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Eco-sustainable decision making
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I Emergency admission filtering:
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I Suggest medical consultation or treatment based on smart meters.

I Time series, hidden variables, risk-aversion.
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I Recommend drug dosage w.r.t. genome of individuals.

I Huge dimension, Gene interactions.
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I Recommend exercises that maximize learning progression

I Non-stationary rewards, few interactions
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I Recommend good practice between farms/share knowledge.

I Strong correlations, hidden variables, delayed feedback.
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I Distributed Optimization, Cognitive Radio Networks, etc.
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I Time Series, HMMs, Autoregressive models, etc.
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I Actions: List of items.
I Reward/loss: Ranking of preferred item.
I Ordering
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I Actions: (valued) Paths.
I Reward/loss: cumulative value on the path.
I Paths have edges in common.
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I Actions: x ∈ R
I Reward/loss: f (x) + ξ

I Regularity.
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Sequential optimization game
At each time t ∈ N, sample at xt ∈ X , receive yt ∈ R, where

yt = f?︸︷︷︸
target

(xt) + ξt︸︷︷︸
noise

.

Goal:Minimize cumulative regret

RT
def=

T∑
t=1

f?(?)− f?(xt) where ? ∈ Argmax f?(x).

I Actions : x ∈ X .
I Means : f?(x). Mean at x and x ′ not arbitrarily different !
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I Set of arms X

I At time t, pick Xt ∈ X , receive

Yt = f?(Xt) + ξt

where ξt is centered and further conditionally sub-Gaussian.

f? belongs to a linear function space:

FΘ =
{

fθ : x 7→ θ>ϕ(x), θ ∈ Θ
}

where Θ ∈ Rd , ϕ : X → Rd .

θ: Parameter, ϕ: Feature function.
I Unknown parameter θ? ∈ Rd .
I Best arm x? = argmaxx∈X 〈θ?, ϕ(x)〉
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I Polynomials: X = R, ϕ(x) = (1, x , x2, . . . , xd−1), Θ = B2,d (0, 1) unit
Euclidean ball of Rd .

I Bandits: X = A = {1, . . . ,A}, ϕ(a) = ea ∈ RA, Θ = [0, 1]A.

I Shortest path: X ⊂ AL (paths of length L), ϕ(a,`)(x) = I{x` = a},
Θ = [0, 1]|X |.
X ⊂ {0, 1}d , paths in graph with d edges, ϕ(x) = x , Θ ⊂ [0, 1]d mean travel
time for each edge (Combes et al. 2015).

I Contextual bandits: X = C × A, ϕ((c, a)) = (1, c, a, ca, . . . )

I Smooth function on graph: X = nodes of a graph with adjacency matrix G ,
ϕ = eigenfunctions of the Graph-Laplacian.
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I Linear space: F =
{

fθ : fθ(x) = 〈θ, ϕ(x)〉, θ ∈ Rd , θ ∈ Θ
}

.
Ex: ϕ(x) = (1, x , x2), fθ(x) = 2 + 1

2 x − 2x2, θ = (2, 1/2,−2).

I Loss : `(y , y ′) = (y−y ′)2

2
I Objective : from (xn, yn)n6N optimize

min
θ∈Θ

N∑
n=1

`
(

yn, fθ(xn)
)
.

min
θ∈Θ

N∑
n=1

(
yn − θ>ϕ(xn)

)2
. (1)
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I Any solution to (1) must satisfy

GNθ =
N∑

n=1
ϕ(xn)yn , where GN =

N∑
n=1

ϕ(xn)ϕ(xn)>(d × d matrix) .

I Matrix notations:
YN = (y1, . . . , yN)> ∈ RN ,
ΦN = (ϕ>(x1), . . . , ϕ>(xN))> (N × d matrix).

GNθ = Φ>NYN , where GN = Φ>NΦN .
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I Specific solution: θ†N = G†NΦ>NYN where G†N : pseudo-inverse of GN .

I Solutions:

ΘN = {θ ∈ Θ : GN(θ†N − θ) = 0}
= {θ†N + ker(GN)} ∩Θ .

I When Θ = Rd and GN is invertible, G†N = G−1
N ,

(Ordinary Least-squares) θN = G−1
N Φ>NYN .
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.

I Error control :

∀x ∈ X , |f?(x)− fθN (x)| 6 ‖θ? − θN‖A‖ϕ(x)‖A−1 . (2)

for each invertible matrix A, where ‖x‖A =
√

xT Ax .

I Matrix A = GN has natural interpretation: for θ ∈ ΘN (solution),

N∑
n=1

(f?(xn)−fθ(xn))2=
N∑

n=1
(θ?−θ)>ϕ(xn)ϕ(xn)>(θ?−θ) = ‖θ?−θ‖2

GN .

(Over-fitting is ∀θ ∈ ΘN , ‖θ? − θ‖GN = 0).

Study ‖θ? − θN‖GN

Odalric-Ambrym Maillard
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When GN is not invertible, introduce regularization parameter λ ∈ R+
? .

I Regularized solution

θN,λ = G−1
N,λΦ>NYN where GN,λ = Φ>NΦN + λId .

I Bayesian interpretation:
For Prior θ ∼ N (0,Σ), i.i.d. setup, Gaussian noise (ξn ∼ N (0, σ2)),
Posterior : f̂N(x)|x , x1, y1, . . . , xN , , yN ∼ N (µN(x), σ2

N(x)) where

µN(x) = ϕ(x)>(Φ>NΦN + σ2Σ−1)−1Φ>NYN

σ2
N(x) = σ2ϕ(x)>(Φ>NΦN + σ2Σ−1)−1ϕ(x) .

I Prior Σ = σ2

λ Id gives regularized least-squares µN(x) = ϕ(x)>θN,λ.
I Interpret λ as prior value on variance.

Study ‖θ? − θN,λ‖GN,λ
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Standard regression noisr assumptions
I iid samples (xt)t are i.i.d., (ξt)t are i.i.d., independent from (xt)t .

I sub-Gaussian noise: For some σ2>0,

∀t ∈ N,∀γ ∈ R, lnE
[

exp(γξt)
]
6
γ2σ2

2 .

I = for N (0, σ2) [Exercice]

Sequential regression noise assumption
I Predictable sequence (not iid): xt is Ht−1-measurable and yt is Ht-measurable.
Ht : history.

I Conditionally sub-Gaussian noise: For some σ2>0,

∀t ∈ N,∀γ ∈ R, lnE
[

exp(γξt)
∣∣∣Ht−1

]
6
γ2σ2

2 .
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[

exp(γξt)
]
6
γ2σ2

2 .

I = for N (0, σ2) [Exercice]

Sequential regression noise assumption
I Predictable sequence (not iid): xt is Ht−1-measurable and yt is Ht-measurable.
Ht : history.

I Conditionally sub-Gaussian noise: For some σ2>0,

∀t ∈ N,∀γ ∈ R, lnE
[

exp(γξt)
∣∣∣Ht−1

]
6
γ2σ2

2 .
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I Least-squares (regularized) estimate of θ?:

θt,λ = [Φ>t Φt + λId︸ ︷︷ ︸
Gt,λ

]−1Φ>t Yt .

I Choose Xt+1 = argmaxx∈X 〈θt,λ, ϕ(x)〉 .

=⇒ Exploitation only !
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Optimism in Face of Uncertainty - Linear

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári ”Improved Algorithms for
Linear Stochastic Bandits”

NIPS, 2011.
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Xt+1 = argmax
x∈X

max
{

fθ(x) : θ is plausible
}

I Plausible: Ct(δ) =
{
θ : ‖θ − θt,λ‖Gt,λ 6 Bt(δ)

)
}

I Confidence ellipsoid such that P(θ? ∈ Ct(δ)) > 1− δ.

I Explicit solution
Xt+1 = argmax

x∈X
〈θt,λ, ϕ(x)〉+ Bt(δ)‖ϕ(x)‖G−1

t,λ
.

=⇒ UCB-style exploitation and exploitation trade-off!
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How to build Bt(δ) ?

I (Dani, Kakade 2008) Bt(δ) =
√

max(128d ln(t) ln(t2/δ), 64/9 ln2(t2/δ)
I (Rusmevichientong, Tsitsiklis 2009)

Bt(δ) = C
√

ln(t)
√

d ln
(

36 maxx ‖ϕ(x)‖2

λ t
)

+ ln(1/δ)

I OFUL (Abbasi et al, 2011)

Bt(δ) =
√
λ‖θ?‖2 +

√
2 ln

(
det(GN+λI)1/2

δλd/2

)
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|fθ?(x)− fθN,λ(x)| 6 ‖θ? − θN,λ‖GN,λ‖ϕ(x)‖G−1
N,λ

Decomposition lemma

‖θ? − θN,λ‖GN,λ 6
√
λ‖θ?‖2 + ‖Φ>NEN‖G−1

N,λ

where EN = (ξ1, . . . , ξN)> ∈ RN .

Key observation: sum of conditionally centered vector variables

Φ>NEN =
N∑

n=1
ϕ(xn)ξn ∈ Rd .

=⇒ Concentration inequality for vectors !

Make use of self-normalized concentration inequalities.
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θ? − θN,λ = θ? − G−1
N,λΦ>NYN

= θ? − G−1
N,λΦ>N(ΦNθ

? + EN)

= (I − G−1
N,λGN)θ? − G−1

N,λΦ>NEN

= G−1
N,λ(GN,λ − GN)θ? − G−1

N,λΦ>NEN .

= λG−1
N,λθ

?︸ ︷︷ ︸
(1)

−G−1
N,λΦ>NEN︸ ︷︷ ︸

(2)

.

(1) ‖λG−1
N,λθ

?‖GN,λ = λ
√
θ?>G−1

N,λGN,λG−1
N,λθ

?

6
λ√

eigmin(GN,λ)
‖θ?‖2 6

√
λ‖θ?‖2

(2) ‖G−1
N,λΦ>NEN‖GN,λ = ‖Φ>NEN‖G−1

N,λ
.
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What it means to be self-normalized ?
In dimension D = 1, λ = 0, GN =

∑N
n=1 ϕ(xn)2

‖Φ>NEN‖G−1
N,λ

= |
∑N

n=1 ϕ(xn)ξn|√∑N
n=1 ϕ(xn)2

= |
∑N

n=1 Zn|√∑N
n=1 σ

2
n

Basic self-normalized (Gaussian) concentration inequality
For fixed t, Z1, . . . ,Zt , independent, Zn ∼ N (0, σ2

n), δ ∈ (0, 1]

P
(∣∣∣∣ ∑t

n=1 Zn√∑t
n=1 σ

2
n

∣∣∣∣ > √
2 ln(2/δ)

)
6 δ
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Basic (Gaussian) concentration inequality For fixed t, Z1, . . . ,Zt i.i.d.
N (0, σ2), δ ∈ (0, 1]

P
(1

t

t∑
n=1

Zn >

√
2σ2 ln(1/δ)

t

)
6 δ

Likewise, using the Chernoff-method, we can show for fixed t, Z1, . . . ,Zt ,
independent, Zn ∼ N (0, σ2

n), δ ∈ (0, 1]

P
( t∑

n=1
Zn >

√√√√2
t∑

n=1
σ2

n ln(1/δ)
)
6 δ

Thus

P
( ∑t

n=1 Zn√∑t
n=1 σ

2
n

>
√

2 ln(1/δ)
)
6 δ
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Extension to dimension d by the Laplace method (De la Peña et al., 2004).

Let Z ∈ Rd random vector , B a d × d random matrix such that

(Sub-Gaussian) ∀γ ∈ Rd , lnE[exp(γ>Z − 1
2γ
>Bγ)] 6 0.

Then for any deterministic d × d matrix C , w.p. > 1− δ,

‖Z‖(B+C)−1 6

√
2 ln

(det(B + C)1/2

δ det(C)1/2

)
.

I Application: Z =
∑N

n=1 ϕ(xn)ξn, B = GN,0 C = λId .
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1) Quantity

Mγ
t = exp

(
〈γ,Z 〉 − 1

2‖λ‖
2
B

)
is a super martingale such that for all t, E[Mγ

t ] 6 1.

2) Choice of γ? Replace optimization with integration (Laplace) !
Introduce distribution Λ ∼ N (0,C−1), and MΛ

t .
a) E[MΛ

t ] 6 1
b) E[MΛ

t ] = E[E[MΛ
t |F∞]] and

E[MΛ
t |F∞] =

∫
Rd

exp
(
〈γ,Z 〉 − 1

2‖λ‖
2
B

)
f (λ)dλ

where f denotes the pdf of Λ ∼ N (0,C−1).
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3) Direct calculations show that

E[MΛ
t |F∞] =

( det(C)
det(B + C)

)1/2
exp

(1
2‖Z‖

2
(B+C)−1

)

Then E
[( det(C)

det(B + C)

)1/2
exp

(1
2‖Z‖

2
(B+C)−1

)]
6 1

4) Markov inequality yields:

P
(
‖Z‖2

(B+C)−1 > 2 ln
(det(B + C)1/2

δ det(B)1/2

))
= P

(
exp

(1
2‖Z‖

2
(B+C)−1

)
>

det(B + C)1/2

δ det(B)1/2

)
6 δ .
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I Application: Z =
∑N

n=1 ϕ(xn)ξn, B = GN,0 C = λId .

P
(
‖Φ>NEN‖G−1

N,λ
> 2 ln

(det(GN,λ)1/2

δλd/2

))
6 δ .

I Time-uniform bound (∀N): handles random stopping time N.
I Property:

E[MΛ
N ] = E[lim inf

m→∞
MΛ

min(N,m)] 6 lim inf
m→∞

E[MΛ
min(N,m)] 6 1.

=⇒ Confidence ellipsoid on θ?:

Ct(δ) =
{
θ : ‖θ − θt,λ‖Gt,λ 6

√
λ‖θ?‖2 +

√
2 ln

(det(Gt +λI)1/2

δλd/2

)}
,
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Information gain γT

Log-determinant Lemma

γT = ln
(det(GT ,λ)

det(λId )

)
=

T∑
t=1

ln
(
1 + ‖ϕ(xt)‖2

G−1
t−1,λ

)

I det(λId ): volume before observing data; det(GT ,λ): volume after observing
x1, . . . xt .

I Captures how much the ”volume” of information is modified by samples
x1, . . . xt .

I γT = O(d ln(T )) for d-dimensional linear space.
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det(Gn,λ) = det(Gn−1,λ + ϕ(xn)ϕ(xn)>)

= det(Gn−1,λ) det
(

I + G−1/2
n−1,λ)ϕ(xn)

(
G−1/2

n−1,λ)ϕ(xn)
)>)

= det(Gn−1,λ)
(
1 + ‖ϕ(xn)|‖2

G−1
n−1,λ

)
= det(λI)

n∏
t=1

(
1 + ‖ϕ(xt)|‖2

G−1
t−1,λ

)
Thus,

ln
(det(Gn,λ)

λd

)
=

n∑
t=1

ln
(
1 + ‖ϕ(xt)|‖2

G−1
t−1,λ

)



.

. We have good confidence bounds: let us exploit them!

. Simplest approach:

Xt+1 = argmax
x∈X

max{〈θ, ϕ(x)〉 : θ ∈ Ct(δ)} .

= argmax
x∈X

f +
t (x)

Regret
If f?(x) ∈ [−1, 1] for all x , then w.p. higher than 1− δ,

RT = O
(√

TγT
(
‖θ?‖2 + σ

√
2 ln(1/δ) + 2γT

))
. Is this optimal way of exploiting linear structure?
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Instantaneous regret rt (note: rt 6 2)

rt = f?(x?)− f?(xt)
6 f +

t−1(xt)− f?(xt) with high probability
6 |f +

t−1(xt)− fλ,t−1(xt)|+ |fλ,t−1(xt)− f?(xt)|
6 2‖ϕ(xt)‖G−1

t,λ
Bt−1(δ) .

Thus, we deduce that with probability higher than 1− δ:

RT =
T∑

t=1
rt 6

T∑
t=1

2 min{‖ϕ(xt)‖G−1
t,λ

Bt−1(δ), 1}

6 2BT (δ)
T∑

t=1
min{‖ϕ(xt)‖G−1

t,λ
, 1}

6 2BT (δ)

√√√√T
T∑

t=1
min{‖ϕ(xt)‖2

G−1
t,λ
, 1} .

We conclude remarking that min{A, 1} 6 ln(1+A)
ln(2) for all A > 0.



Thompson in Sampling for Linear - Bandits

Shipra Agrawal, Navin Goyal ”Thompson Sampling for Contextual Bandits with
Linear Payoffs”

arXiv:1209.3352, 2014.
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I Bayesian model:

yt = xT
t θ + εt , θ ∼ N (0, κ2Id ), εt ∼ N (0, σ2).

Explicit posterior: p(θ|x1, y1, . . . , xt , yt) = N (θ̂(t),Σt).

I Thompson Sampling

θ̃(t) ∼ N (θ̂(t),Σt),
xt+1 = argmax

x∈Dt+1

xT θ̃(t).

[Li et al. 12],[Agrawal & Goyal 13]
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G = (V, E) graph with set of notes V = {1, . . . ,N}, and edges E ⊂ V × V.

I W = (wi ,j)i ,j Weight matrix (non-negative weights)
I D = Diag((

∑
j wi ,j)i ) Degree matrix

I L = D−W graph Laplacian matrix
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A graph function is seen as a vector f ∈ RN assigning values to nodes.

f >Lf = 1
2
∑

i ,j6N
wi ,j(fi − fj)2 .

Properties:

I L is symmetric, positive, semi-definite.
I Smallest eigenvalue is 0, corresponding vector 1N
I Eigenvalues : 0 = λ1 6 λ2 6 . . . 6 λN
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Let L = Q>ΛQ where

I Λ: N × N diagonal matrix with eigenvalues of L
I Q: N × N matrix chose columns are eigenvectors of L.

Any graph-function f decomposes as f = Qα form some α, that is
I f (i) =

∑
j∈V αjQi ,j = 〈α, q(i)〉 where q(i) = (Qi ,j)j is i th eigenvector.

I Then, f >Lf =
∑

i∈V λiα
2
i = ‖α‖Λ

def= ‖f ‖G
=⇒ Linear space induced by the Graph:

FG = {f : f (x) = 〈α, q(x)〉, ‖α‖Λ 6 1}

Low-norm ‖f ‖G means:
I (fi − fj)2 is small if wi ,j is large
I similar value between neighbor nodes.
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Further references for bandits on graphs:
I Michal Valko, Rémi Munos, Branislav Kveton, Tomás Kocák: Spectral Bandits

for Smooth Graph Functions, in International Conference on Machine Learning
(ICML 2014).

I Alexandra Carpentier, Michal Valko: Revealing graph bandits for maximizing
local influence, in International Conference on Artificial Intelligence and
Statistics (AISTATS 2016).
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.

Let k be a kernel function (continuous, symmetric positive definite) on a compact X
with positive finite Borel measure µ.
There exists an at most countable sequence (σi , ψi )i∈N? where σi > 0,
limi→∞ σi = 0 and {ψi} form an orthonormal basis of L2,µ(X ), such that

k(x , y) =
∞∑

j=1
σjψj(x)ψj(y ′) and ‖f ‖2

K =
∞∑

j=1

〈f , ψj〉2L2,µ

σj

Let ϕi = √σiψi (hence ‖ϕi‖L2 = √σi , ‖ϕi‖K = 1.)

If f =
∑

i θiϕi , then ‖f ‖2
K =

∑
i θ

2
i .

Similar to parametric regression except with infinite parameter.
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Let k be a kernel function.
In the parametric case, we built θλ,t , then fλ,t(x) = 〈θλ,t , ϕ(x)〉.
After observing Yt = (y1, . . . , yt)> ∈ Rt , we now build directly:

(Kernel estimate) fλ,t(x) = kt(x)>(Kt + λIt)−1Yt ,

where

I kt(x) = (k(x , xt′))t′6t ∈ Rt ,
I Kt = (k(xs , xs′))s,s′6t ∈ Rt×t ,

for a parameter λ ∈ R.
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Theorem (Durand & M. 2017, Kernel estimation error)
∀δ∈ [0, 1], with probability higher than 1−δ, it holds simultaneously over all x ∈X
and t>0,

|f?(x)−fλ,t(x)|6
√

kλ,t(x , x)
[
‖f?‖k + σ√

λ

√
2 ln(1/δ) + 2γt(λ)

]
,

where

I kλ,t(x , x)= k(x , x)− kt(x)>(Kt + λIt)−1kt(x): posterior variance.
I γt(λ)= 1

2
∑t

t′=1ln
(
1+ 1

λkλ,t′−1(xt′ , xt′)
)

: information gain.
I ‖f?‖k : Reproducing Kernel Hilbert Space norm.
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k(x , x ′) Captures γT
〈x , x ′〉 ”Linear functions” O(d ln(T ))

exp(−‖x−x ′‖2

2`2 ) ”Smooth functions” O(ln(T )d+1)
. . . . . . . . .

Many kernels, for different properties of the signal
(graph-smoothness, periodic, change points, etc.)
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Minimize the regret: RT =
T∑

t=1
f?(?)− f?(xt).

Kernel-UCB
xt ∈argmax

x∈X
f +
t (x) where f +

t (x)= fλ,t−1(x)+
√

kλ,t−1(x , x)Bλ,t−1(δ) .

Kernel-TS (on discrete set X ⊂ X )
xt ∈ argmax

x∈X
f̃t(x) where f̃t ∼ N (f̂t−1, Σ̂t−1) with

f̂t−1 = (fλ,t−1(x))x∈X, Σ̂t−1 =
(
kλ,t−1(x , x ′)Bλ,t−1(δ)2)

x ,x ′∈X.
More info in (Durand et al., 2018, JMLR)
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Set of optimal arms for ν = (νa)a∈A: A?(ν) = Argmaxa∈Aµa(ν).
Definition (Uniformly Good strategies)
A bandit strategy is uniformly-good on D if

∀ν = (νa)a∈A ∈ D,∀a /∈ A?(ν), E[NT (a)] = o(Tα) for all α ∈ (0, 1].

Theorem ((Lai, Robbins 85) “Price for being uniformly-good”)
Any uniformly good strategy on D = BernA must satisfy

∀a /∈ A?(ν) lim inf
T→∞

Eν [NT (a)]
log(T ) >

1
kl(µa(ν), µ?(ν)) .

Main tool: Change of measure

(Probability) ∀Ω,∀c ∈ R, Pν
(

Ω ∩
{

log
(dν

d ν̃ (X )
)
6 c

})
6 exp(c)Pν̃

(
Ω
)
.

(Expectation) Eν
[

log
(dν

d ν̃ (X )
)]

> sup
g :X→[0,1]

kl
(
Eν [g(X )],Eν̃ [g(X )]

)
.
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Consider θ, θ′ ∈ Θ:

L̂T =
T∑

s=1
ln
(νθ′As

(Ys)
νθAs

(Ys)

)
=
∑
a∈A

T∑
s=1

I{As = a} ln
(
νθ′a (Ys)
νθa (Ys)

)

For any event Ω it holds (Change of measure)

Pθ′ [Ω] = Eθ[exp(L̂T )I{Ω}] = Eθ
[

exp(L̂T )|Ω
]
Pθ[Ω]

Jensen
> exp

(
Eθ[L̂T |Ω]

)
Pθ[Ω] = exp

(Eθ[L̂T I{Ω}]
Pθ[Ω]

)
Pθ[Ω] ,

Reorganizing the terms, we get −Eθ[L̂T I{Ω}] > Pθ[Ω] ln
( Pθ[Ω]
Pθ′ [Ω]

)
. Likewise for

the complement Ωc . Summing up the terms, we obtain
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)
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the complement Ωc . Summing up the terms, we obtain

−Eθ[L̂T ] =
∑
a∈A

Eθ[NT (a)]KL(θa, θ
′
a)

> Pθ[Ω] ln
( Pθ[Ω]
Pθ′ [Ω]

)
+ (1− Pθ[Ω]) ln

( 1− Pθ[Ω]
1− Pθ′ [Ω]

)
.
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Consider θ, θ′ ∈ Θ:

L̂T =
T∑

s=1
ln
(νθ′As

(Ys)
νθAs

(Ys)

)
=
∑
a∈A

T∑
s=1

I{As = a} ln
(
νθ′a (Ys)
νθa (Ys)

)

For any event Ω it holds (Change of measure)

Pθ′ [Ω] = Eθ[exp(L̂T )I{Ω}] = Eθ
[

exp(L̂T )|Ω
]
Pθ[Ω]

Jensen
> exp

(
Eθ[L̂T |Ω]

)
Pθ[Ω] = exp

(Eθ[L̂T I{Ω}]
Pθ[Ω]

)
Pθ[Ω] ,

Reorganizing the terms, we get −Eθ[L̂T I{Ω}] > Pθ[Ω] ln
( Pθ[Ω]
Pθ′ [Ω]

)
. Likewise for

the complement Ωc . Summing up the terms, we obtain

∑
a∈A

Eθ[NT (a)]KL(θa, θ
′
a) > kl(Pθ[Ω],Pθ′ [Ω])
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Hence for all suboptimal arm a 6=?θ,

Eθ[NT (a)] > sup
Ω,θ′

kl(Pθ[Ω],Pθ̃[Ω])−
∑

a′ 6=aKL(θa′ , θ
′
a′)Eθ[NT (a′)]

KL(θa, θ′a) .

Choose θ′ such that a is optimal. Let Ω = {NT (a) > Tα}.
I Pθ[Ω]6 Eθ[NT (a)]T−α = o(1) (Consistency)
I
∑

a′∈ANT (a′) = T (Construction)

Thus kl(Pθ[Ω],Pθ̃[Ω])' ln
(

1
Pθ̃(NT (a)6Tα)

)
> ln

(
T−Tα∑

a′ 6=aEθ̃[NT (a′)]

)
' ln(T ).

I No constraint on θ′a′ for a′ 6= a : θ′a′ = θa′ kills the blue terms.

lim inf
T→∞

Eθ[NT (a)]
ln(T ) >

1− 0
inf θ̃a
{KL(θa, θ′a) : µ′a>µ?θ}
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. Insight from lower bound: Any uniformly-good strategy on D must satisfy:

∀a /∈A?(ν), lim inf
T

E[NT (a)]
log(T ) >sup

{ 1
KL(νa, ν̃a): ν̃=(ν1, . . . , ν̃a, . . . , νA),A?(ν̃)={a}︸ ︷︷ ︸

most confusing (unstructured)

}

. KL-UCB plays arms not pulled enough for being uniformly-good :

at+1 ∈ argmax
a∈A

max
{
Eν̃a [X ] : NT (a)6 log(T )

KL(ν̂t,a, ν̃a) , ν̃ most confusing for a
}

Play an arm in order to
rule-out a most confusing instance

(Selects one causing maximal regret if not played.)

. Different from “expecting the best reward in the best world”: testing.
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Following the same proof as for the fundamental Lemma one can obtain the
following generalization:

Lemma (D-constrained regret lower bound)
Let D be any set of bandit configurations and ν ∈ D. Then any uniformly-good
strategy on D must incur a regret

lim inf
T→∞

RT ,ν
ln(T ) > inf

{∑
a∈A

ca(µ?(ν)− µa(ν)) :

∀a∈A, ca>0, inf
ν′∈D̃(ν)

∑
a∈A

caKL(νa, ν
′
a) > 1

}
.

where we introduced the set of maximally confusing distributions
D̃(ν) =

{
ν ′ ∈ D : A?(ν ′) ∩ A?(ν) = ∅,∀a ∈ A?(ν), KL(νa, ν

′
a) = 0

}
.

I Solution to an optimization problem!
I Specialization to the multi-armed bandit setup of an even more general result

from Graves&Lai, 97 (extending Agrawal 89).
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Using similar steps as for unstructured lower bounds, we get
∀a /∈ A?(ν), ∀ν ′ ∈ D s.t. A?(ν ′) = {a}

lim inf
T

∑
a′∈A E[NT (a′)]KL(νa′ , ν

′
a′)

ln(T ) > lim inf
T

ln
(

T−Tα
)

ln(T ) −
ln
(∑

a′ 6=a Eν′ [NT (a′)]
)

ln(T ) ,

By uniformly-good assumption, it must be that B = 0, hence

lim inf
T

∑
a′∈A

E[NT (a′)]
ln(T ) KL(νa′ , ν

′
a′) =

∑
a′∈A

(
lim inf

T

E[NT (a′)]
ln(T )

)
KL(νa′ , ν

′
a′) > 1 .

This holds in particular choosing ν ′ such that ∀a′ ∈ A?(ν), KL(νa′ , ν
′
a′) = 0. We

conclude by remarking that

lim inf
T→∞

RT
ln(T ) =

∑
a∈A

(
lim inf
T→∞

E[NT (a)]
ln(T )

)
︸ ︷︷ ︸

ca

(µ?(ν)− µa(ν)) .
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What is the number of times a sub-optimal arm needs to be pulled?
The fundamental change of measure argument plus a simple reordering gives

Eν [NT (a)]> sup
ν′∈D

sup
Ω

kl
(
Pν̃[Ω],Pν [Ω]

)
−

∑
a′∈A\{a}

Eν [NT (a′)]KL(νa′ , ν
′
a′)

KL(νa, ν ′a) .

This motivates the following definition:

Definition (Asymptotic price for uniformly-good strategies)
For ν ∈ D, a /∈ A?(ν), the asymptotic price to pay on arm a for being
uniformly-good on D is

nT (a, ν,D) = sup
ν′∈D:a∈A?(ν)

ln(T )−
∑

a′∈A\{a} Eν [NT (a′)]KL(νa′ , ν
′
a′)

KL(νa, ν ′a) .
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. No structure (most confusing obtained without changing other arms):

Eν [NT (a)] > sup
ν̃∈D:A?(ν̃)={a}

{ ln(T )
KL(νa, ν̃a): ν̃=(ν1, . . . , ν̃a, . . . , νA)

}

= ln(T )
KD(νa, µ?(ν)) .

. Structure (most confusing instance requires changing other arms):

Eν [NT (a)] > sup
ν̃∈D:A?(ν̃)={a}

{ln(T )−
∑

a′∈A\{a} Eν [NT (a′)]KL(νa′ , ν̃a′)
KL(νa, ν̃a)

}
.

How to adapt bandit strategy to handle such structure (ongoing research)?
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(Collections) (A, (Θa)a∈A, (Ya)a∈A, (νa)a∈A, (µa)a∈A)
(Structure) Θ ⊂

∏
a∈A

Θa

(Parameter) θ ∈ Θ

Finite set A. For each a ∈ A:

I Parameter space Θa.
I Observation space Ya.
I Distribution of observations νa : Θa → P(Ya)
I Reward: µa : Θ→ R ( Θ and not Θa !)
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I Classical Bernoulli MAB: A = {1, . . . ,A}, Θa = [0, 1], Ya = {0, 1},
νa(θa) = Bern(θa), Θ = [0, 1]A (unstructured) and µa(θ) = θa.

I Linear bandits: A ⊂ Rd , Θa = {〈α, a〉 : α ∈ Rd}, Ya = R, νa(θa) = N (θa, 1),
Θ = {θ = (〈α, a〉)a∈A, α ∈ Rd}, µa(θ) = θa.

I Lipschitz bandits: A ⊂ X , Θa ⊂ R, Ya = R, νa(θa) = N (θa, 1),
Θ = {θ : maxa,a′∈X

|θa−θa′ |
`(a,a′) 6 1}, µa(θ) = θa.

I Combinatorial semi-bandit: A ⊂ {0, 1}d , Θa ⊂ Rd , Ya = R,
νa(θa) = N (θa, Id ), Θ = {θ : θa =(α1a1, . . . , αd ad ), α∈Rd}, µa(θ) = 〈θa, 1〉.

I Ranking bandits: A = {a ∈ ArrL
N}, Θa = [0, 1]L, Ya = {0, 1},

νa(θa) = Fct
(

(Bern(θa`))`6L
)

, Θ = {θ : θa = (αa`)`6L, α ∈ [0, 1]N},
µa(θ) =

∑L
`=1 r(`)θa`

∏`
i=1(1− θai ).
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Theorem (Agrawal 1989)
Assume Θ is discrete, ?(θ) = Argmaxa∈A µa(θ) is unique. Then for any uniformly
good strategy,

lim inf
T→∞

RT (θ)
ln(T ) > C(θ) where

C(θ) = min
{ ∑

∈A\?(θ) ηa(µ?(θ)− µa(θ))
infλ∈Λ(θ)

∑
a∈A\?(θ) ηaKL

(
νa(θa), νa(λa)

) : η ∈ P(A\?(θ))
}

with Λ(θ)=
{
λ∈Θ: ?(θ) 6=?(λ), and KL(νa(θa), νa(λa))=0 for a =?(θ)

}
.

I Confusing parameters statistically indistinguishable from θ when playing only
?(θ).
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Average          rewards 

Arms 

0 1 

I The decision maker is given a constant L
I Each k ∈ K, is assigned a fixed and known coordinate xk ∈ (0, 1)
I Then : ΘL = {θ ∈ (0, 1)K : |θi − θj | 6 L|xi − xj |, ∀i , j 6 K}
I Our goal is to exploit this additional information in order to reduce the

achievable regret, relative to that of the classic setting
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When {xk : k ∈ K} = (0, 1) an efficient algorithm must perform two task:

I Adaptive discretization (from continuous X to discrete X)?
I Efficient statistical testing:

I Correctly identify the suboptimal arms by optimally exploiting past observations
and structure

I Perform this task optimally: regret lower bounds? algorithms matching this limit?
(Magureanu et al., COLT 2014)
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Average          rewards 

Arms 

0 1 k

Let us define the most confusing bad parameter λk of an arm k:

λk
j = max(θj , θ

∗ − L× |xj − xk |),∀j ∈ K
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Theorem (Lower bound)
For all θ ∈ ΘL and uniformly good algorithms π, we have:

lim inf
T→∞

Rπ(T )
ln(T ) > C(θ)

where C(θ) is the minimal value of the following optimization problem:
min

ck>0;k∈K−

∑
k∈K−

ck(θ∗ − θk)

subject to:
∑

k′∈K−
ck′KL(θk′ , λ

k
θ∗,k′) > 1, ∀k ∈ K−

I Follows result by Graves, Todd L., and Tze Leung Lai. ”Asymptotically efficient
adaptive choice of control laws in controlled markov chains.” SIAM journal on
control and optimization 35.3 (1997): 715-743
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Two algorithms are proposed:

I OSLB :
I Asymptotically optimal
I Enforces exploration as dictated by the LP in the lower bound
I Computationally complex and performs poorly numerically

I POSLB:
I Asymptotically Pareto-optimal - provably exploits the structure efficiently
I Computationally light and work well numerically
I Related to the UCB family of algorithms
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I Both algorithms make use of the following index:

bk(n) = sup
{

q ∈ (θ̂k(n), 1) :
∑
j∈K

Nj(n)KL+(θ̂j(n), λq,k
j ) 6 f (n)

}

where f (n) = ln(n) + 3K ln ln(n) and KL+(x , y) = KL(x , y) if x < y , and 0
otherwise
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I At each round, OSLB(ε) computes ĉ(n) = c(θ̂(n)) - the solution to the LP in
the lower bound with θ replaced by the empirical mean θ̂(n)

I Let L(n) = arg maxk θ̂k(n) be the leader at round n
I Let k(n) = arg mink Nk(n) be the least played arm up to time n
I Let k(n) = arg min{Nk(n) : k : ĉk(n) > Nk(n)/ ln(n)} be the least played arm

among the arms played insufficiently many times
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Algorithm 1 OSLB(ε)

For all n ≥ 1, select arm k(n) such that:
If θ̂?(n) > maxk 6=L(n) bk(n), then k(n) = L(n);
Else If Nk(n)(n) < ε

K Nk(n)(n), then k(n) = k(n); (Forced Exploration)
Else k(n) = k(n).
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Assumption

I The solution of the LP in the lower bound is unique.

Theorem (asymptotic optimality)

For all ε > 0, under the above assumption, the regret achieved under π = OSLB(ε)
satisfies: for all θ ∈ ΘL, for all δ > 0 and T ≥ 1,

Rπ(T ) 6 C δ(θ)(1 + ε) ln(T ) + C1 ln ln(T ) + K 3ε−1δ−2 + 3Kδ−2, (3)

where C δ(θ)→ C(θ), as δ → 0+, and C1 > 0.
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I OSLB(ε) is computationally expensive and performs poorly in practice
I Computationally cheaper algorithm: POSLB
I POSLB is inspired from the family of UCB algorithms
I While not optimal it is Pareto optimal :

I Considering ck = Nk(T )/ ln(T ) yields equalities in all constraints in the lower
bound LP
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Algorithm 2 POSLB

For all n ≥ 1, select arm k(n) such that:

q(n) = bL(n)(n);
k(n) = arg max

k
f (n)− fk(n, q(n)) (ties are broken arbitrarily)

where fk(n, q(n)) =


∑

j∈K
Nj(n)KL(θ̂j(n), λq(n),k

j (n)) if k 6= L(n)

Nk(n)KL(θ̂k(n), q(n)) if k = L(n)
.

and λq,k
j (n) = max(q − |k − j |L, θ̂j(n)).
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Theorem (POSLB pulls and pareto optimality )

Under POSLB, for all θ ∈ ΘL, all T > 1, all 0 < δ < (θ? −maxk 6=k? θk)/2, and any
suboptimal arm k ∈ K−:

E[Nk(T )] 6 f (T )
I(θk + δ, θ∗ − δ) + C1 ln(ln(T )) + 2δ−2.

with C1 > 0 a constant. Further, under POSLB, for all θ ∈ ΘL and k ∈ K−, we
have that:

lim
T→∞

E
[ ∑

i∈K−
Ni (T )KL+(θi , λ

θ∗,k
i )

]
f (T ) = 1.
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Figure: (Left) The expected rewards and the scaled amount of times suboptimal arms are
played under KL-UCB and POSLB as a function of the arm. (Right) Regret under KL-UCB
and POSLB as a function of time.
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I Lower-bound based index that efficiently exploits structure

I Two algorithms:
I OSLB - asymptotically optimal but complex
I POSLB - Pareto-optimal algorithm inspired by the classical UCB

I Stepping stone for exploiting structure in generic settings, with more practical
applications

I Tentative generalization to arbitrary structure: OSSB, POSSB (Magureanu
2018, PHD).
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Sequential Ranking setup

I N (huge) many given articles
I At each t = 1, . . . , a user ut appears. Choose to display L (ordered) articles.
I The user inspects the articles, in order, and clicks on the first interesting article

then leaves.
I The decision maker observes which article was clicked and collects a reward.
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I Actions: all combinations of L out of N articles A = {a ∈ ArrL
N}

I Feedback Xk for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(θk)

I Feedback for L displayed articles:
- the slot of the clicked article `
- 0 for each article before `, 1 for the clicked article, nothing else
Click probability on item ` in list a: θa`

∏`
i=1(1− θai ).

I Rewards: r(`) - usually decreasing in `.

µa(θ) =
L∑
`=1

r(`)θa`
∏̀
i=1

(1− θai ) .

I Goal: Maximize the cumulative reward over T rounds

Rθ(T ) = T max
a
µa(θ)−

T∑
t=1

µat (θ)

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making 79/101

Ranking bandit setup



.

I Actions: all combinations of L out of N articles A = {a ∈ ArrL
N}

I Feedback Xk for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(θk)

I Feedback for L displayed articles:
- the slot of the clicked article `
- 0 for each article before `, 1 for the clicked article, nothing else
Click probability on item ` in list a: θa`

∏`
i=1(1− θai ).

I Rewards: r(`) - usually decreasing in `.

µa(θ) =
L∑
`=1

r(`)θa`
∏̀
i=1

(1− θai ) .

I Goal: Maximize the cumulative reward over T rounds

Rθ(T ) = T max
a
µa(θ)−

T∑
t=1

µat (θ)

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making 79/101

Ranking bandit setup



.

I Actions: all combinations of L out of N articles A = {a ∈ ArrL
N}

I Feedback Xk for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(θk)

I Feedback for L displayed articles:
- the slot of the clicked article `
- 0 for each article before `, 1 for the clicked article, nothing else
Click probability on item ` in list a: θa`

∏`
i=1(1− θai ).

I Rewards: r(`) - usually decreasing in `.

µa(θ) =
L∑
`=1

r(`)θa`
∏̀
i=1

(1− θai ) .

I Goal: Maximize the cumulative reward over T rounds

Rθ(T ) = T max
a
µa(θ)−

T∑
t=1

µat (θ)

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making 79/101

Ranking bandit setup



.

I Actions: all combinations of L out of N articles A = {a ∈ ArrL
N}

I Feedback Xk for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(θk)

I Feedback for L displayed articles:
- the slot of the clicked article `
- 0 for each article before `, 1 for the clicked article, nothing else
Click probability on item ` in list a: θa`

∏`
i=1(1− θai ).

I Rewards: r(`) - usually decreasing in `.

µa(θ) =
L∑
`=1

r(`)θa`
∏̀
i=1

(1− θai ) .

I Goal: Maximize the cumulative reward over T rounds

Rθ(T ) = T max
a
µa(θ)−

T∑
t=1

µat (θ)

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making 79/101

Ranking bandit setup



.

I Actions: all combinations of L out of N articles A = {a ∈ ArrL
N}

I Feedback Xk for an inspected article k:
- 1 if clicked, 0 otherwise; Bernoulli B(θk)

I Feedback for L displayed articles:
- the slot of the clicked article `
- 0 for each article before `, 1 for the clicked article, nothing else
Click probability on item ` in list a: θa`

∏`
i=1(1− θai ).

I Rewards: r(`) - usually decreasing in `.

µa(θ) =
L∑
`=1

r(`)θa`
∏̀
i=1

(1− θai ) .

I Goal: Maximize the cumulative reward over T rounds

Rθ(T ) = T max
a
µa(θ)−

T∑
t=1

µat (θ)

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making 79/101

Ranking bandit setup



.

I The set of actions: Huge |A| = N!/(N − L)!

I Feedback for an inspected article: Random number of observations -
depending on the rewards of articles displayed

So?
I The set of actions: We can exploit structure to drastically reduce the cost of

exploration
I Feedback for an inspected article: How we explore matters
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”Structure”:

I Similarities between users
I Similarities between articles
I Shape of reward function r(l)

Different systems according to the structure that is revealed to
the decision maker
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Assume θ1 > θ2 > .. > θN (item 1 is preferred over 2, etc.)
Let ∆i = r(i)− r(i + 1), ∆L = r(L) and Na(t) the number of times the set a of
articles is displayed until time t

Regret lower bound
If ∆i > ∆L > 0 for all i < L, then

lim inf
T→∞

Na(T )
ln(T ) = I{∃i : a = {1, . . . , L− 1, i}}

KL(B(θi ),B(θL))
∏

j<L
(1− θj)

lim inf
T→∞

Rπ
θ (T )

ln(T ) = r(L)
N∑

i=L+1

θL − θi
KL(B(θi ),B(θL)

=⇒ Suggest exploration at last slot L.
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Let ∆i = r(i)− r(i + 1), ∆L = r(L) and Na(t) the number of times the set a of
articles is displayed until time t

Regret lower bound
If r(i) = r(L) > 0 for all i < L:

lim inf
T→∞

Na(T )
ln(T ) = I{∃i : u = {i , 1, . . . , L− 1}}

KL(B(θi ),B(θL))

lim inf
T→∞

Rπ
θ (T )

ln(T ) = r(L)
∏
j<L

(1− θj)
N∑

i=L+1

θL − θi
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Regret Lower Bounds - Explained
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Theorem (lower bound)
For any uniformly good algorithm π, we have:

lim inf
T→∞

Rπ(T )
ln(T ) > C(θ),

where
C(θ) = inf

ca>0,a∈A

∑
a∈A

ca(µ?(θ)− µu(θ))

subject to:

∀i > L,
∑

a∈A,i∈a
caKL(B(θi ),B(θL))

∏
s<pa(i)

(1− θas ) > 1.

where pa(i) = j s.t. aj = i is the position of i in list a.
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Let j(t) = (j1(t), . . . , jN(t)) be the indices of the items with empirical means sorted
in decreasing order and L(t) = (j1(t), . . . , jL(t)).

E(t) =
{

i 6= L(t) : max{q ∈ [0, 1] : Ni (t)KL(θ̂i (t), q)) 6 f (t)}︸ ︷︷ ︸
upper confidence bound

> θ̂jL(t)(t)
}

=⇒ items with high enough upper bound to deserve being explored
U`

i =
{

j1(t), j2(t), . . . , j`−1(t), i , j`(t), . . . , jL−1(t)
}

Algorithm 5 Position Induced Exploration(`)
Init: B(1) = ∅, θ̂i (1) = 0 = bi (1) ∀i , L(1) = {1, . . . , L}
For t ≥ 1:

If E(t) = ∅, chooses a = L(t)

Else
{

a = L(t), w .p. 1/2
a = U`

i (n), i ∼ Uniform(E(n)) w .p. 1/2
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I Provably asymptotically optimal

I Experiment: compare against
I Slotted-(KL)UCB: top L items in order of their KL-UCB indexes.
I Ranked Bandit Algorithm: runs L independent instances of KL-UCB on each slot.
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(b) Case 2: ∀l , r(l) = 1.

Figure: Performance of PIE(1) / PIE(L) and other UCB-based algorithms. A single group of
items and users. Error bars represent the standard deviation.
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Figure: Performance of PIE(1) on real world data.
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Real-world Data (some Movielens10M dataset)
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I We consider the Learning to Rank problem as a Bandit Optimization problem.

I Despite the daunting number of actions, we can Learn to Rank with very low
cost.

I Algorithm that optimally exploit structure.
I plus good empirical performance.
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I Bandit configurations: ν = (νa,b)a∈A,b∈B with means (µa,b)a∈A,b∈B
I A: arms, B: users.
I Active contextual bandit: At time t, learner chooses bt ∈ B, then at ∈ A.
I Regret:

R(ν,T ) = Eν
[ T∑

t=1
max
a∈A

µa,bt − Xt

]
=

∑
a,b∈C−ν

∆a,bEν [Na,b(T )] .

where C−ν =
{

(a, b) ∈ A× B : µa,b < µ?b

}
.

Definition(Uniformly spread strategy)
There exists γ1 > 0 and a random variable Γ2 with Eν [Γ2] < 0, such that

∀b ∈ B, ∀t ∈ N, Nb(t) > γ1 · t − Γ2 .
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Active contextual bandit problem
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I Contextual bandits configuration means: (µa,b)a∈A,b∈B
I Set of allowed 2-arm bandits (A = {1, 2}):
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Bandit configurations (ν ∈ P([0, 1])A×B with mean µ ∈ [0, 1]A×B):

Dω =
{
ν : ∀b, b′ ∈ B max

a∈A
|µa,b − µa,b′ | 6 ωb,b′

}
,

for a known weight matrix ω = (ωb,b′)b,b′∈B, symmetric, null-diagonal, with positive
entries, and satisfying ωb,b′ 6 ωb,b′′ + ωb′′,b′ .
Large values: not structured. Low value: highly structured.
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Definition (Consistent strategy)

∀ν ∈ Dω, ∀(a, b) ∈ C−ν , ∀α ∈ (0, 1) lim
T→∞

Eν
[Na,b(T )α

Nb(T )

]
= 0 .

Proposition (Regret lower bound)
Any uniformly spread and consistent strategy must satisfy

lim inf
T→∞

R(ν,T )
ln(T ) > C?

ω(ν)

where C?
ω(ν) = min

n∈RC−
+

∑
a,b∈C−

na,b∆a,b s.t.

∀(a, b)∈C−,
∑

b′∈B:(a,b)∈C−
kl+(µa,b′ |µ?b−ωb,b′)na,b′ > 1 .
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I Let ωλ be a matrix where all the weights are equal to λ ∈ [0, 1] except for the
zero diagonal.

I λ = 1: no-structure, λ = 0: one unique cluster.
I We recover that C?

ω1(ν) =
∑

a,b∈C−
∆a,b

kl(µa,b |µ?b ) (unstructured lower bound)
I More generally:
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Special cases
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I Explicit lower bound spanning unstructured to highly structured pbs.
I See (Saber et al., submitted) for an algorithm:

I Provably asymptotically optimal.
I Computationally cheap
I Without explicit forced exploration (still some implicit forcing).
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Confidence bounds in parametric regression: Time and space uniform

∀δ ∈ (0, 1), P
(
∃t ∈ N, x ∈ X : |f?(x)− fθt (x)| > ‖ϕ(x)‖G−1

t,λ
Bt(δ)

)
6 δ

I Quite tight (Equality everywhere, except Markov inequality and
super-martingale).

I Extends to Kernel regression similarly.
I Optimal use of it? not quite (”The end of optimism”, Lattimore et al.)
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Pick your favorite structured bandit problem
Study the problem-dependent lower bound

Each arm should be pulled some minimum number of times.
Suggests an algorithm (sometimes optimal) !
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I In Linear bandits:
I Features? Representation?
I Lower bounds ? Most confusing instances? Optimality?

I In generic structure:
I Generic algorithm (e.g. OSSB)?
I Forced exploration?
I More informative/Less conservative lower bounds?
I Better tracking of information?

I Beyond structure? No stochastic model?
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