
Any graph-function f decomposes as f = Qa form some «, that is
> (i) =2 jev i Qij = (o, q(i)) where q(i) = (Qi); is ith eigenvector.
> Then, TLF = Ty Aio? = Jlafla < [IFllg
= Linear space induced by the Graph:

Fg =A{f: f(x) = {a, q(x)), [lella < 1}

Low-norm ||f||g means:
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~ (GRAPH SMOOTHN

Let L = QTAQ where
» A: N x N diagonal matrix with eigenvalues of L
» Q: N x N matrix chose columns are eigenvectors of L.
Any graph-function f decomposes as f = Qa form some «, that is
> (i) =2 jev i Qij = (o, q(i)) where q(i) = (Qi); is ith eigenvector.
> Then, TLF = Ty Aio? = Jlafla < [IFllg
= Linear space induced by the Graph:

Fg =A{f: f(x) = {a, q(x)), [lella < 1}

Low-norm ||f||g means:

> (f; — £)? is small if w; is large

l h,u’a_‘_ ODALRIC-AMBRYM MAILLARD
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~ (GRAPH SMOOTHN

Let L = QTAQ where
» A: N x N diagonal matrix with eigenvalues of L
» Q: N x N matrix chose columns are eigenvectors of L.
Any graph-function f decomposes as f = Qa form some «, that is
> (i) =2 jev i Qij = (o, q(i)) where q(i) = (Qi); is ith eigenvector.
> Then, TLF = Ty Aio? = Jlafla < [IFllg
= Linear space induced by the Graph:

Fg =A{f: f(x) = {a, q(x)), [lella < 1}

Low-norm ||f||g means:
> (f; — £)? is small if w; is large

» similar value between neighbor nodes.
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Further references for bandits on graphs:

» Michal Valko, Rémi Munos, Branislav Kveton, Tomas Kocak: Spectral Bandits
for Smooth Graph Functions, in International Conference on Machine Learning
(ICML 2014).
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Further references for bandits on graphs:

» Michal Valko, Rémi Munos, Branislav Kveton, Tomas Kocdk: Spectral Bandits
for Smooth Graph Functions, in International Conference on Machine Learning
(ICML 2014).

» Alexandra Carpentier, Michal Valko: Revealing graph bandits for maximizing
local influence, in International Conference on Artificial Intelligence and
Statistics (AISTATS 2016).
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LINEAR BANDITS

Regression
Linear UCB, Linear TS
Graph-linear Bandits

Extension to Kernels
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| — A L S

Let k be a kernel function (continuous, symmetric positive definite) on a compact X
with positive finite Borel measure .

There exists an at most countable sequence (o;,¥;)ien+ Where o; > 0,

limi—o0 0; = 0 and {1);} form an orthonormal basis of Ly ,(X), such that

> / 2 > <f7¢j>%2’“
KOoy) = D opyCu(y) and - IFIR =3 — =
j=1 Jj=1

Let ; = \/a;v; (hence [|pillL, = /i, [lpillc = 1.)
If £ =32 0ii, then |[f|[z =2, 67.

Similar to parametric regression except with infinite parameter.
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ULARIZED KERNEL LEAST-SQUZ

Let k be a kernel function.
In the parametric case, we built 0y ¢, then fy +(x) = (O +, p(X)).
After observing Y; = (y1,...,y:)| € R, we now build directly:

(Kernel estimate) £y +(x) = k() T(Ke + M) 7Yy,

where

ICAL SEQUENTIAL DECISION MAKING
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Let k be a kernel function.
In the parametric case, we built 0y ¢, then fy +(x) = (O +, p(X)).
After observing Y; = (y1,...,y:)| € R, we now build directly:

(Kernel estimate) fy (x) = ke(x)T(Ke + M) 71Ye,
where
> ke(x) = (k(x,x¢))r<e € RE,
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Let k be a kernel function.
In the parametric case, we built 0y ¢, then fy +(x) = (O +, p(X)).
After observing Y; = (y1,...,y:)| € R, we now build directly:

(Kernel estimate) fy (x) = ke(x)T(Ke + M) 71Ye,
where
> ke(x) = (k(x,x¢))r<e € RE,
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Let k be a kernel function.
In the parametric case, we built 0y ¢, then fy +(x) = (O +, p(X)).
After observing Y; = (y1,...,y:)| € R, we now build directly:

(Kernel estimate) fy (x) = ke(x)T(Ke + M) 71Ye,
where
> ke(x) = (k(x,x))r<t € RE,
> K = (k(xs, Xs))s,s'<t € RP¥E,
for a parameter A\ € R.
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Theorem (Durand & M. 2017, Kernel estimation error)
Vo €0, 1], with probability higher than 1—4, it holds simultaneously over all x € X

and t>0,

60001 < o) bt T 210(1/8) +-2300)

where
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Theorem (Durand & M. 2017, Kernel estimation error)
Vo €0, 1], with probability higher than 1—4, it holds simultaneously over all x € X

and t>0,

660001 < o) bt T 21n(1/8) + 2300
where

> Ky t(x, x)= k(x,x) — ke(x) " (K¢ + M) “Lke(x): posterior variance.
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Theorem (Durand & M. 2017, Kernel estimation error)
Vo €0, 1], with probability higher than 1—4, it holds simultaneously over all x € X

and t>0,

660001 < o) bt T 21n(1/8) + 2300
where

> Ky t(x, x)= k(x,x) — ke(x) " (K¢ + M) “Lke(x): posterior variance.

> v (A)= %Z@len(l—i-%k,\,t/_l(xtl,xt/)): information gain.

ODALRIC- AMBR\ M MAILLARD
: N )]
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Theorem (Durand & M. 2017, Kernel estimation error)

Vo €0, 1], with probability higher than 1—4, it holds simultaneously over all x€ X
and t>0,

£ () = 0t () <\ ko e (%, X) Br e—1(9)
where

> ky (%, x)= k(x,x) — ke(x) (K¢ + M¢) “Lke(x): posterior variance.
> v:(N)= %Zﬁlzlln<1+§k,\,t/_1(xt/,xt/)): information gain.
» |/fi|lx: Reproducing Kernel Hilbert Space norm.
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k(x,x") Captures YT
(x,x") "Linear functions” | O(dIn(T))

/”2

exp(—”x—gé(z—) "Smooth functions” | O(In(T)9+1)

Many kernels, for different properties of the signal
(graph-smoothness, periodic, change points, etc.)
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KERNEL-UCB AND KERN

T
Minimize the regret: Rt = Z fo(x) — fi(xe)-

=1
Kernel-UCB
+ (o) — /
xteargg(axft (x) where £ (x)="f\t—1(x)+/kne1(x,x)Bxr1(0).

Kernel-TS (on discrete set X C X)

X; € argmax f;(x) where f; ~ /\/'(/f\t_l, ft_l) with
xeX

fro1 = (Aro1(x))xex, Teo1 = (kA,t—l(XvX/)B)\,t—l((s)z)x’xlex-
More info in (Durand et al., 2018, JMLR)

ODALRIC-AMBRYM MAILLARD
N: MATHEMATICS OF STATISTICAL SEQUENTIAL DECISION MAKING 47/101




STRUCTURED LOWER BOUNDS
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STRUCTURED LOWER BOUNDS

Lower bounds
Lipschitz bandits
Ranking bandits

Metric-graph of bandits
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Set of optimal arms for v = (v5)aca: AL(v) = Argmax ¢ 4p1a(v).

Definition (Uniformly Good strategies)

A bandit strategy is uniformly-good on D if
Vv = (Va)aca € D,Va ¢ A (v), E[Nr(a)]=0o(T%) forall a€(0,1].

“Price for being uniformly-good"”)

Any uniformly good strategy on D = Bern”* must satisfy

. E,[N7(a)] 1
Va¢ A(v) liminf |og(TT) Z 6 (ua0), )
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Set of optimal arms for v = (v5)aca: AL(v) = Argmax ¢ 4p1a(v).

Definition (Uniformly Good strategies)

A bandit strategy is uniformly-good on D if
Vv = (Va)aca € D,Va ¢ A (v), E[Nr(a)]=0o(T%) forall a€(0,1].

“Price for being uniformly-good"”)

Any uniformly good strategy on D = Bern”* must satisfy
E[Nr(a)] 1
log(T) =~ k1(pa(v), ux(v))

Va ¢ A(v) Ii_l[n_>inf

Main tool: Change of measure J

(Probability) ~ VQ,Vc e R, P, (Q N {Iog (%(X)) <c ) < exp(c)P3(Q).

(Expectation) Ey[log (%(X))] > sup kl(IE,,[g(X)],IE,;[g(X)]).

g:X—[0,1]
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Consider 0,0 € ©:

a
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Consider 0,0 € ©:

b - ) pEwan(269)

s=1 acAs=1

For any event Q it holds (Change of measure)

Pol0] = Eglexp(L7)HRY] = By | exp(L7)[2]Po[0]

LT e (Bl 190 Pols] = exp (1570 Vg,

Py[2
Reorganizing the terms, we get —]EQ[LT]I{Q}] Py[Q] In (PG[[Q]]> .
0/
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ROM WEYL 1

" KLL? 1LO
Consider 0,0 € ©:
& e (Y6) B 0,(Ys)
Lt = szzlln <V9A(Y)> ;;H{A a}In( a(Ys)>

For any event Q it holds (Change of measure)
= Eolexp(£7){Q}] = By | exp(L7)|2] o[
Jensen ~ ]EQ[ET]I{Q}] )
> Eo[L7]Q] )Po[Q] = ————= | Py[Q],
exp (EolZ7I9]) ol = exp (=257 ol
Reorganizing the terms, we get —Eg[L71{Q}] = P4[Q] In (}E’e[[fé]]) . Likewise for
0/

the complement Q¢. Summing up the terms, we obtain

P [Q]

~Eo[Lr] = Y Eg[N7(a)]KL(0..0,)
acA
> Py[Q]in (IE)Z[[%]]) + (1= Py[Q]) In <—11__g;[[§22]]>.

49/101
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v K] uﬁmAvm— [

Consider 6,0’ € ©:

e = Sn(i) - S an ()

s=1 acAs=1

For any event Q it holds (Change of measure)

P[] = Eglexp(L£7)I{Q}] = By | exp(L7)|0| P[]
e ew(EdEﬂQDPdQL=em(@ﬂgigﬁﬂ)wdﬂL
Reorganizing the terms, we get —Eo[L71{Q}] > P[Q] In (IEZ[[%]]) . Likewise for

the complement Q€. Summing up the terms, we obtain

3 Eo[Nr(2)KL(6,.6,) > KL(Bo[Q, By [2)
acA

-
l m’a/_ ODALRIC-AMBRYM MAILLARD
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Hence for all suboptimal arm a=xg,

k1(IPp[€2], P5[€2]) — Xor2oKL (0w, 6 )Eg[ N7 ()]
KL(0,,0%) '

Eg[N7(a)] = sup
Q.60

)
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Hence for all suboptimal arm a# %y,
K1(Py[Q], P5[S]) — 3o 2,KL(0ar, 0 )Eg[NT(2)]
KL(0,,07) '
Choose 0’ such that a is optimal. Let Q = {Ny(a) > T*}.
> Py[Q]< Eg[N7(a)] T~ = o(1) (Consistency)
> > caN7(&) = T (Construction)

~ 1 T—T¢ ~
Thus k1(Py [, P5[Q])~In (]P,é( e <Ta)) > '"(Za,#Eg[Nr(a')]) ~In(T).

Eg[N7(a)] = sup
Q.60

)
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"FromMm K] O OWER BOUND

Hence for all suboptimal arm a=xg,

k1(IPp[€2], P5[€2]) — Xor2oKL (0w, 6 )Eg[ N7 ()] .

Eg[Nr(a)] = sup
Q.60

)

KL(6,,6%)
Choose 0’ such that a is optimal. Let Q = {Ny(a) > T*}.
> Py[Q]< Eg[N7(a)] T~ = o(1) (Consistency)
> > caN7(&) = T (Construction)
Thus k1(P5[Q], P4[Q])~In(5

1 T_Te -
=) 2 (s ) = ()

> No constraint on ¢, for &’ # a : 0/, = 0 kills the blue terms.

. Eg[N7(a)] 1-0
>
liminf =1007) ~ inf 5 {KL(02,05) © 143> ftxy }

ODALRIC-AMBRYM MAILLARD
MATHEMATICS OF STATISTICAL SEQUENTIAL DECISION MAKING
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5 OPTIMISTIC PRINCIPLE REVISI”

> Insight from lower bound: Any uniformly-good strategy on D must satisfy:

[N7(a)] e " N
Va¢ A.(v), I|m|nf#>sup{—~. I/—(l/l,...,Va,...,VA),A*(V)—{a}}

most confusing (unstructured)
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> Insight from lower bound: Any uniformly-good strategy on D must satisfy:

E[NT(a)]

Va¢ A.(v), Iim_l_inf Toa(T)

>sup{@: Pty T uA),A*(ﬂ):{a}}

most confusing (unstructured)

> KL-UCB plays arms not pulled enough for being uniformly-good:

log(T)

E; [X]: N So= =
at+1€argmaxmax{ Va[ ] T(a) KL(Vt,a,Va)

, ¥ most confusing for a}
acA
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1 HE OPTIMISTIC PRINCIPLE R ED

> Insight from lower bound: Any uniformly-good strategy on D must satisfy:

E[NT(a)]

Va¢ A, (v), Iim_l_inf W

1 - ~ ~Y
}sup{m. v=(v1,...,Vay...,va), A?)={a}

—

most confusing (unstructured)

> KL-UCB plays arms not pulled enough for being uniformly-good:

log(T)

E;.[X]: N ST
at+1€a,rgmaxmax{ Va[ ] T(a) KL(Vt,a,Va)

, ¥ most confusing for a}
acA

Play an arm in order to
rule-out a most confusing instance
(Selects one causing maximal regret if not played.)

>  Different from “expecting the best reward in the best world": testing.
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Following the same proof as for the fundamental Lemma one can obtain the
following generalization:

Lemma (D-constrained regret lower bound)

Let D be any set of bandit configurations and v € D. Then any uniformly-good
strategy on D must incur a regret

liminf 212 > inf{ S (i) — a(v)) -

T—oo In(T) A

Va€A, c;20, inf > cKL(va,v)) > 1}.
v'eD(v) 2 A

where we introduced the set of maximally confusing distributions

B() = {1/ €D : A*(V) N A*(v) = B, ¥a € A*(v),KL(va, V1) = o} .

» Solution to an optimization problem!

» Specialization to the multi-armed bandit setup of an even more general result
from Graves&l ai, 97 (extending Agrawal 89).
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sing similar steps as for unstructured lower bounds, we get

ag¢ A*(v), W € Dst. A*(V) ={a}

Sy ABINT (@KL ) n(T=T2) In(Sope Bu[Nr(2))
In(T) 2 limint — 1y~ In(T)

im inf
¥/




sing similar steps as for unstructured lower bounds, we get

ag¢ A (v), W € Dst. A*(V)={a} .

S BINF KLy ) 0 (T=T%) I (Zas B [Nr(a)

g In(T) il - n(T) In(T)

y uniformly-good assumption, it must be that B = 0, hence

—IKL(ya/,yg,) — Z (IimTinf W)KL(Va/,V;/) >1.

aeA

his holds in particular choosing v/ such that Va’ € A*(v),KL(vy, v
onclude by remarking that

') =0. We

) a’

R . E[Nr(a)]
'WJ&fﬁ:Z (lpJQOf in(T) )(/‘*(V)_,Ua(V))-

acA

Ca




What is the number of times a sub-optimal arm needs to be pulled?
The fundamental change of measure argument plus a simple reordering gives

supkl(IP’z?[Q],IP’V[Q])— S E [N (2)KL(var, V)
Q A

E,[N7(a)] > sup FeA\la)

v'eD KL(va, 1})

This motivates the following definition:

Definition (Asymptotic price for uniformly-good strategies)

For v € D,a ¢ A,(v), the asymptotic price to pay on arm a for being
uniformly-good on D is

In(T) — Za’eA\{a} EV[NT(QI)]KL(Va/, l/;/)
nr(a,v,D) = sup ; .
v'eD:ac A (v) KL(VEH Va)
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> No structure (most confusing obtained without changing other arms):

In(T) . .
E [Nt(a)] > su {—ﬂ:yzy,...,u,...,u }
(Nr(2) ﬂED:A*(E)"/):{a} KL(va, 7a) 1 ? 4)
In(T)

Ko (va, p*(v))
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No structure (most confusing obtained without changing other arms):

In(T) . .
E [Nt(a)] > su {—Nil/:l/,...,ll,...,l/ }
(Nr(a) ﬂED:A*(E;):{a} KL(va, 7a) 1 ) 4)
In(T)

Ko (va, p*(v))

Structure (most confusing instance requires changing other arms):

E,[N7(a)] > sup KL(va, 7a)

peD:A, (v)={a}

How to adapt bandit strategy to handle such structure (ongoing research)? J

l h,u’a_‘_ ODALRIC-AMBRYM MAILLARD
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(Collections) (A, (©2)aca, (Va)aca; (Va)aca, (1ta)aca)

(Structure)  © C H O,
acA
(Parameter) 0 €©

Finite set A. For each a € A:
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(Collections) (A, (©2)aca, (Va)aca; (Va)aca, (1ta)aca)

(Structure)  © C H O,
acA
(Parameter) 0 €©

Finite set A. For each a € A:
» Parameter space ©,.
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(Co/lections) (-’47 (ea)aEAa (ya)aE.Aa (Va)aE.Aa (Na)aEA)

(Structure)  © C H O,
acA
(Parameter) 0 €©

Finite set A. For each a € A:
» Parameter space ©,.

» Observation space V..
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(Collections) (-’47 (@a)aEAa (ya)aE.Aa (Va)aE.Aa (Na)aEA)

(Structure)  © C H O,
acA
(Parameter) 0 €©

Finite set A. For each a € A:
» Parameter space ©,.
» Observation space V..
» Distribution of observations v, : ©, — P(V,)

ODALRIC-AMBRYM MAILLARD
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(Collections) (A7 (@a)aEAa (ya)aE.Aa (Va)aE.Aa (Na)aeA)

(Structure)  © C H O,
acA
(Parameter) 0 €©

Finite set A. For each a € A:
» Parameter space ©,.
» Observation space V,.
» Distribution of observations v, : ©, — P(V,)
» Reward: p;:© — R (© and not ©, !)
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> Classical Bernoulli MAB: A = {1,...,A}, ©, = [0,1], Y, = {0,1},
v4(0,) = Bern(6,), © = [0,1]* (unstructured) and p,(6) = 6..
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» Classical Bernoulli MAB: A= {1,... A}, ©,=[0,1], Y, ={0,1},
v4(0,) = Bern(6,), © = [0,1]* (unstructured) and p,(6) = 6..

» Linear bandits: A C RY, ©, = {({a,a) : a € RY}, Y, =R, v,(0,) = N(6,,1),
© ={0= (o a))aca,x € Rd}v pa(0) = 0.
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» Classical Bernoulli MAB: A= {1,... A}, ©,=[0,1], Y, ={0,1},
v4(0,) = Bern(6,), © = [0,1]* (unstructured) and p,(6) = 6..

» Linear bandits: A C RY, ©, = {({a,a) : a € RY}, Y, =R, v,(0,) = N(6,,1),
© ={0= (o a))aca,x € Rd}v pa(0) = 0.

» Lipschitz bandits: A C X, ©, CR, YV, =R, v,(0,) = N(6,,1),
© = {0: max, yex G2 <1}, pa(6) = 0.
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» Classical Bernoulli MAB: A= {1,... A}, ©,=[0,1], Y, ={0,1},
v4(0,) = Bern(6,), © = [0,1]* (unstructured) and p,(6) = 6..
» Linear bandits: A C RY, ©, = {({a,a) : a € RY}, Y, =R, v,(0,) = N(6,,1),
© ={0= (o a))aca,x € Rd}v pa(0) = 0.
» Lipschitz bandits: A C X, ©, CR, YV, =R, v,(6,) = N(6,,1),
© = {0: max, yex G2 <1}, pa(6) = 0.
» Combinatorial semi-bandit: A C {0,1}9, ©, C RY, Y, =R,
I/a(ea) = /\/’(03, /d), 0 = {9: 932(04121, c ,adad), OAGRd}, ,ua(e) = <93, 1).
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» Classical Bernoulli MAB: A= {1,... A}, ©,=[0,1], Y, ={0,1},
v.(0,) = Bern(6,), © = [0,1]* (unstructured) and p,(6) = 6,.
» Linear bandits: A C RY, ©, = {(a,a) : a € R}, V, =R, v,(0,) = N(6,,1),
© ={0= (o a))aca,x € Rd}v pa(0) = 0.
» Lipschitz bandits: A C X, ©, CR, YV, =R, v,(6,) = N(6,,1),
© = {0 : max, yex TEH <1}, pa(0) = 0.
» Combinatorial semi-bandit: A C {0,1}9, ©, C R?, ), =R,
Va(0a) = N(0a, la), © = {0: 0a=(ca1,...,agaq),a €R}, p1a(0) = (0a,1).
» Ranking bandits: A= {a e Arrf}, ©, =[0,1]t, Y, = {0,1},
va(05) = Fet((Bem(05,))et ), © = {0 : 02 = (0, )i, @ € [0, 1]V},
pa(0) = Zé:l r(€)0a, H?:l(l —0a,).

-
l m’a/_ ODALRIC-AMBRYM MAILLARD
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Theorem (Agrawal 1989)

Assume © is discrete, x(0) = Argmax ¢ 4 pta(6) is unique. Then for any uniformly
good strategy,

L RT(0)
i Ty

> C(0) where

ZEA\*(G) Na(1x(0) — 1a(9))
infren(o) ZaEA\*(G) 1aKL(Va(02), va(Aa))

C(#) = min { S P(A\*(G))}

with A(0) = {)\G@: *(0)#*(\), and KL(v4(0,),va(As))=0 for a:*(G)} .
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Theorem (Agrawal 1989)

Assume © is discrete, x(0) = Argmax ¢ 4 pta(6) is unique. Then for any uniformly
good strategy,

. Rr(0)
i Ty

> C(0) where

ZEA\*(G) Na(1x(0) — 1a(9))
infren(o) ZaEA\*(G) 1aKL(Va(02), va(Aa))

C(#) = min { 1€ 7’(«4\*(9))}
with A(f) = {)\G@: *(0) #x(A), and KL(v,(0,), va(As))=0 for a:*(G)} .
» Confusing parameters statistically indistinguishable from 6 when playing only
*(0).
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Theorem (Graves, Lai 1997)

Assume x(6) = Argmax . 4 pa(6) is unique. Then for any uniformly good strategy,
.. Rr(9)
— >
I|7r_n_)|gof in(T) = C(6) where

C(o) = min { S (1 (8) — 11a(6)) : Va, 1 > 0
acA

and AeiR]ZH);naKL(Va(aa)’Va()\a)) > 1}

with A(0) = {)\69: *(0)#£*(\), and KL(v4(0,),v2(A3))=0 for a=*(9)} .
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Theorem (Graves, Lai 1997)

Assume x(6) = Argmax . 4 pa(6) is unique. Then for any uniformly good strategy,
.. Rr(9)
— >
I|7r_n_)|gof in(T) = C(0) where

C(o) = min { S (1 (8) — 11a(6)) : Va, 1 > 0
acA

and AéRE&);naKL(V‘Q(Ga)’Va()\a)) > 1}

with A(0) = {)\ €0: x(0) #x(A), and KL(v(02), va(A3)) =0 for a=*(9)} .
» Confusing parameters statistically indistinguishable from 6 when playing only
*(0).
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STRUCTURED LOWER BOUNDS

Lower bounds

Lipschitz bandits
Ranking bandits
Metric-graph of bandits
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Lipschitz Bandits: Regret Lower Bounds and Optimal Algorithms

Stefan Magureanu, Richard Combes and Alexandre Proutiere, COLT 2014.

|




Average rewards

0*

Arms
|
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Average rewards

6*

Arms
|

» The decision maker is given a constant L
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Average rewards
6*
0
Arms
|
0 h

» The decision maker is given a constant L

» Each k € K, is assigned a fixed and known coordinate x, € (0,1)
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Average rewards
9*
0
Arms
|
0 h

» The decision maker is given a constant L
» Each k € K, is assigned a fixed and known coordinate x, € (0,1)
> Then: ©, = {0 € (0,1)X:|0; — 0| < LIx; — x|, Vi,j < K}
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Average rewards

9*

Arms
|

» The decision maker is given a constant L

» Each k € K, is assigned a fixed and known coordinate x, € (0,1)

> Then: ©p = {0 € (0,1)X:10; — 6;| < L|xi — x|, Vi,j < K}

» Our goal is to exploit this additional information in order to reduce the
achievable regret, relative to that of the classic setting

l h,u’a_‘_ ODALRIC-AMBRYM MAILLARD
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When {xx : k € K} = (0,1) an efficient algorithm must perform two task:
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When {xx : k € K} = (0,1) an efficient algorithm must perform two task:

» Adaptive discretization (from continuous X to discrete X)?
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PSCHITZ BANDITS - CHALLENG

When {xx : k € K} = (0,1) an efficient algorithm must perform two task:

» Adaptive discretization (from continuous X to discrete X)?
> Efficient statistical testing:
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When {xx : k € K} = (0,1) an efficient algorithm must perform two task:

» Adaptive discretization (from continuous X to discrete X)?
> Efficient statistical testing:

» Correctly identify the suboptimal arms by optimally exploiting past observations
and structure
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When {xx : k € K} = (0,1) an efficient algorithm must perform two task:

» Adaptive discretization (from continuous X to discrete X)?
> Efficient statistical testing:
» Correctly identify the suboptimal arms by optimally exploiting past observations
and structure

» Perform this task optimally: regret lower bounds? algorithms matching this limit?
(Magureanu et al.,, COLT 2014)
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PRELIMINARIES

Average rewards
k
0* A
0
Arms
Il
0 k "1

Let us define the most confusing bad parameter \¥ of an arm k:

)\Jk—max(ﬁ 0" — L x |x; — x|),Vj € K
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Theorem (Lower bound)

For all # € ©; and uniformly good algorithms 7, we have:
R™(T)
lim _inf >
im_inf () = ¢
where C(6) is the minimal value of the following optimization problem:

min Z ck(0" — 0k)

¢ >0,kek— P
subject to: Z ck KL(Og, )\éf*,k,) >1, Vke K~
k'ek—
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Theorem (Lower bound)

For all # € ©; and uniformly good algorithms 7, we have:
R™(T)
lim _inf >
im_inf () = ¢
where C(6) is the minimal value of the following optimization problem:

min Z ck(0" — 0k)

¢ >0,kek— P
subject to: Z ck KL(Og, )\g*,k,) >1, Vke K~
k'ek—

» Follows result by Graves, Todd L., and Tze Leung Lai. "Asymptotically efficient
adaptive choice of control laws in controlled markov chains.” SIAM journal on
control and optimization 35.3 (1997): 715-743
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Two algorithms are proposed:
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Two algorithms are proposed:
> OSLB :
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Two algorithms are proposed:
> OSLB :
> Asymptotically optimal
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Two algorithms are proposed:
> OSLB :
> Asymptotically optimal
» Enforces exploration as dictated by the LP in the lower bound
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Two algorithms are proposed:
> OSLB :
» Asymptotically optimal
» Enforces exploration as dictated by the LP in the lower bound
» Computationally complex and performs poorly numerically
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Two algorithms are proposed:
> OSLB :
» Asymptotically optimal
» Enforces exploration as dictated by the LP in the lower bound
» Computationally complex and performs poorly numerically

» POSLB:
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Two algorithms are proposed:
> OSLB :
» Asymptotically optimal
» Enforces exploration as dictated by the LP in the lower bound
» Computationally complex and performs poorly numerically

» POSLB:
> Asymptotically Pareto-optimal - provably exploits the structure efficiently
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Two algorithms are proposed:
> OSLB :
» Asymptotically optimal
» Enforces exploration as dictated by the LP in the lower bound
» Computationally complex and performs poorly numerically

» POSLB:

> Asymptotically Pareto-optimal - provably exploits the structure efficiently
» Computationally light and work well numerically
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Two algorithms are proposed:
> OSLB :
» Asymptotically optimal
» Enforces exploration as dictated by the LP in the lower bound
» Computationally complex and performs poorly numerically
» POSLB:
> Asymptotically Pareto-optimal - provably exploits the structure efficiently

» Computationally light and work well numerically
> Related to the UCB family of algorithms

ODALRIC-AMBRYM MAILLARD
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PPER (CONFIDENCE INDE
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~ UPPER CONFIDENCE INDEX

» Both algorithms make use of the following index:
bi(n) = sup {q € (Bi(n), 1) = 3 N(mKL 4 (B5(m), ATF) < f(n)}
jexX

where f(n) =1In(n) + 3K InIn(n) and KL, (x,y) = KL(x, y) if x <y, and 0
otherwise

ODALRIC-AMBRYM MAILLARD
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- ALcoriTEM OSLB(s)

o~

> At each round, OSLB(e) computes ¢(n) = c(6(n)) - the solution to the LP in
the lower bound with @ replaced by the empirical mean 6(n)
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-~ ALcoORITHM OSLB(e)

o~

> At each round, OSLB(e) computes ¢(n) = c(6(n)) - the solution to the LP in
the lower bound with @ replaced by the empirical mean 6(n)

> Let L(n) = arg max, Ox(n) be the leader at round n
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B C ORI (S L

o~

> At each round, OSLB(e) computes ¢(n) = c(6(n)) - the solution to the LP in
the lower bound with @ replaced by the empirical mean 6(n)

> Let L(n) = arg max, Ox(n) be the leader at round n
» Let k(n) = argming Ni(n) be the least played arm up to time n
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v

o~

At each round, OSLB(g) computes ¢(n) = c(6(n)) - the solution to the LP in
the lower bound with @ replaced by the empirical mean 6(n)

Let L(n) = arg maxy 0y (n) be the leader at round n
Let k(n) = arg miny Ni(n) be the least played arm up to time n

Let k(n) = argmin{Nk(n) : k : Sk(n) > Nx(n)/In(n)} be the least played arm
among the arms played insufficiently many times
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OPTIMAL ALGORITHM - OSLB(¢)

Algorithm 1 OSLB(¢)

For all n > 1, select arm k(n) such that:

If 6*(n) > maxy(ny bk(n), then k(n) = L(n);

Else If Ny(n)(n) < %N;(n)(n), then k(n) = k(n); (Forced Exploration)
Else k(n) = k(n).
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Assumption
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Assumption

» The solution of the LP in the lower bound is unique.

Theorem (asymptotic optimality)

For all € > 0, under the above assumption, the regret achieved under m = OSLB(¢)
satisfies: forall 0 € ©;, forall d >0and T > 1,

R™(T) < C2(0)1+¢)In(T)+ CiiInin(T) + K371672 + 3K5 2, (3)

where C9(0) — C(6), as § — 0%, and C; > 0.
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» OSLB(e) is computationally expensive and performs poorly in practice
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» OSLB(e) is computationally expensive and performs poorly in practice

» Computationally cheaper algorithm: POSLB
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» OSLB(e) is computationally expensive and performs poorly in practice

» Computationally cheaper algorithm: POSLB
» POSLB is inspired from the family of UCB algorithms
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» OSLB(e) is computationally expensive and performs poorly in practice

» Computationally cheaper algorithm: POSLB
» POSLB is inspired from the family of UCB algorithms
» While not optimal it is Pareto optimal :
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» OSLB(e) is computationally expensive and performs poorly in practice
» Computationally cheaper algorithm: POSLB

» POSLB is inspired from the family of UCB algorithms

» While not optimal it is Pareto optimal :

> Considering cx = Nk(T)/In(T) yields equalities in all constraints in the lower
bound LP
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Algorithm 2 POSLB

For all n > 1, select arm k(n) such that:
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Algorithm 3 POSLB

For all n > 1, select arm k(n) such that:

q(n) = bL(n)(n);
k(n) = arg max f(n) — fx(n, g(n)) (ties are broken arbitrarily)

SEQUENTIAL DECISION MAKING 71/101



Algorithm 4 POSLB

For all n > 1, select arm k(n) such that:

q(n) = bL(n)(n);
k(n) = arg max f(n) — fx(n, g(n)) (ties are broken arbitrarily)

3 Ni(mKL(G(), AT (n)) if k £ L(n)
where fi(n, g(n)) = < jek

Ni(mKL(@e(n), q(n)) if k= L(n)
and A (n) = max(q — |k — j|L, 8;(n)).
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Theorem (POSLB pulls and pareto optimality )

Under POSLB, forall § € ©, all T > 1, all 0 < ¢ < (0" — maxyk~ 0k)/2, and any
suboptimal arm k € K~

f(T)

-2
Ot 0.0°=90) + G In(In(T)) +267~.

E[N(T)] < ;

with C; > 0 a constant. Further, under POSLB, for all # € ©; and k € K—, we
have that:
E| > Ni(T)KLy(6;,X75)
lim i=ion

Al FT) =1
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Figure: (Left) The expected rewards and the scaled amount of times suboptimal arms are
played under KL-UCB and POSLB as a function of the arm. (Right) Regret under KL-UCB
and POSLB as a function of time.
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Figure: Expected regret of different algorithms as function of time for a triangular reward
function (left) and a quadratic reward function (right).
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» Lower-bound based index that efficiently exploits structure

ICAL SEQUENTIAL DE N MAKING



» Lower-bound based index that efficiently exploits structure
» Two algorithms:

ODALRIC-AMBRYM MAILLARD
HABIL : MATHEMATICS OF S AL SEQUENTIAL DE N MAKING




» Lower-bound based index that efficiently exploits structure
» Two algorithms:
» OSLB - asymptotically optimal but complex
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» Lower-bound based index that efficiently exploits structure
» Two algorithms:

» OSLB - asymptotically optimal but complex
» POSLB - Pareto-optimal algorithm inspired by the classical UCB
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» Lower-bound based index that efficiently exploits structure

» Two algorithms:
» OSLB - asymptotically optimal but complex
P> POSLB - Pareto-optimal algorithm inspired by the classical UCB
» Stepping stone for exploiting structure in generic settings, with more practical
applications
> Tentative generalization to arbitrary structure: OSSB, POSSB (Magureanu
2018, PHD).
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STRUCTURED LOWER BOUNDS

Lower bounds
Lipschitz bandits

Ranking bandits
Metric-graph of bandits
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Position in Induced Exploration

Learning to rank: Regret lower bounds and efficient algorithms R Combes, S
Magureanu, A Proutiere, C Laroche ACM SIGMETRICS Performance Evaluation
Review 43




LEARNING TO RANK : A BANDOT APPROACH

Still Alive Still Alive Somehow Still  Still Lives Still Alive Still Alive (The Special
Alive Theme from. Edition 'Still.

Still Alive BIGBANG BIGBANG Special Edition Still Alive 1

Still Alive Lisa Miskovsky Mirror's Edge Original Videogame Score
STILL ALIVE BIGBANG Special Edition 'Still Alive'

Still Alive The Crash Melodrama

Still Alive Social Distortion Hard Times And Nursery Rhymes (Deluxe
Still Alive Nocturnal Rites Grand lilusion

Still Alive Onlap. Charline Max The Awakening

till Alive Jonathan Couiltor Best. Concert. Ever




Sequential Ranking setup
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Sequential Ranking setup
> N (huge) many given articles
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NG TO RANK AS A BANDIT PI

Sequential Ranking setup
> N (huge) many given articles

» At each t =1,..., a user u; appears. Choose to display L (ordered) articles.
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JING TO RANK AS A BANDIT PR(

Sequential Ranking setup

> N (huge) many given articles
» At each t =1,..., a user u; appears. Choose to display L (ordered) articles.

» The user inspects the articles, in order, and clicks on the first interesting article

then leaves.
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NING TO RANK AS A BANDIT PRO.

Sequential Ranking setup
> N (huge) many given articles
» At each t =1,..., a user u; appears. Choose to display L (ordered) articles.
» The user inspects the articles, in order, and clicks on the first interesting article
then leaves.
» The decision maker observes which article was clicked and collects a reward.
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> Actions: all combinations of L out of N articles A = {a € Arrk}
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> Actions: all combinations of L out of N articles A = {a € Arrk}

» Feedback X, for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(6y)
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~ RANKING BAND P

> Actions: all combinations of L out of N articles A = {a € Arrk}

» Feedback X, for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(6y)

» Feedback for L displayed articles:
- the slot of the clicked article ¢
- 0 for each article before ¢, 1 for the clicked article, nothing else
Click probability on item £ in list a: 6., [T:_1(1 — 6.,).
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v

~ RANKING BANDIT P

Actions: all combinations of L out of N articles A = {a € Arrk}
Feedback X, for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(6y)
Feedback for L displayed articles:
- the slot of the clicked article ¢
- 0 for each article before ¢, 1 for the clicked article, nothing else
Click probability on item £ in list a: 6., [T:_1(1 — 6.,).
Rewards: r(¢) - usually decreasing in /.
L 4

pa(0) = > r(£)0,, H(l —05)-
i=1

(=1
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~ RANKING BANDIT SE P

> Actions: all combinations of L out of N articles A = {a € Arrk}
» Feedback X, for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(6y)

» Feedback for L displayed articles:
- the slot of the clicked article ¢
- 0 for each article before ¢, 1 for the clicked article, nothing else
Click probability on item £ in list a: 6., [T:_1(1 — 6.,).
» Rewards: r(¢) - usually decreasing in /.
L

wa(0) = r( GQZH(I

(=1

» Goal: Maximize the cumulative reward over T rounds

Ro(T)=T max fta (0) — Z tra ()

-
l m’a/_ ODALRIC-AMBRYM MAILLARD
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> The set of actions: Huge |A| = N!/(N — L)!
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> The set of actions: Huge |A| = N!/(N — L)!

» Feedback for an inspected article: Random number of observations -
depending on the rewards of articles displayed

So?
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> The set of actions: Huge |A| = N!/(N — L)!

» Feedback for an inspected article: Random number of observations -
depending on the rewards of articles displayed

So?

» The set of actions: We can exploit structure to drastically reduce the cost of
exploration
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> The set of actions: Huge |A| = N!/(N — L)!

» Feedback for an inspected article: Random number of observations -
depending on the rewards of articles displayed

So?

» The set of actions: We can exploit structure to drastically reduce the cost of
exploration

» Feedback for an inspected article: How we explore matters
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"Structure”:
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- USERS. ITEMS AND SIDE-1

"Structure”:

» Similarities between users
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"Structure”:
» Similarities between users

» Similarities between articles
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RE: USERS. | MS AND SIDE-INEC

"Structure”:
» Similarities between users
» Similarities between articles

» Shape of reward function r(/)

Different systems according to the structure that is revealed to
the decision maker
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Assume 01 > 0 > .. > Oy (item 1 is preferred over 2, etc.)
Let A; =r(i) — r(i+1), A = r(L) and N,(t) the number of times the set a of
articles is displayed until time t

Regret lower bound

If A; > A >0 forall i <L, then

e No(T) _ H3i a={L...,L-1i}}
Tooo In(T) — KL(B(6;), B(6L)) ,I;IL(l —0)

o Rg(T)_r N 0L —0;
m i gy ),.:%1 KL(B(0), B(01)
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Assume 01 > 6, > .. > Oy (item 1 is preferred over 2, etc.)

Let Aj = r(i) — r(i+1), Ay = r(L) and N,(t) the number of times the set a of
articles is displayed until time t

Regret lower bound

If r(i) =r(L) >0 forall i < L:

lim |nf N, (T) H{Hi: u={i1,...,L~1}}
T—oo In(T) KL(B(6;), B(61))

Im _In RG(T) ) 9L_0
im i oy = OO0 3 w65 500

— Suggest exploration at first slot 1.
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Still Alive

REGRET LOWER BOUNDS - EXPLAINED

b LA

Still Alive Somehow Still
Alive

Still Alive

Still Alive
STILL ALIVE
Still Alive
Still Alive
Still Alive
Still Alive

Still Alive

Still Lives it Still Alive (The
Theme from.

BIGBANG

Lisa Miskovsky

BIGBANG

The Crash

Social Distortion

Nocturnal Rites

Onlap, Charline Max

Jonathan Couitor

Special
Edition 'Still

BIGBANG Special Edition Still Alive 1

Mirror's Edge Original Vid

Special Edition "Still Alive'

Melodrama

Hard Times And Nursery Rh
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The Awakening

Best. Concert. Ever

jame Score




RANKING BANDIT LOWER BOUNL

Theorem (lower bound)

For any uniformly good algorithm 7, we have:

o RT(T)
>
lim it o (T) c().
where
CO = _inf_ > calia(6) — 1u(0))
acA
subject to:

VisL S cKU(B(6:),B(061) [ (1-6.)>1

acA,ica s<pa(i)

where p,(i) = j s.t. aj =i is the position of i in list a.

-
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O AvEre OF

Let j(t) = (ju(2),-..,jn(t)) be the indices of the items with empirical means sorted
in decreasing order and L(t) = (j1(t), .. -,j.(t)).

(1) = {1 # £(0): max{q € 0.1 KL (2).0)) < F(1)) > Dyo(0)}

upper confidence bound

= jtems with high enough upper bound to deserve being explored
= {a(t)2(t)s - je-1(t), 1, Je(t), - j—1(t)}
Algorithm 5 Position Induced Exploration(?)
Init: B(1) =0, 6;(1) =0 = b;i(1) Vi, £L(1) ={1,...,L}

For t > 1:
If £(t) =0, chooses a = L(t)
Else 42~ L(t), w.p. 1/2
a= U!(n),i ~ Uniform(£(n)) w.p. 1/2
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» Provably asymptotically optimal
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» Provably asymptotically optimal
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» Provably asymptotically optimal

» Experiment: compare against
> Slotted-(KL)UCB: top L items in order of their KL-UCB indexes.
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» Provably asymptotically optimal

» Experiment: compare against

> Slotted-(KL)UCB: top L items in order of their KL-UCB indexes.
» Ranked Bandit Algorithm: runs L independent instances of KL-UCB on each slot.
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10000, 1400;
—PIE(L) —PIE(1)
g000|| —— Slotted KL-UCB 12001 — Slotted KL-UCB
|— Slotted UCB —— Slotted UCB1
——RBA(UCB1) 1000/| — RBA(UCBH)
5 6000f % 800!
54 g
400t
2000} 200l
0 1 1 o ‘ ‘ ‘
0 2 4 6 8 0 2 4 6 8
Time %10 Time % 10°
(a) Case 1: VI, r(l) =21, (b) Case 2: VI, r(/) = 1.

Figure: Performance of PIE(1) / PIE(L) and other UCB-based algorithms. A single group of
items and users. Error bars represent the standard deviation.
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—PIE(1)
8000t — Slotted KL-UCB
—— Slotted UCB
—— RBA(KL-UCB)
60001 — Oracle Policy

40007

Abandonment

2000

o 2 4 _ 6 8 10
Time < 10°

Figure: Performance of PIE(1) on real world data.
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» We consider the Learning to Rank problem as a Bandit Optimization problem.
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» We consider the Learning to Rank problem as a Bandit Optimization problem.

» Despite the daunting number of actions, we can Learn to Rank with very low
cost.
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» We consider the Learning to Rank problem as a Bandit Optimization problem.

» Despite the daunting number of actions, we can Learn to Rank with very low
cost.

» Algorithm that optimally exploit structure.
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» We consider the Learning to Rank problem as a Bandit Optimization problem.

» Despite the daunting number of actions, we can Learn to Rank with very low
cost.

» Algorithm that optimally exploit structure.

» plus good empirical performance.
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STRUCTURED LOWER BOUNDS
Lower bounds
Lipschitz bandits
Ranking bandits

Metric-graph of bandits

ODALRIC-AMBRYM MAILLARD
HABILITATION: MATHEMATICS OF STATISTICAL SEQUENTIAL DECISION MAKING



» Bandit configurations: v = (Vap)ac.A,beB With means (11a p)ac.AbeB

» A: arms, B: users.

» Active contextual bandit: At time t, learner chooses b; € B, then a; € A.
» Regret:

Ry, T) = [Zmaxuabt ] > DL pE [N, u(T)].

a,beC,;

where C,; = {(a, by e AXB:p,p < ,u’[,}.

Definition(Uniformly spread strategy)
There exists 1 > 0 and a random variable ', with E,[[2] < 0, such that

Vbe B,VteN, Np(t)=m-t—T>.
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» Contextual bandits configuration means: (1 p)ac A beB
> Set of allowed 2-arm bandits (A = {1,2}):
K2,b

o 0

> [41,b
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» Contextual bandits configuration means: (1 p)ac A beB
> Set of allowed 2-arm bandits (A = {1,2}):
Hab

>[1,b
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» Contextual bandits configuration means: (1 p)ac A beB

> Set of allowed 2-arm bandits (A = {1,2}):
H2.p

0 > [1,b
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Bandit configurations (v € P(]0, 1])AXB with mean p € [0, 1]A><B):
D, = {y:Vb,b'eB max |fap — tap| gwbb,},
acA ’ ’ ’

for a known weight matrix w = (wp p')b breB, Symmetric, null-diagonal, with positive
entries, and satisfying wp, iy < wWp b + Wpr b
Large values: not structured. Low value: highly structured.
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Definition (Consistent strategy)

Ny p(T)™
Vv € D,,V(a,b) € C, ,Va € (0,1) _I_Iim E, {%] =0.
—00 b

Proposition (Regret lower bound)

Any uniformly spread and consistent strategy must satisfy

lim inf e )

e Ty~ )

where C3(v) = min Z naplsp st
A
neRy a,beC—

‘v’(a, b)EC_, Z kl+(,ua’b/|;ﬂl;—wb’b/)na,b/ >1.
b'eB:(a,b)eC—
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> Let w) be a matrix where all the weights are equal to A € [0, 1] except for the
zero diagonal.

» A\ = 1: no-structure, A = 0: one unique cluster.

> We recover that CJ (V) = 3, pec- }d(;i—ajpl’:) (unstructured lower bound)

» More generally:
1.0

0.9

0.8

0.7
Cz)\(”) 0.6 /
sl [
0.3 /
0.2 J
0.0 0.2 0.4 0.6 0.8 1.0
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» Explicit lower bound spanning unstructured to highly structured pbs.
> See (Saber et al., submitted) for an algorithm:

» Provably asymptotically optimal.
» Computationally cheap
> Without explicit forced exploration (still some implicit forcing).
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CONCLUSION, PERSPECTIVE
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Confidence bounds in parametric regression: Time and space uniform

v € (0.1), ]P’(Elt ENx € X [f(x) — fo(x)] > ||<p(x)||G_AlBt(5)> <6

> Quite tight (Equality everywhere, except Markov inequality and
super-martingale).

» Extends to Kernel regression similarly.

» Optimal use of it? not quite ("The end of optimism”, Lattimore et al.)
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Pick your favorite structured bandit problem
Study the problem-dependent lower bound
Each arm should be pulled some minimum number of times.
Suggests an algorithm (sometimes optimal) !
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» In Linear bandits:

» Features? Representation?
» Lower bounds ? Most confusing instances? Optimality?

» In generic structure:

» Generic algorithm (e.g. OSSB)?

» Forced exploration?

> More informative/Less conservative lower bounds?
» Better tracking of information?

» Beyond structure? No stochastic model?
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Habilitation manuscript:
"Mathematics of Statistical Sequential Learning”
https://hal.archives-ouvertes.fr/tel-02162189

Open positions:
http://odalricambrymmaillard.neowordpress.fr
/research-projets/open-positions/
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