Structured Multi-Armed Bandits RLSS

July 02, Lille
Odalric-Ambrym Maillard

Inria Lille - Nord europe
...SequeL...

Your Favorite bandit application

Eco-sustainable decision making

- Plant health-care:

- Ground health-care:

Your Favorite bandit application

Eco-sustainable decision making

- Plant health-care:

- Ground health-care:

Medical decision companion

- Emergency admission filtering:

Íniá

- Suggest medical consultation or treatment based on smart meters.

- Suggest medical consultation or treatment based on smart meters.
- Time series, hidden variables, risk-aversion.

- Recommend drug dosage w.r.t. genome of individuals.

- Recommend drug dosage w.r.t. genome of individuals.
- Huge dimension, Gene interactions.

E-LEARNING

- Recommend exercises that maximize learning progression

E-LEARNING

- Recommend exercises that maximize learning progression
- Non-stationary rewards, few interactions

SUSTAINABLE FARMING

- Recommend good practice between farms/share knowledge.

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making

- Recommend good practice between farms/share knowledge.
- Strong correlations, hidden variables, delayed feedback.

DISTRIBUTED DECISIONS

- Distributed Optimization, Cognitive Radio Networks, etc.

- Time Series, HMMs, Autoregressive models, etc.

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making

Structures

LINEAR BANDITS

Structured Lower Bounds

> Conclusion, Perspective

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making

Structure: Lists

Google camera

Camera Calibration Toolbox for Matlab
This is a release of a Camera Calibration Toolbox for Matlab8 with a complete
This is a release of a Camera Calioration Tooibox for Matlabe with a complete
documentation. This document may also be used as a tutorial on camera ...
umw.vision caltech.edu/bougueti/calib_doci - 14k - Cached
Omnivis 2003: Omnidirectional Vision and Camera Networks A complete paper, not longer than six (6) pages including figures and references, should be submittod in camera-ready IEEE 2 -column format of single-spaced ...
wnw.cs wustl.edu'-pless/omnivis 2003 - 5 k - Cached
Camera Calibration Toolbox for Matlab
A Camera Calibration Toolbox from the Institute of Robotics and Mechatronics, Germany
DLR Calbe and DLR Ca Lab is a very complete tool for camera

The Page of Omnidirectional Vision
ICCV 2005 Omnivis'05Sixth Workshop on Ornnidirectional Vision, Camera ... Automatic Surveillance Using Omnidirectional and Active Cameras at the PRIP Lab, ...
www.cis upenn.edu/-kostas/omni.html - 35k - Cached
Digital Camera Characteristics
It is necessary to know your camera characteristics if you intend to make full use of all of the functions available on your camera
mww ncsu ed//sciencejunction/route/us etech/digitalcamera/ - 10k - Cached
[PDF] A Comparison of PMD-Cameras and Stereo-Vision for the Task of ... File Format: PDF/Adobe Acrobat - View as HTML systems and PMD cameras is discussed qualitatively and ... the stereo system as well as the PMD camera will be com-. pared in section 4 based on those ...
vision.middlebury.edu/conferences/bencos2007/pdf/beder.pdf

Structure: Lists

Camera Calibration Toolbox for Matlab
This is a release of a Camera Calibration Toolbox for Matlabe with a complete
Gougle"
This is a release of a Camera Calibration Toolbox for Matlab(8) with a complete
documentation. This document may also be used as a utorial
cuatem Search
umw. vision caltech.edu/bouguet//calib_doc/ - 14k - Cached
Omnivis 2003: Omnidirectional Vision and Camera Networks A complete paper, not longer than six (6) pages including figures and references, should be submitted in camera-ready IEEE 2 -column format of single-spaced...
wnw. cs wustl.edu'-pless/omnivis 2003/-5k - Cached
Camera Calibration Toolbox for Matlab
A Camera Calibration Toolbox from the Institute of Robotics and Mechatronics, Germany
DLR CalDe and DLR Cal Lab is a very complete tool for camera
www.vision.caltech.edu/bouguet/calib doc/htmis/links. html - 16 k - Cached

The Page of Omnidirectional Vision
ICCV 2005 Ornnivis'05Sixth Workshop on Ornnidirectional Vision, Camera Automatic Surveillance Using Omnidirectional and Active Cameras at the PRIP Lab, ... www.cis upenn.edu/-kostas/omni.html - 35k - Cached

Digital Camera Characteristics
It is necessary to know your camera charactenstics if you intend to make full use of all of the functions available on your camera
www. ncsu.edu/sciencejunction/route/usetech/digitalcamera/ - 10k - Cached
[PDF] A Comparison of PMD-Cameras and Stereo-Vision for the Task of ... File Format: PDF/Adobe Acrobat - View as HTML systems and PMD cameras is discussed qualitatively and ... the stereo system as well as the PMD camera will be com-- pared in section 4 based on those .
vision.middlebury.edu/conferences/bencos2007/pdf/beder.pdf

- Actions: List of items.

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequibntial decision making

Structure: Lists

Camera Calibration Toolbox for Matlab
This is a release of a Camera Calibration Toolbox for Matlabe8 with a complete documentation. This document may also be used as a tutorial on camera documentation. This document may also be used as a tutorial
wnw vision caltech.edubougueti/calib_doc/ - 14k - Cached

Omnivis 2003: Omnidirectional Vision and Camera Networks A complete paper, not longer than six (6) pages including figures and references, should be submittod in camera-ready IEEE 2 -column format of single-spaced ...
wnw. cs wustl.edu'-pless/omnivis 2003/-5k - Cached
Camera Calibration Toolbox for Matlab
A Camera Calibration Toolbox from the Institute of Robotics and Mechatronics, Germany
DLR CalDe and DLR CalLab is a very complete tool for camera
www.vision.caltech.edu/bouguet/calib doc/htmis/links. html - 16 k - Cached
The Page of Omnidirectional Vision
ICCV 2005 Omnivis'05Sixth Workshop on Ornnidirectional Vision, Camera Automatic Surveillance Using Omnidirectional and Active Cameras at the PRIP Lab, ... www.cis upenn.edu/-kostas/omni.html - 35k - Cached
Digital Camera Characteristics
It is necessary to know your camera charactenstics if you intend to make full use of all of the functions available on your camera
www ncsu ed ${ }^{2} /$ sciencejunction/route/usetech/digitalcamera/ - 10k - Cached
[PDF] A Comparison of PMD-Cameras and Stereo-Vision for the Task of ... File Format: PDF/Adobe Acrobat - View as HTML
systems and PMD cameras is discussed qualitatively and the stereo system as well as the PMD camera will be com- pared in section 4 based on those .
vision.middlebury.edu/conferences/bencos 2007/pdf/beder.pdf

- Actions: List of items.
- Reward/loss: Ranking of preferred item.

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequintial decision making

Structure: Lists

$\underset{\text { Custom Search }}{\text { CETA }} \begin{aligned} & \text { \& Uamera } \\ & \text { \& UCSD Computer Vision } \cap \text { Web Search }\end{aligned}$

Camera Calibration Toolbox for Matlab
Gougle" This is a release of a Camera Calibration Tooibox for Matlab(8) with a complete

Custem search wmw vision caltech.edu/bougueti/calib_doc! - 14k - Cached

Omnivis 2003: Omnidirectional Vision and Camera Networks A complete paper, not longer than six (6) pages including figures and references, should be submittod in camera-ready IEEE 2 -column format of single-spaced ...
wnww.cs.wustl-edul-pless/omnivis2003/-5k - Cached
Camera Calibration Toolbox for Matlab
A Camera Calibration Toolbox from the Institute of Robotics and Mechatronics, Germany -
DLR CalDe and DLR CalLab is a very complete tool for camera
wnw.vision.caltech.edu/bouguet/callib doc/htmis/links. html - 16k - Cached
The Page of Omnidirectional Vision
ICCV 2005 Ornnivis'05Sixth Workshop on Ornnidirectional Vision, Camera Automatic Surveillance Using Omnidirectional and Active Cameras at the PRIP Lab, ... www.cis upenn. edu/-kostas/omni.html - 35k - Cached
Digital Camera Characteristics
it is necessary to know your camera charactenstics if you intend to make full use of all of the functions available on your camera
www. ncsu.edi/sciencejunction/route/usetech/digitalcamera/ - 10k - Cached
[PDF] A Comparison of PMD-Cameras and Stereo-Vision for the Task of ... File Format PDF/Adobe Acrobat - View as HTML
systems and PMD cameras is discussed qualitatively and ...the stereo system as well a the PMD camera will be com-. pared in section 4 based on those ..
vision.middlebury.edu/conferences/bencos 2007/pdfi/beder.pdf

- Actions: List of items.
- Reward/loss: Ranking of preferred item.
- Ordering

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequentlal decision making

Structure: Paths

Structure: Paths

- Actions: (valued) Paths.

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequbntial decision making

Structure: Paths

- Actions: (valued) Paths.
- Reward/loss: cumulative value on the path.

Structure : Paths

- Actions: (valued) Paths.
- Reward/loss: cumulative value on the path.
- Paths have edges in common.

- Actions: $x \in \mathbb{R}$

- Actions: $x \in \mathbb{R}$
- Reward/loss: $f(x)+\xi$

- Actions: $x \in \mathbb{R}$
- Reward/loss: $f(x)+\xi$
- Regularity.

TABLE OF CONTENTS

Structures

LINEAR BANDITS

Structured Lower Bounds

> Conclusion, Perspective

Odalric-Ambrym Maillard

Structures

LINEAR BANDITS

Regression

Linear UCB, Linear TS Graph-linear Bandits Extension to Kernels

Structured Lower Bounds

Conclusion, Perspective

Odalric-Ambrym Maillard

REGRESSION SETUP

Sequential optimization game

At each time $t \in \mathbb{N}$, sample at $x_{t} \in \mathcal{X}$, receive $y_{t} \in \mathbb{R}$, where

$$
y_{t}=\underbrace{f_{\star}}_{\text {target }}\left(x_{t}\right)+\underbrace{\xi_{t}}_{\text {noise }} .
$$

Goal:Minimize cumulative regret

$$
\mathcal{R}_{T} \stackrel{\text { def }}{=} \sum_{t=1}^{T} f_{\star}(\star)-f_{\star}\left(x_{t}\right) \text { where } \star \in \operatorname{Argmax} f_{\star}(x)
$$

REGRESSION SETUP

Sequential optimization game

At each time $t \in \mathbb{N}$, sample at $x_{t} \in \mathcal{X}$, receive $y_{t} \in \mathbb{R}$, where

$$
y_{t}=\underbrace{f_{\star}}_{\text {target }}\left(x_{t}\right)+\underbrace{\xi_{t}}_{\text {noise }} .
$$

Goal:Minimize cumulative regret

$$
\mathcal{R}_{T} \stackrel{\text { def }}{=} \sum_{t=1}^{T} f_{\star}(\star)-f_{\star}\left(x_{t}\right) \text { where } \star \in \operatorname{Argmax} f_{\star}(x)
$$

- Actions : $x \in \mathcal{X}$.

Regression setup

Sequential optimization game

At each time $t \in \mathbb{N}$, sample at $x_{t} \in \mathcal{X}$, receive $y_{t} \in \mathbb{R}$, where

$$
y_{t}=\underbrace{f_{\star}}_{\text {target }}\left(x_{t}\right)+\underbrace{\xi_{t}}_{\text {noise }} .
$$

Goal:Minimize cumulative regret

$$
\mathcal{R}_{T} \stackrel{\text { def }}{=} \sum_{t=1}^{T} f_{\star}(\star)-f_{\star}\left(x_{t}\right) \text { where } \star \in \operatorname{Argmax} f_{\star}(x)
$$

- Actions : $x \in \mathcal{X}$.
- Means : $f_{\star}(x)$. Mean at x and x^{\prime} not arbitrarily different!

LINEAR REWARD SETTING

- Set of arms \mathcal{X}

LINEAR REWARD SETTING

- Set of arms \mathcal{X}
- At time t, pick $X_{t} \in \mathcal{X}$, receive

$$
Y_{t}=f_{\star}\left(X_{t}\right)+\xi_{t}
$$

where ξ_{t} is centered and further conditionally sub-Gaussian.
f_{\star} belongs to a linear function space:

$$
\mathcal{F}_{\Theta}=\left\{f_{\theta}: x \mapsto \theta^{\top} \varphi(x), \theta \in \Theta\right\} \text { where } \Theta \in \mathbb{R}^{d}, \varphi: \mathcal{X} \rightarrow \mathbb{R}^{d}
$$

θ : Parameter, φ : Feature function.

LINEAR REWARD SETTING

- Set of arms \mathcal{X}
- At time t, pick $X_{t} \in \mathcal{X}$, receive

$$
Y_{t}=f_{\star}\left(X_{t}\right)+\xi_{t}
$$

where ξ_{t} is centered and further conditionally sub-Gaussian.
f_{\star} belongs to a linear function space:

$$
\mathcal{F}_{\Theta}=\left\{f_{\theta}: x \mapsto \theta^{\top} \varphi(x), \theta \in \Theta\right\} \text { where } \Theta \in \mathbb{R}^{d}, \varphi: \mathcal{X} \rightarrow \mathbb{R}^{d}
$$

θ : Parameter, φ : Feature function.

- Unknown parameter $\theta_{\star} \in \mathbb{R}^{d}$.

LINEAR REWARD SETTING

- Set of arms \mathcal{X}
- At time t, pick $X_{t} \in \mathcal{X}$, receive

$$
Y_{t}=f_{\star}\left(X_{t}\right)+\xi_{t}
$$

where ξ_{t} is centered and further conditionally sub-Gaussian.
f_{\star} belongs to a linear function space:

$$
\mathcal{F}_{\Theta}=\left\{f_{\theta}: x \mapsto \theta^{\top} \varphi(x), \theta \in \Theta\right\} \text { where } \Theta \in \mathbb{R}^{d}, \varphi: \mathcal{X} \rightarrow \mathbb{R}^{d}
$$

θ : Parameter, φ : Feature function.

- Unknown parameter $\theta_{\star} \in \mathbb{R}^{d}$.
- Best arm $x_{\star}=\operatorname{argmax}_{x \in \mathcal{X}}\left\langle\theta_{\star}, \varphi(x)\right\rangle$
- Polynomials: $\mathcal{X}=\mathbb{R}, \varphi(x)=\left(1, x, x^{2}, \ldots, x^{d-1}\right), \Theta=\mathcal{B}_{2, d}(0,1)$ unit Euclidean ball of \mathbb{R}^{d}.
- Bandits: $\mathcal{X}=\mathcal{A}=\{1, \ldots, \mathcal{A}\}, \varphi(a)=e_{a} \in \mathbb{R}^{A}, \Theta=[0,1]^{A}$.
- Shortest path: $\mathcal{X} \subset \mathcal{A}^{L}$ (paths of length L), $\varphi_{(a, \ell)}(x)=\mathbb{I}\left\{x_{\ell}=a\right\}$, $\Theta=[0,1]^{|\mathcal{X}|}$. $\mathcal{X} \subset\{0,1\}^{d}$, paths in graph with d edges, $\varphi(x)=x, \Theta \subset[0,1]^{d}$ mean travel time for each edge (Combes et al. 2015).
- Contextual bandits: $\mathcal{X}=\mathcal{C} \times \mathcal{A}, \varphi((c, a))=(1, c, a, c a, \ldots)$
- Smooth function on graph: $\mathcal{X}=$ nodes of a graph with adjacency matrix G, $\varphi=$ eigenfunctions of the Graph-Laplacian.

ORDINARY LEAST-SQUARES

- Linear space: $\mathcal{F}=\left\{f_{\theta}: f_{\theta}(x)=\langle\theta, \varphi(x)\rangle, \theta \in \mathbb{R}^{d}, \theta \in \Theta\right\}$. Ex: $\varphi(x)=\left(1, x, x^{2}\right), f_{\theta}(x)=2+\frac{1}{2} x-2 x^{2}, \theta=(2,1 / 2,-2)$.

ORDINARY LEAST-SQUARES

- Linear space: $\mathcal{F}=\left\{f_{\theta}: f_{\theta}(x)=\langle\theta, \varphi(x)\rangle, \theta \in \mathbb{R}^{d}, \theta \in \Theta\right\}$. Ex: $\varphi(x)=\left(1, x, x^{2}\right), f_{\theta}(x)=2+\frac{1}{2} x-2 x^{2}, \theta=(2,1 / 2,-2)$.
- Loss: $\ell\left(y, y^{\prime}\right)=\frac{\left(y-y^{\prime}\right)^{2}}{2}$

ORDINARY LEAST-SQUARES

- Linear space: $\mathcal{F}=\left\{f_{\theta}: f_{\theta}(x)=\langle\theta, \varphi(x)\rangle, \theta \in \mathbb{R}^{d}, \theta \in \Theta\right\}$. Ex: $\varphi(x)=\left(1, x, x^{2}\right), f_{\theta}(x)=2+\frac{1}{2} x-2 x^{2}, \theta=(2,1 / 2,-2)$.
- Loss: $\ell\left(y, y^{\prime}\right)=\frac{\left(y-y^{\prime}\right)^{2}}{2}$
- Objective : from $\left(x_{n}, y_{n}\right)_{n \leqslant N}$ optimize

$$
\begin{gather*}
\min _{\theta \in \Theta} \sum_{n=1}^{N} \ell\left(y_{n}, f_{\theta}\left(x_{n}\right)\right) \\
\min _{\theta \in \Theta} \sum_{n=1}^{N}\left(y_{n}-\theta^{\top} \varphi\left(x_{n}\right)\right)^{2} \tag{1}
\end{gather*}
$$

ORDINARY LEAST-SQUARES

- Any solution to (1) must satisfy

$$
G_{N} \theta=\sum_{n=1}^{N} \varphi\left(x_{n}\right) y_{n}, \text { where } \quad G_{N}=\sum_{n=1}^{N} \varphi\left(x_{n}\right) \varphi\left(x_{n}\right)^{\top}(d \times d \text { matrix }) .
$$

ORDINARY LEAST-SQUARES

- Any solution to (1) must satisfy

$$
G_{N} \theta=\sum_{n=1}^{N} \varphi\left(x_{n}\right) y_{n}, \text { where } \quad G_{N}=\sum_{n=1}^{N} \varphi\left(x_{n}\right) \varphi\left(x_{n}\right)^{\top}(d \times d \text { matrix }) .
$$

- Matrix notations:

$$
\begin{aligned}
& Y_{N}=\left(y_{1}, \ldots, y_{N}\right)^{\top} \in \mathbb{R}^{N}, \\
& \Phi_{N}=\left(\varphi^{\top}\left(x_{1}\right), \ldots, \varphi^{\top}\left(x_{N}\right)\right)^{\top}(N \times d \text { matrix }) .
\end{aligned}
$$

$$
G_{N} \theta=\Phi_{N}^{\top} Y_{N}, \text { where } G_{N}=\Phi_{N}^{\top} \Phi_{N}
$$

ORDINARY LEAST-SQUARES: SOLUTION

- Specific solution: $\theta_{N}^{\dagger}=G_{N}^{\dagger} \Phi_{N}^{\top} Y_{N}$ where G_{N}^{\dagger} : pseudo-inverse of G_{N}.

ORDINARY LEAST-SQUARES: SOLUTION

- Specific solution: $\theta_{N}^{\dagger}=G_{N}^{\dagger} \Phi_{N}^{\top} Y_{N}$ where G_{N}^{\dagger} : pseudo-inverse of G_{N}.
- Solutions:

$$
\begin{aligned}
\Theta_{N} & =\left\{\theta \in \Theta: G_{N}\left(\theta_{N}^{\dagger}-\theta\right)=0\right\} \\
& =\left\{\theta_{N}^{\dagger}+\operatorname{ker}\left(G_{N}\right)\right\} \cap \Theta
\end{aligned}
$$

ORDINARY LEAST-SQUARES: SOLUTION

- Specific solution: $\theta_{N}^{\dagger}=G_{N}^{\dagger} \Phi_{N}^{\top} Y_{N}$ where G_{N}^{\dagger} : pseudo-inverse of G_{N}.
- Solutions:

$$
\begin{aligned}
\Theta_{N} & =\left\{\theta \in \Theta: G_{N}\left(\theta_{N}^{\dagger}-\theta\right)=0\right\} \\
& =\left\{\theta_{N}^{\dagger}+\operatorname{ker}\left(G_{N}\right)\right\} \cap \Theta
\end{aligned}
$$

- When $\Theta=\mathbb{R}^{d}$ and G_{N} is invertible, $G_{N}^{\dagger}=G_{N}^{-1}$,

$$
\text { (Ordinary Least-squares) } \quad \theta_{N}=G_{N}^{-1} \Phi_{N}^{\top} Y_{N} .
$$

- Error control:

$$
\begin{equation*}
\forall x \in \mathcal{X}, \quad\left|f_{\star}(x)-f_{\theta_{N}}(x)\right| \leqslant\left\|\theta_{\star}-\theta_{N}\right\|_{A}\|\varphi(x)\|_{A^{-1}} \tag{2}
\end{equation*}
$$ for each invertible matrix A, where $\|x\|_{A}=\sqrt{x^{\top} A x}$.

ORDINARY LEAST-SQUARES: ERROR

- Error control:

$$
\begin{equation*}
\forall x \in \mathcal{X}, \quad\left|f_{\star}(x)-f_{\theta_{N}}(x)\right| \leqslant\left\|\theta_{\star}-\theta_{N}\right\|_{A}\|\varphi(x)\|_{A^{-1}} \tag{2}
\end{equation*}
$$

for each invertible matrix A, where $\|x\|_{A}=\sqrt{x^{T} A x}$.

- Matrix $A=G_{N}$ has natural interpretation: for $\theta \in \Theta_{N}$ (solution),

$$
\sum_{n=1}^{N}\left(f_{\star}\left(x_{n}\right)-f_{\theta}\left(x_{n}\right)\right)^{2}=\sum_{n=1}^{N}\left(\theta^{\star}-\theta\right)^{\top} \varphi\left(x_{n}\right) \varphi\left(x_{n}\right)^{\top}\left(\theta^{\star}-\theta\right)=\left\|\theta^{\star}-\theta\right\|_{G_{N}}^{2} .
$$

(Over-fitting is $\forall \theta \in \Theta_{N},\left\|\theta^{\star}-\theta\right\|_{G_{N}}=0$).
Study $\left\|\theta_{\star}-\theta_{N}\right\|_{G_{N}}$

REGULARIZED LEAST-SQUARES

When G_{N} is not invertible, introduce regularization parameter $\lambda \in \mathbb{R}_{\star}^{+}$.

REGULARIZED LEAST-SQUARES

When G_{N} is not invertible, introduce regularization parameter $\lambda \in \mathbb{R}_{\star}^{+}$.

- Regularized solution

$$
\theta_{N, \lambda}=G_{N, \lambda}^{-1} \Phi_{N}^{\top} Y_{N} \text { where } G_{N, \lambda}=\Phi_{N}^{\top} \Phi_{N}+\lambda I_{d} .
$$

REGULARIZED LEAST-SQUARES

When G_{N} is not invertible, introduce regularization parameter $\lambda \in \mathbb{R}_{\star}^{+}$.

- Regularized solution

$$
\theta_{N, \lambda}=G_{N, \lambda}^{-1} \Phi_{N}^{\top} Y_{N} \text { where } G_{N, \lambda}=\Phi_{N}^{\top} \Phi_{N}+\lambda I_{d}
$$

- Bayesian interpretation: For Prior $\theta \sim \mathcal{N}(0, \Sigma)$, i.i.d. setup, Gaussian noise $\left(\xi_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)\right)$, Posterior: $\widehat{f}_{N}(x) \mid x, x_{1}, y_{1}, \ldots, x_{N},, y_{N} \sim \mathcal{N}\left(\mu_{N}(x), \sigma_{N}^{2}(x)\right)$ where

$$
\begin{aligned}
\mu_{N}(x) & =\varphi(x)^{\top}\left(\Phi_{N}^{\top} \Phi_{N}+\sigma^{2} \Sigma^{-1}\right)^{-1} \Phi_{N}^{\top} Y_{N} \\
\sigma_{N}^{2}(x) & =\sigma^{2} \varphi(x)^{\top}\left(\Phi_{N}^{\top} \Phi_{N}+\sigma^{2} \Sigma^{-1}\right)^{-1} \varphi(x) .
\end{aligned}
$$

REGULARIZED LEAST-SQUARES

When G_{N} is not invertible, introduce regularization parameter $\lambda \in \mathbb{R}_{\star}^{+}$.

- Regularized solution

$$
\theta_{N, \lambda}=G_{N, \lambda}^{-1} \Phi_{N}^{\top} Y_{N} \text { where } G_{N, \lambda}=\Phi_{N}^{\top} \Phi_{N}+\lambda I_{d} .
$$

- Bayesian interpretation:

For Prior $\theta \sim \mathcal{N}(0, \Sigma)$, i.i.d. setup, Gaussian noise $\left(\xi_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)\right)$,
Posterior: $\widehat{f}_{N}(x) \mid x, x_{1}, y_{1}, \ldots, x_{N},, y_{N} \sim \mathcal{N}\left(\mu_{N}(x), \sigma_{N}^{2}(x)\right)$ where

$$
\begin{aligned}
\mu_{N}(x) & =\varphi(x)^{\top}\left(\Phi_{N}^{\top} \Phi_{N}+\sigma^{2} \Sigma^{-1}\right)^{-1} \Phi_{N}^{\top} Y_{N} \\
\sigma_{N}^{2}(x) & =\sigma^{2} \varphi(x)^{\top}\left(\Phi_{N}^{\top} \Phi_{N}+\sigma^{2} \Sigma^{-1}\right)^{-1} \varphi(x) .
\end{aligned}
$$

- Prior $\Sigma=\frac{\sigma^{2}}{\lambda} I_{d}$ gives regularized least-squares $\mu_{N}(x)=\varphi(x)^{\top} \theta_{N, \lambda}$.

REGULARIZED LEAST-SQUARES

When G_{N} is not invertible, introduce regularization parameter $\lambda \in \mathbb{R}_{\star}^{+}$.

- Regularized solution

$$
\theta_{N, \lambda}=G_{N, \lambda}^{-1} \Phi_{N}^{\top} Y_{N} \text { where } G_{N, \lambda}=\Phi_{N}^{\top} \Phi_{N}+\lambda I_{d}
$$

- Bayesian interpretation:

For Prior $\theta \sim \mathcal{N}(0, \Sigma)$, i.i.d. setup, Gaussian noise $\left(\xi_{n} \sim \mathcal{N}\left(0, \sigma^{2}\right)\right)$,
Posterior: $\widehat{f}_{N}(x) \mid x, x_{1}, y_{1}, \ldots, x_{N},, y_{N} \sim \mathcal{N}\left(\mu_{N}(x), \sigma_{N}^{2}(x)\right)$ where

$$
\begin{aligned}
\mu_{N}(x) & =\varphi(x)^{\top}\left(\Phi_{N}^{\top} \Phi_{N}+\sigma^{2} \Sigma^{-1}\right)^{-1} \Phi_{N}^{\top} Y_{N} \\
\sigma_{N}^{2}(x) & =\sigma^{2} \varphi(x)^{\top}\left(\Phi_{N}^{\top} \Phi_{N}+\sigma^{2} \Sigma^{-1}\right)^{-1} \varphi(x) .
\end{aligned}
$$

- Prior $\Sigma=\frac{\sigma^{2}}{\lambda} l_{d}$ gives regularized least-squares $\mu_{N}(x)=\varphi(x)^{\top} \theta_{N, \lambda}$.
- Interpret λ as prior value on variance.
Study $\left\|\theta_{\star}-\theta_{N, \lambda}\right\|_{G_{N, \lambda}}$

Regression setup: Noise

Standard regression noisr assumptions

- iid samples $\left(x_{t}\right)_{t}$ are i.i.d., $\left(\xi_{t}\right)_{t}$ are i.i.d., independent from $\left(x_{t}\right)_{t}$.

Regression setup: Noise

Standard regression noisr assumptions

- iid samples $\left(x_{t}\right)_{t}$ are i.i.d., $\left(\xi_{t}\right)_{t}$ are i.i.d., independent from $\left(x_{t}\right)_{t}$.

Regression setup: Noise

Standard regression noisr assumptions

- iid samples $\left(x_{t}\right)_{t}$ are i.i.d., $\left(\xi_{t}\right)_{t}$ are i.i.d., independent from $\left(x_{t}\right)_{t}$.
- sub-Gaussian noise: For some $\sigma^{2}>0$,

$$
\forall t \in \mathbb{N}, \forall \gamma \in \mathbb{R}, \quad \ln \mathbb{E}\left[\exp \left(\gamma \xi_{t}\right)\right] \leqslant \frac{\gamma^{2} \sigma^{2}}{2}
$$

Regression setup: Noise

Standard regression noisr assumptions

- iid samples $\left(x_{t}\right)_{t}$ are i.i.d., $\left(\xi_{t}\right)_{t}$ are i.i.d., independent from $\left(x_{t}\right)_{t}$.
- sub-Gaussian noise: For some $\sigma^{2}>0$,

$$
\forall t \in \mathbb{N}, \forall \gamma \in \mathbb{R}, \quad \ln \mathbb{E}\left[\exp \left(\gamma \xi_{t}\right)\right] \leqslant \frac{\gamma^{2} \sigma^{2}}{2}
$$

- $=$ for $\mathcal{N}\left(0, \sigma^{2}\right)$ [Exercice]

Sequential regression noise assumption

- Predictable sequence (not iid): x_{t} is \mathcal{H}_{t-1}-measurable and y_{t} is \mathcal{H}_{t}-measurable. \mathcal{H}_{t} : history.

Odalric-Ambrym Maillard

Regression setup: Noise

Standard regression noisr assumptions

- iid samples $\left(x_{t}\right)_{t}$ are i.i.d., $\left(\xi_{t}\right)_{t}$ are i.i.d., independent from $\left(x_{t}\right)_{t}$.
- sub-Gaussian noise: For some $\sigma^{2}>0$,

$$
\forall t \in \mathbb{N}, \forall \gamma \in \mathbb{R}, \quad \ln \mathbb{E}\left[\exp \left(\gamma \xi_{t}\right)\right] \leqslant \frac{\gamma^{2} \sigma^{2}}{2}
$$

- $=$ for $\mathcal{N}\left(0, \sigma^{2}\right)$ [Exercice]

Sequential regression noise assumption

- Predictable sequence (not iid): x_{t} is \mathcal{H}_{t-1}-measurable and y_{t} is \mathcal{H}_{t}-measurable. \mathcal{H}_{t} : history.
- Conditionally sub-Gaussian noise: For some $\sigma^{2}>0$,

$$
\forall t \in \mathbb{N}, \forall \gamma \in \mathbb{R}, \quad \ln \mathbb{E}\left[\exp \left(\gamma \xi_{t}\right) \mid \mathcal{H}_{t-1}\right] \leqslant \frac{\gamma^{2} \sigma^{2}}{2}
$$

Structures

Linear bandits

Regression

Linear UCB, Linear TS

Graph-linear Bandits
Extension to Kernels

STRUCTURED LOWER BOUNDS

Conclusion, Perspective

- Least-squares (regularized) estimate of θ_{\star} :

$$
\theta_{t, \lambda}=[\underbrace{\Phi_{t}^{\top} \Phi_{t}+\lambda I_{d}}_{G_{t, \lambda}}]^{-1} \Phi_{t}^{\top} Y_{t} .
$$

- Choose $X_{t+1}=\operatorname{argmax}_{x \in \mathcal{X}}\left\langle\theta_{t, \lambda}, \varphi(x)\right\rangle$.

Odalric-Ambrym Maillard

- Least-squares (regularized) estimate of θ_{\star} :

$$
\theta_{t, \lambda}=[\underbrace{\Phi_{t}^{\top} \Phi_{t}+\lambda I_{d}}_{G_{t, \lambda}}]^{-1} \Phi_{t}^{\top} Y_{t} .
$$

- Choose $X_{t+1}=\operatorname{argmax}_{x \in \mathcal{X}}\left\langle\theta_{t, \lambda}, \varphi(x)\right\rangle$.
\Longrightarrow Exploitation only !

Optimism in Face of Uncertainty - Linear

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári "Improved Algorithms for
Linear Stochastic Bandits"
NIPS, 2011.

$$
X_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} \max \left\{f_{\theta}(x): \theta \text { is plausible }\right\}
$$

$$
X_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} \max \left\{f_{\theta}(x): \theta \text { is plausible }\right\}
$$

- Plausible: $\left.C_{t}(\delta)=\left\{\theta:\left\|\theta-\theta_{t, \lambda}\right\|_{G_{t, \lambda}} \leqslant B_{t}(\delta)\right)\right\}$

OPTIMISTIC APPROACH

$$
X_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} \max \left\{f_{\theta}(x): \theta \text { is plausible }\right\}
$$

- Plausible: $\left.C_{t}(\delta)=\left\{\theta:\left\|\theta-\theta_{t, \lambda}\right\|_{G_{t, \lambda}} \leqslant B_{t}(\delta)\right)\right\}$
- Confidence ellipsoid such that $\mathbb{P}\left(\theta_{\star} \in C_{t}(\delta)\right) \geqslant 1-\delta$.

OPTIMISTIC APPROACH

$$
X_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmax}} \max \left\{f_{\theta}(x): \theta \text { is plausible }\right\}
$$

- Plausible: $\left.C_{t}(\delta)=\left\{\theta:\left\|\theta-\theta_{t, \lambda}\right\|_{G_{t, \lambda}} \leqslant B_{t}(\delta)\right)\right\}$
- Confidence ellipsoid such that $\mathbb{P}\left(\theta_{\star} \in C_{t}(\delta)\right) \geqslant 1-\delta$.

- Explicit solution

$$
X_{t+1}=\underset{x \in \mathcal{X}}{\operatorname{argmax}}\left\langle\theta_{t, \lambda}, \varphi(x)\right\rangle+B_{t}(\delta)\|\varphi(x)\|_{G_{t, \lambda}^{-1}}
$$

\Longrightarrow UCB-style exploitation and exploitation trade-off!

How to build $B_{t}(\delta)$?

Some bounds

How to build $B_{t}(\delta)$?

- (Dani, Kakade 2008) $B_{t}(\delta)=\sqrt{\max \left(128 d \ln (t) \ln \left(t^{2} / \delta\right), 64 / 9 \ln ^{2}\left(t^{2} / \delta\right)\right.}$

Some bounds

How to build $B_{t}(\delta)$?

- (Dani, Kakade 2008) $B_{t}(\delta)=\sqrt{\max \left(128 d \ln (t) \ln \left(t^{2} / \delta\right), 64 / 9 \ln ^{2}\left(t^{2} / \delta\right)\right.}$
- (Rusmevichientong, Tsitsiklis 2009)

$$
B_{t}(\delta)=C \sqrt{\ln (t)} \sqrt{d \ln \left(\frac{36 \max _{x}\|\varphi(x)\|^{2}}{\lambda} t\right)+\ln (1 / \delta)}
$$

How to build $B_{t}(\delta)$?

- (Dani, Kakade 2008) $B_{t}(\delta)=\sqrt{\max \left(128 d \ln (t) \ln \left(t^{2} / \delta\right), 64 / 9 \ln ^{2}\left(t^{2} / \delta\right)\right.}$
- (Rusmevichientong, Tsitsiklis 2009)

$$
B_{t}(\delta)=C \sqrt{\ln (t)} \sqrt{d \ln \left(\frac{36 \max _{x}\|\varphi(x)\|^{2}}{\lambda} t\right)+\ln (1 / \delta)}
$$

- OFUL (Abbasi et al, 2011)

$$
B_{t}(\delta)=\sqrt{\lambda}\left\|\theta^{\star}\right\|_{2}+\sqrt{2 \ln \left(\frac{\operatorname{det}\left(G_{N+\lambda /)^{1 / 2}}\right)}{\delta \lambda^{d / 2}}\right)}
$$

KEY OBSERVATION

$$
\left|f_{\theta^{\star}}(x)-f_{\theta_{N, \lambda}}(x)\right| \leqslant\left\|\theta_{\star}-\theta_{N, \lambda}\right\|_{G_{N, \lambda}}\|\varphi(x)\|_{G_{N, \lambda}^{-1}}
$$

Decomposition lemma

$$
\left\|\theta_{\star}-\theta_{N, \lambda}\right\|_{G_{N, \lambda}} \leqslant \sqrt{\lambda}\left\|\theta^{\star}\right\|_{2}+\left\|\Phi_{N}^{\top} E_{N}\right\|_{G_{N, \lambda}^{-1}}
$$

where $E_{N}=\left(\xi_{1}, \ldots, \xi_{N}\right)^{\top} \in \mathbb{R}^{N}$.
Key observation: sum of conditionally centered vector variables

$$
\Phi_{N}^{\top} E_{N}=\sum_{n=1}^{N} \varphi\left(x_{n}\right) \xi_{n} \in \mathbb{R}^{d}
$$

\Longrightarrow Concentration inequality for vectors!

Make use of self-normalized concentration inequalities.

$$
\begin{aligned}
\theta^{\star}-\theta_{N, \lambda} & =\theta^{\star}-G_{N, \lambda}^{-1} \Phi_{N}^{\top} Y_{N} \\
& =\theta^{\star}-G_{N, \lambda}^{-1} \Phi_{N}^{\top}\left(\Phi_{N} \theta^{\star}+E_{N}\right) \\
& =\left(I-G_{N, \lambda}^{-1} G_{N}\right) \theta^{\star}-G_{N, \lambda}^{-1} \Phi_{N}^{\top} E_{N} \\
& =\underbrace{G_{N, \lambda}^{-1}\left(G_{N, \lambda}-G_{N}\right) \theta^{\star}-G_{N, \lambda}^{-1} \Phi_{N}^{\top} E_{N}}_{(1)} \\
& =\underbrace{\lambda G_{N, \lambda}^{-1} \theta^{\star}}_{(2)}-\underbrace{G_{N}^{-1} \Phi_{N}^{\top} E_{N}}_{N, \lambda}
\end{aligned}
$$

(1) $\left\|\lambda G_{N, \lambda}^{-1} \theta^{\star}\right\|_{G_{N, \lambda}}=\lambda \sqrt{\theta^{\star} G_{N, \lambda}^{-1} G_{N, \lambda} G_{N, \lambda}^{-1} \theta^{\star}}$

$$
\leqslant \frac{\lambda}{\sqrt{\operatorname{eig}_{\min }\left(G_{N, \lambda}\right)}}\left\|\theta^{\star}\right\|_{2} \leqslant \sqrt{\lambda}\left\|\theta^{\star}\right\|_{2}
$$

$$
\begin{equation*}
\left\|G_{N, \lambda}^{-1} \Phi_{N}^{\top} E_{N}\right\|_{G_{N, \lambda}}=\left\|\Phi_{N}^{\top} E_{N}\right\|_{G_{N, \lambda}^{-1}} . \tag{2}
\end{equation*}
$$

SELF-NORMALIZED CONCENTRATION INEQUALITIES

What it means to be self-normalized ?
In dimension $D=1, \lambda=0, G_{N}=\sum_{n=1}^{N} \varphi\left(x_{n}\right)^{2}$

$$
\left\|\Phi_{N}^{\top} E_{N}\right\|_{G_{N, \lambda}^{-1}}=\frac{\left|\sum_{n=1}^{N} \varphi\left(x_{n}\right) \xi_{n}\right|}{\sqrt{\sum_{n=1}^{N} \varphi\left(x_{n}\right)^{2}}}=\frac{\left|\sum_{n=1}^{N} Z_{n}\right|}{\sqrt{\sum_{n=1}^{N} \sigma_{n}^{2}}}
$$

Basic self-normalized (Gaussian) concentration inequality

For fixed t, Z_{1}, \ldots, Z_{t}, independent, $Z_{n} \sim \mathcal{N}\left(0, \sigma_{n}^{2}\right), \delta \in(0,1]$

$$
\mathbb{P}\left(\left|\frac{\sum_{n=1}^{t} z_{n}}{\sqrt{\sum_{n=1}^{t} \sigma_{n}^{2}}}\right| \geqslant \sqrt{2 \ln (2 / \delta)}\right) \leqslant \delta
$$

Basic (Gaussian) concentration inequality For fixed t, Z_{1}, \ldots, Z_{t} i.i.d. $N\left(0, \sigma^{2}\right), \delta \in(0,1]$

$$
\mathbb{P}\left(\frac{1}{t} \sum_{n=1}^{t} Z_{n} \geqslant \sqrt{\frac{2 \sigma^{2} \ln (1 / \delta)}{t}}\right) \leqslant \delta
$$

Likewise, using the Chernoff-method, we can show for fixed t, Z_{1}, \ldots, Z_{t}, independent, $Z_{n} \sim \mathcal{N}\left(0, \sigma_{n}^{2}\right), \delta \in(0,1]$

$$
\mathbb{P}\left(\sum_{n=1}^{t} Z_{n} \geqslant \sqrt{2 \sum_{n=1}^{t} \sigma_{n}^{2} \ln (1 / \delta)}\right) \leqslant \delta
$$

Thus

$$
\mathbb{P}\left(\frac{\sum_{n=1}^{t} Z_{n}}{\sqrt{\sum_{n=1}^{t} \sigma_{n}^{2}}} \geqslant \sqrt{2 \ln (1 / \delta)}\right) \leqslant \delta
$$

LAPLACE METHOD

Extension to dimension d by the Laplace method (De la Peña et al., 2004).
Let $Z \in \mathbb{R}^{d}$ random vector, B a $d \times d$ random matrix such that

$$
\text { (Sub-Gaussian) } \quad \forall \gamma \in \mathbb{R}^{d}, \quad \ln \mathbb{E}\left[\exp \left(\gamma^{\top} Z-\frac{1}{2} \gamma^{\top} B \gamma\right)\right] \leqslant 0 .
$$

Then for any deterministic $d \times d$ matrix C, w.p. $\geqslant 1-\delta$,

$$
\|Z\|_{(B+C)^{-1}} \leqslant \sqrt{2 \ln \left(\frac{\operatorname{det}(B+C)^{1 / 2}}{\delta \operatorname{det}(C)^{1 / 2}}\right)} .
$$

LAPLACE METHOD

Extension to dimension d by the Laplace method (De la Peña et al., 2004).
Let $Z \in \mathbb{R}^{d}$ random vector, B a $d \times d$ random matrix such that

$$
\text { (Sub-Gaussian) } \quad \forall \gamma \in \mathbb{R}^{d}, \quad \ln \mathbb{E}\left[\exp \left(\gamma^{\top} Z-\frac{1}{2} \gamma^{\top} B \gamma\right)\right] \leqslant 0 .
$$

Then for any deterministic $d \times d$ matrix C, w.p. $\geqslant 1-\delta$,

$$
\|Z\|_{(B+C)^{-1}} \leqslant \sqrt{2 \ln \left(\frac{\operatorname{det}(B+C)^{1 / 2}}{\delta \operatorname{det}(C)^{1 / 2}}\right)} .
$$

- Application: $Z=\sum_{n=1}^{N} \varphi\left(x_{n}\right) \xi_{n}, B=G_{N, 0} C=\lambda I_{d}$.

1) Quantity

$$
M_{t}^{\gamma}=\exp \left(\langle\gamma, Z\rangle-\frac{1}{2}\|\lambda\|_{B}^{2}\right)
$$

is a super martingale such that for all $t, \mathbb{E}\left[M_{t}^{\gamma}\right] \leqslant 1$.

1) Quantity

$$
M_{t}^{\gamma}=\exp \left(\langle\gamma, Z\rangle-\frac{1}{2}\|\lambda\|_{B}^{2}\right)
$$

is a super martingale such that for all $t, \mathbb{E}\left[M_{t}^{\gamma}\right] \leqslant 1$.
2) Choice of γ ? Replace optimization with integration (Laplace) ! Introduce distribution $\Lambda \sim \mathcal{N}\left(0, C^{-1}\right)$, and M_{t}^{\wedge}.

1) Quantity

$$
M_{t}^{\gamma}=\exp \left(\langle\gamma, Z\rangle-\frac{1}{2}\|\lambda\|_{B}^{2}\right)
$$

is a super martingale such that for all $t, \mathbb{E}\left[M_{t}^{\gamma}\right] \leqslant 1$.
2) Choice of γ ? Replace optimization with integration (Laplace) ! Introduce distribution $\Lambda \sim \mathcal{N}\left(0, C^{-1}\right)$, and M_{t}^{\wedge}.
a) $\mathbb{E}\left[M_{t}^{\wedge}\right] \leqslant 1$
b) $\mathbb{E}\left[M_{t}^{\wedge}\right]=\mathbb{E}\left[\mathbb{E}\left[M_{t}^{\wedge} \mid \mathcal{F}_{\infty}\right]\right]$ and

$$
\mathbb{E}\left[M_{t}^{\wedge} \mid \mathcal{F}_{\infty}\right]=\int_{\mathbb{R}^{d}} \exp \left(\langle\gamma, Z\rangle-\frac{1}{2}\|\lambda\|_{B}^{2}\right) f(\lambda) d \lambda
$$

where f denotes the pdf of $\Lambda \sim \mathcal{N}\left(0, C^{-1}\right)$.
3) Direct calculations show that

$$
\mathbb{E}\left[M_{t}^{\wedge} \mid \mathcal{F}_{\infty}\right]=\left(\frac{\operatorname{det}(C)}{\operatorname{det}(B+C)}\right)^{1 / 2} \exp \left(\frac{1}{2}\|Z\|_{(B+C)^{-1}}^{2}\right)
$$

Then $\mathbb{E}\left[\left(\frac{\operatorname{det}(C)}{\operatorname{det}(B+C)}\right)^{1 / 2} \exp \left(\frac{1}{2}\|Z\|_{(B+C)^{-1}}^{2}\right)\right] \leqslant 1$
4) Markov inequality yields:

$$
\begin{aligned}
& \mathbb{P}\left(\|Z\|_{(B+C)^{-1}}^{2}>2 \ln \left(\frac{\operatorname{det}(B+C)^{1 / 2}}{\delta \operatorname{det}(B)^{1 / 2}}\right)\right) \\
& \quad=\mathbb{P}\left(\exp \left(\frac{1}{2}\|Z\|_{(B+C)^{-1}}^{2}\right)>\frac{\operatorname{det}(B+C)^{1 / 2}}{\delta \operatorname{det}(B)^{1 / 2}}\right) \leqslant \delta .
\end{aligned}
$$

APPLICATION

- Application: $Z=\sum_{n=1}^{N} \varphi\left(x_{n}\right) \xi_{n}, B=G_{N, 0} C=\lambda I_{d}$.

$$
\mathbb{P}\left(\left\|\Phi_{N}^{\top} E_{N}\right\|_{G_{N, \lambda}^{-1}} \geqslant 2 \ln \left(\frac{\operatorname{det}\left(G_{N, \lambda}\right)^{1 / 2}}{\delta \lambda^{d / 2}}\right)\right) \leqslant \delta .
$$

Application

- Application: $Z=\sum_{n=1}^{N} \varphi\left(x_{n}\right) \xi_{n}, B=G_{N, 0} C=\lambda I_{d}$.

$$
\mathbb{P}\left(\left\|\Phi_{N}^{\top} E_{N}\right\|_{G_{N, \lambda}^{-1}} \geqslant 2 \ln \left(\frac{\operatorname{det}\left(G_{N, \lambda}\right)^{1 / 2}}{\delta \lambda^{d / 2}}\right)\right) \leqslant \delta .
$$

- Time-uniform bound $(\forall N)$: handles random stopping time N.
- Application: $Z=\sum_{n=1}^{N} \varphi\left(x_{n}\right) \xi_{n}, B=G_{N, 0} C=\lambda I_{d}$.

$$
\mathbb{P}\left(\left\|\Phi_{N}^{\top} E_{N}\right\|_{G_{N, \lambda}^{-1}} \geqslant 2 \ln \left(\frac{\operatorname{det}\left(G_{N, \lambda}\right)^{1 / 2}}{\delta \lambda^{d / 2}}\right)\right) \leqslant \delta .
$$

- Time-uniform bound $(\forall N)$: handles random stopping time N.
- Property:

$$
\mathbb{E}\left[M_{N}^{\wedge}\right]=\mathbb{E}\left[\liminf _{m \rightarrow \infty} M_{\min (N, m)}^{\wedge}\right] \leqslant \liminf _{m \rightarrow \infty} \mathbb{E}\left[M_{\min (N, m)}^{\wedge}\right] \leqslant 1
$$

\Longrightarrow Confidence ellipsoid on θ_{\star} :

$$
C_{t}(\delta)=\left\{\theta:\left\|\theta-\theta_{t, \lambda}\right\|_{G_{t, \lambda}} \leqslant \sqrt{\lambda}\left\|\theta^{\star}\right\|_{2}+\sqrt{2 \ln \left(\frac{\operatorname{det}\left(G_{t}+\lambda /\right)^{1 / 2}}{\delta \lambda^{d / 2}}\right)}\right\}
$$

Information gain γ_{T}

Log-determinant Lemma

$$
\gamma_{T}=\ln \left(\frac{\operatorname{det}\left(G_{T, \lambda}\right)}{\operatorname{det}\left(\lambda I_{d}\right)}\right)=\sum_{t=1}^{T} \ln \left(1+\left\|\varphi\left(x_{t}\right)\right\|_{G_{t-1, \lambda}^{-1}}^{2}\right)
$$

Information gain γ_{T}

Log-determinant Lemma

$$
\gamma_{T}=\ln \left(\frac{\operatorname{det}\left(G_{T, \lambda}\right)}{\operatorname{det}\left(\lambda I_{d}\right)}\right)=\sum_{t=1}^{T} \ln \left(1+\left\|\varphi\left(x_{t}\right)\right\|_{G_{t-1, \lambda}^{-1}}^{2}\right)
$$

$\rightarrow \operatorname{det}\left(\lambda I_{d}\right)$: volume before observing data; $\operatorname{det}\left(G_{T, \lambda}\right)$: volume after observing $x_{1}, \ldots x_{t}$.

Information gain γ_{T}

Log-determinant Lemma

$$
\gamma_{T}=\ln \left(\frac{\operatorname{det}\left(G_{T, \lambda}\right)}{\operatorname{det}\left(\lambda I_{d}\right)}\right)=\sum_{t=1}^{T} \ln \left(1+\left\|\varphi\left(x_{t}\right)\right\|_{G_{t-1, \lambda}^{-1}}^{2}\right)
$$

- $\operatorname{det}\left(\lambda I_{d}\right)$: volume before observing data; $\operatorname{det}\left(G_{T, \lambda}\right)$: volume after observing $x_{1}, \ldots x_{t}$.
- Captures how much the "volume" of information is modified by samples $x_{1}, \ldots x_{t}$.

Information gain γ_{T}

Log-determinant Lemma

$$
\gamma_{T}=\ln \left(\frac{\operatorname{det}\left(G_{T, \lambda}\right)}{\operatorname{det}\left(\lambda I_{d}\right)}\right)=\sum_{t=1}^{T} \ln \left(1+\left\|\varphi\left(x_{t}\right)\right\|_{G_{t-1, \lambda}^{-1}}^{2}\right)
$$

- $\operatorname{det}\left(\lambda I_{d}\right)$: volume before observing data; $\operatorname{det}\left(G_{T, \lambda}\right)$: volume after observing $x_{1}, \ldots x_{t}$.
- Captures how much the "volume" of information is modified by samples $x_{1}, \ldots x_{t}$.
- $\gamma_{T}=O(d \ln (T))$ for d-dimensional linear space.

$$
\begin{aligned}
\operatorname{det}\left(G_{n, \lambda}\right) & =\operatorname{det}\left(G_{n-1, \lambda}+\varphi\left(x_{n}\right) \varphi\left(x_{n}\right)^{\top}\right) \\
& \left.\left.=\operatorname{det}\left(G_{n-1, \lambda}\right) \operatorname{det}\left(I+G_{n-1, \lambda}^{-1 / 2}\right) \varphi\left(x_{n}\right)\left(G_{n-1, \lambda}^{-1 / 2}\right) \varphi\left(x_{n}\right)\right)^{\top}\right) \\
& =\operatorname{det}\left(G_{n-1, \lambda}\right)\left(1+\left\|\varphi\left(x_{n}\right)\right\|_{G_{n-1, \lambda}^{-1}}^{2}\right) \\
& =\operatorname{det}(\lambda /) \prod_{t=1}^{n}\left(1+\left\|\varphi\left(x_{t}\right)\right\|_{G_{t-1, \lambda}^{-1}}^{2}\right)
\end{aligned}
$$

Thus,

$$
\ln \left(\frac{\operatorname{det}\left(G_{n, \lambda}\right)}{\lambda^{d}}\right)=\sum_{t=1}^{n} \ln \left(1+\left\|\varphi\left(x_{t}\right)\right\|_{G_{t-1, \lambda}^{-1}}^{2}\right)
$$

The OFUL ALGORITHM

We have good confidence bounds: let us exploit them!
Simplest approach:

$$
\begin{aligned}
X_{t+1} & =\underset{x \in \mathcal{X}}{\operatorname{argmax}} \max \left\{\langle\theta, \varphi(x)\rangle: \theta \in \mathcal{C}_{t}(\delta)\right\} \\
& =\underset{x \in \mathcal{X}}{\operatorname{argmax}} f_{t}^{+}(x)
\end{aligned}
$$

Regret

If $f_{\star}(x) \in[-1,1]$ for all x, then w.p. higher than $1-\delta$,

$$
\mathcal{R}_{T}=O\left(\sqrt{T \gamma_{T}}\left(\left\|\theta_{\star}\right\|_{2}+\sigma \sqrt{2 \ln (1 / \delta)+2 \gamma_{T}}\right)\right)
$$

Is this optimal way of exploiting linear structure?

Instantaneous regret r_{t} (note: $r_{t} \leqslant 2$)

$$
\begin{aligned}
r_{t} & =f_{\star}\left(x_{\star}\right)-f_{\star}\left(x_{t}\right) \\
& \leqslant f_{t-1}^{+}\left(x_{t}\right)-f_{\star}\left(x_{t}\right) \text { with high probability } \\
& \leqslant\left|f_{t-1}^{+}\left(x_{t}\right)-f_{\lambda, t-1}\left(x_{t}\right)\right|+\left|f_{\lambda, t-1}\left(x_{t}\right)-f_{\star}\left(x_{t}\right)\right| \\
& \leqslant 2\left\|\varphi\left(x_{t}\right)\right\|_{G_{t, \lambda}^{-1}} B_{t-1}(\delta) .
\end{aligned}
$$

Thus, we deduce that with probability higher than $1-\delta$:

$$
\begin{aligned}
\mathfrak{R}_{T} & =\sum_{t=1}^{T} r_{t} \leqslant \sum_{t=1}^{T} 2 \min \left\{\left\|\varphi\left(x_{t}\right)\right\|_{G_{t, \lambda}^{-1}} B_{t-1}(\delta), 1\right\} \\
& \leqslant 2 B_{T}(\delta) \sum_{t=1}^{T} \min \left\{\left\|\varphi\left(x_{t}\right)\right\|_{\left.G_{t, \lambda}^{-1}, 1\right\}}\right. \\
& \leqslant 2 B_{T}(\delta) \sqrt{T \sum_{t=1}^{T} \min \left\{\left\|\varphi\left(x_{t}\right)\right\|_{G_{t, \lambda}^{-1}}^{2}, 1\right\}} .
\end{aligned}
$$

We conclude remarking that $\min \{A, 1\} \leqslant \frac{\ln (1+A)}{\ln (2)}$ for all $A \geqslant 0$.

Thompson in Sampling for Linear - Bandits
Shipra Agrawal, Navin Goyal "Thompson Sampling for Contextual Bandits with Linear Payoffs"
arXiv:1209.3352, 2014.

- Bayesian model:

$$
y_{t}=x_{t}^{T} \theta+\varepsilon_{t}, \quad \theta \sim \mathcal{N}\left(0, \kappa^{2} I_{d}\right), \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Explicit posterior: $p\left(\theta \mid x_{1}, y_{1}, \ldots, x_{t}, y_{t}\right)=\mathcal{N}\left(\widehat{\theta}(t), \Sigma_{t}\right)$.

BAYESIAN APPROACH

- Bayesian model:

$$
y_{t}=x_{t}^{T} \theta+\varepsilon_{t}, \quad \theta \sim \mathcal{N}\left(0, \kappa^{2} I_{d}\right), \quad \varepsilon_{t} \sim \mathcal{N}\left(0, \sigma^{2}\right) .
$$

Explicit posterior: $p\left(\theta \mid x_{1}, y_{1}, \ldots, x_{t}, y_{t}\right)=\mathcal{N}\left(\widehat{\theta}(t), \Sigma_{t}\right)$.

- Thompson Sampling

$$
\begin{aligned}
\tilde{\theta}(t) & \sim \mathcal{N}\left(\widehat{\theta}(t), \Sigma_{t}\right), \\
x_{t+1} & =\underset{x \in \mathcal{D}_{t+1}}{\operatorname{argmax}} x^{T} \tilde{\theta}(t) .
\end{aligned}
$$

[Li et al. 12],[Agrawal \& Goyal 13]

TABLE OF CONTENTS

LINEAR BANDITS Regression Linear UCB, Linear TS
 Graph-linear Bandits

 Extension to KernelsSTRUCTURED LOWER BOUNDS

Conclusion, Perspective

Odalric-Ambrym Maillard
$\mathcal{G}=(\mathcal{V}, \mathcal{E})$ graph with set of notes $\mathcal{V}=\{1, \ldots, N\}$, and edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.
$\mathcal{G}=(\mathcal{V}, \mathcal{E})$ graph with set of notes $\mathcal{V}=\{1, \ldots, N\}$, and edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.

- $\mathbf{W}=\left(w_{i, j}\right)_{i, j}$ Weight matrix (non-negative weights)
$\mathcal{G}=(\mathcal{V}, \mathcal{E})$ graph with set of notes $\mathcal{V}=\{1, \ldots, N\}$, and edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.
- $\mathbf{W}=\left(w_{i, j}\right)_{i, j}$ Weight matrix (non-negative weights)
- $\mathbf{D}=\operatorname{Diag}\left(\left(\sum_{j} w_{i, j}\right)_{i}\right)$ Degree matrix
$\mathcal{G}=(\mathcal{V}, \mathcal{E})$ graph with set of notes $\mathcal{V}=\{1, \ldots, N\}$, and edges $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$.
- $\mathbf{W}=\left(w_{i, j}\right)_{i, j}$ Weight matrix (non-negative weights)
- $\mathbf{D}=\operatorname{Diag}\left(\left(\sum_{j} w_{i, j}\right)_{i}\right)$ Degree matrix
- L = D - W graph Laplacian matrix

Graph Laplacian properties

A graph function is seen as a vector $f \in \mathbb{R}^{N}$ assigning values to nodes.

$$
f^{\top} \mathbf{L} f=\frac{1}{2} \sum_{i, j \leqslant N} w_{i, j}\left(f_{i}-f_{j}\right)^{2} .
$$

Properties:

Graph Laplacian properties

A graph function is seen as a vector $f \in \mathbb{R}^{N}$ assigning values to nodes.

$$
f^{\top} \mathbf{L} f=\frac{1}{2} \sum_{i, j \leqslant N} w_{i, j}\left(f_{i}-f_{j}\right)^{2} .
$$

Properties:

- \mathbf{L} is symmetric, positive, semi-definite.

Graph Laplacian properties

A graph function is seen as a vector $f \in \mathbb{R}^{N}$ assigning values to nodes.

$$
f^{\top} \mathbf{L} f=\frac{1}{2} \sum_{i, j \leqslant N} w_{i, j}\left(f_{i}-f_{j}\right)^{2} .
$$

Properties:

- \mathbf{L} is symmetric, positive, semi-definite.
- Smallest eigenvalue is 0 , corresponding vector $\mathbf{1}_{N}$

A graph function is seen as a vector $f \in \mathbb{R}^{N}$ assigning values to nodes.

$$
f^{\top} \mathbf{L} f=\frac{1}{2} \sum_{i, j \leqslant N} w_{i, j}\left(f_{i}-f_{j}\right)^{2} .
$$

Properties:

- L is symmetric, positive, semi-definite.
- Smallest eigenvalue is 0 , corresponding vector $\mathbf{1}_{N}$
- Eigenvalues: $0=\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{N}$

Graph Smoothness

Let $\mathbf{L}=\mathbf{Q}^{\top} \boldsymbol{\Lambda} \mathbf{Q}$ where

GRAPH SMOOTHNESS

Let $\mathbf{L}=\mathbf{Q}^{\top} \boldsymbol{\Lambda} \mathbf{Q}$ where

- $\mathbf{\Lambda}: ~ N \times N$ diagonal matrix with eigenvalues of \mathbf{L}

GRAPH SMOOTHNESS

Let $\mathbf{L}=\mathbf{Q}^{\top} \boldsymbol{\Lambda} \mathbf{Q}$ where

- $\mathbf{\Lambda}: ~ N \times N$ diagonal matrix with eigenvalues of \mathbf{L}
- Q: $N \times N$ matrix chose columns are eigenvectors of \mathbf{L}.

Any graph-function f decomposes as $f=Q \alpha$ form some α, that is

GRAPH SMOOTHNESS

Let $\mathbf{L}=\mathbf{Q}^{\top} \boldsymbol{\Lambda} \mathbf{Q}$ where

- $\mathbf{\Lambda}: ~ N \times N$ diagonal matrix with eigenvalues of \mathbf{L}
- Q: $N \times N$ matrix chose columns are eigenvectors of \mathbf{L}.

Any graph-function f decomposes as $f=Q \alpha$ form some α, that is

- $f(i)=\sum_{j \in \mathcal{V}} \alpha_{j} Q_{i, j}=\langle\alpha, q(i)\rangle$ where $q(i)=\left(Q_{i, j}\right)_{j}$ is $i^{\text {th }}$ eigenvector.

Graph Smoothness

Let $\mathbf{L}=\mathbf{Q}^{\top} \boldsymbol{\Lambda} \mathbf{Q}$ where

- $\mathbf{\Lambda}: \mathbf{N} \times N$ diagonal matrix with eigenvalues of \mathbf{L}
- Q: $N \times N$ matrix chose columns are eigenvectors of \mathbf{L}.

Any graph-function f decomposes as $f=Q \alpha$ form some α, that is

- $f(i)=\sum_{j \in \mathcal{V}} \alpha_{j} Q_{i, j}=\langle\alpha, q(i)\rangle$ where $q(i)=\left(Q_{i, j}\right)_{j}$ is $i^{\text {th }}$ eigenvector.
- Then, $f^{\top} \mathbf{L} f=\sum_{i \in \mathcal{V}} \lambda_{i} \alpha_{i}^{2}=\|\alpha\|_{\Lambda} \stackrel{\text { def }}{=}\|f\|_{\mathcal{G}}$
\Longrightarrow Linear space induced by the Graph:

$$
\mathcal{F}_{\mathcal{G}}=\left\{f: f(x)=\langle\alpha, q(x)\rangle,\|\alpha\|_{\Lambda} \leqslant 1\right\}
$$

Low-norm $\|f\|_{\mathcal{G}}$ means:

Graph Smoothness

Let $\mathbf{L}=\mathbf{Q}^{\top} \boldsymbol{\Lambda} \mathbf{Q}$ where

- $\mathbf{\Lambda}: ~ N \times N$ diagonal matrix with eigenvalues of \mathbf{L}
- Q: $N \times N$ matrix chose columns are eigenvectors of \mathbf{L}.

Any graph-function f decomposes as $f=Q \alpha$ form some α, that is

- $f(i)=\sum_{j \in \mathcal{V}} \alpha_{j} Q_{i, j}=\langle\alpha, q(i)\rangle$ where $q(i)=\left(Q_{i, j}\right)_{j}$ is $i^{\text {th }}$ eigenvector.
- Then, $f^{\top} \mathbf{L} f=\sum_{i \in \mathcal{V}} \lambda_{i} \alpha_{i}^{2}=\|\alpha\|_{\Lambda} \stackrel{\text { def }}{=}\|f\|_{\mathcal{G}}$
\Longrightarrow Linear space induced by the Graph:

$$
\mathcal{F}_{\mathcal{G}}=\left\{f: f(x)=\langle\alpha, q(x)\rangle,\|\alpha\|_{\Lambda} \leqslant 1\right\}
$$

Low-norm $\|f\|_{\mathcal{G}}$ means:

- $\left(f_{i}-f_{j}\right)^{2}$ is small if $w_{i, j}$ is large

Graph Smoothness

Let $\mathbf{L}=\mathbf{Q}^{\top} \boldsymbol{\Lambda} \mathbf{Q}$ where

- $\mathbf{\Lambda}: \mathbf{N} \times N$ diagonal matrix with eigenvalues of \mathbf{L}
- Q: $N \times N$ matrix chose columns are eigenvectors of \mathbf{L}.

Any graph-function f decomposes as $f=Q \alpha$ form some α, that is

- $f(i)=\sum_{j \in \mathcal{V}} \alpha_{j} Q_{i, j}=\langle\alpha, q(i)\rangle$ where $q(i)=\left(Q_{i, j}\right)_{j}$ is $i^{\text {th }}$ eigenvector.
- Then, $f^{\top} \mathbf{L} f=\sum_{i \in \mathcal{V}} \lambda_{i} \alpha_{i}^{2}=\|\alpha\|_{\Lambda} \stackrel{\text { def }}{=}\|f\|_{\mathcal{G}}$
\Longrightarrow Linear space induced by the Graph:

$$
\mathcal{F}_{\mathcal{G}}=\left\{f: f(x)=\langle\alpha, q(x)\rangle,\|\alpha\|_{\Lambda} \leqslant 1\right\}
$$

Low-norm $\|f\|_{\mathcal{G}}$ means:

- $\left(f_{i}-f_{j}\right)^{2}$ is small if $w_{i, j}$ is large
- similar value between neighbor nodes.

Odalric-Ambrym Maillard

GRaph-LINEAR BANDITS

Further references for bandits on graphs:

- Michal Valko, Rémi Munos, Branislav Kveton, Tomás Kocák: Spectral Bandits for Smooth Graph Functions, in International Conference on Machine Learning (ICML 2014).

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequentlal decision making

GRaph-LINEAR BANDITS

Further references for bandits on graphs:

- Michal Valko, Rémi Munos, Branislav Kveton, Tomás Kocák: Spectral Bandits for Smooth Graph Functions, in International Conference on Machine Learning (ICML 2014).
- Alexandra Carpentier, Michal Valko: Revealing graph bandits for maximizing local influence, in International Conference on Artificial Intelligence and Statistics (AISTATS 2016).

Odalric-Ambrym Maillard

Linear bandits
 Regression Linear UCB, Linear TS Graph-linear Bandits

Extension to Kernels

STRUCTURED LOWER BOUNDS

Conclusion, PERSPECTIVE

Odalric-Ambrym Maillard

RKHS

Let k be a kernel function (continuous, symmetric positive definite) on a compact \mathcal{X} with positive finite Borel measure μ.
There exists an at most countable sequence $\left(\sigma_{i}, \psi_{i}\right)_{i \in \mathbb{N}^{\star}}$ where $\sigma_{i} \geqslant 0$, $\lim _{i \rightarrow \infty} \sigma_{i}=0$ and $\left\{\psi_{i}\right\}$ form an orthonormal basis of $L_{2, \mu}(\mathcal{X})$, such that

$$
\begin{gathered}
k(x, y)=\sum_{j=1}^{\infty} \sigma_{j} \psi_{j}(x) \psi_{j}\left(y^{\prime}\right) \quad \text { and } \quad\|f\|_{\mathcal{K}}^{2}=\sum_{j=1}^{\infty} \frac{\left\langle f, \psi_{j}\right\rangle_{L_{2, \mu}}^{2}}{\sigma_{j}} \\
\text { Let } \left.\varphi_{i}=\sqrt{\sigma_{i}} \psi_{i} \text { (hence }\left\|\varphi_{i}\right\|_{L_{2}}=\sqrt{\sigma_{i}},\left\|\varphi_{i}\right\|_{\mathcal{K}}=1 .\right) \\
\text { If } f=\sum_{i} \theta_{i} \varphi_{i} \text {, then }\|f\|_{\mathcal{K}}^{2}=\sum_{i} \theta_{i}^{2} .
\end{gathered}
$$

Similar to parametric regression except with infinite parameter.

Let k be a kernel function. In the parametric case, we built $\theta_{\lambda, t}$, then $f_{\lambda, t}(x)=\left\langle\theta_{\lambda, t}, \varphi(x)\right\rangle$. After observing $Y_{t}=\left(y_{1}, \ldots, y_{t}\right)^{\top} \in \mathbb{R}^{t}$, we now build directly:

$$
\text { (Kernel estimate) } \quad f_{\lambda, t}(x)=k_{t}(x)^{\top}\left(\mathbf{K}_{t}+\lambda I_{t}\right)^{-1} Y_{t}
$$

where

Let k be a kernel function. In the parametric case, we built $\theta_{\lambda, t}$, then $f_{\lambda, t}(x)=\left\langle\theta_{\lambda, t}, \varphi(x)\right\rangle$.
After observing $Y_{t}=\left(y_{1}, \ldots, y_{t}\right)^{\top} \in \mathbb{R}^{t}$, we now build directly:

$$
\text { (Kernel estimate) } \quad f_{\lambda, t}(x)=k_{t}(x)^{\top}\left(\mathbf{K}_{t}+\lambda I_{t}\right)^{-1} Y_{t}
$$

where

- $k_{t}(x)=\left(k\left(x, x_{t^{\prime}}\right)\right)_{t^{\prime} \leqslant t} \in \mathbb{R}^{t}$,

Let k be a kernel function. In the parametric case, we built $\theta_{\lambda, t}$, then $f_{\lambda, t}(x)=\left\langle\theta_{\lambda, t}, \varphi(x)\right\rangle$.
After observing $Y_{t}=\left(y_{1}, \ldots, y_{t}\right)^{\top} \in \mathbb{R}^{t}$, we now build directly:

$$
\text { (Kernel estimate) } \quad f_{\lambda, t}(x)=k_{t}(x)^{\top}\left(\mathbf{K}_{t}+\lambda I_{t}\right)^{-1} Y_{t}
$$

where

- $k_{t}(x)=\left(k\left(x, x_{t^{\prime}}\right)\right)_{t^{\prime} \leqslant t} \in \mathbb{R}^{t}$,

Let k be a kernel function. In the parametric case, we built $\theta_{\lambda, t}$, then $f_{\lambda, t}(x)=\left\langle\theta_{\lambda, t}, \varphi(x)\right\rangle$.
After observing $Y_{t}=\left(y_{1}, \ldots, y_{t}\right)^{\top} \in \mathbb{R}^{t}$, we now build directly:

$$
\text { (Kernel estimate) } \quad f_{\lambda, t}(x)=k_{t}(x)^{\top}\left(\mathbf{K}_{t}+\lambda I_{t}\right)^{-1} Y_{t}
$$

where

- $k_{t}(x)=\left(k\left(x, x_{t^{\prime}}\right)\right)_{t^{\prime} \leqslant t} \in \mathbb{R}^{t}$,
- $\mathbf{K}_{t}=\left(k\left(x_{s}, x_{s^{\prime}}\right)\right)_{s, s^{\prime} \leqslant t} \in \mathbb{R}^{t \times t}$,
for a parameter $\lambda \in \mathbb{R}$.

STREAMING CONFIDENCE BOUNDS

Theorem (Durand \& M. 2017, Kernel estimation error)

$\forall \delta \in[0,1]$, with probability higher than $1-\delta$, it holds simultaneously over all $x \in \mathcal{X}$ and $\mathbf{t} \geqslant \mathbf{0}$,

$$
\left|f_{\star}(x)-f_{\lambda, t}(x)\right| \leqslant \sqrt{k_{\lambda, t}(x, x)}\left[\left\|f_{\star}\right\|_{k}+\frac{\sigma}{\sqrt{\lambda}} \sqrt{2 \ln (1 / \delta)+2 \gamma_{t}(\lambda)}\right]
$$

where

STREAMING CONFIDENCE BOUNDS

Theorem (Durand \& M. 2017, Kernel estimation error)

$\forall \delta \in[0,1]$, with probability higher than $1-\delta$, it holds simultaneously over all $x \in \mathcal{X}$ and $\mathbf{t} \geqslant \mathbf{0}$,

$$
\left|f_{\star}(x)-f_{\lambda, t}(x)\right| \leqslant \sqrt{k_{\lambda, t}(x, x)}\left[\left\|f_{\star}\right\|_{k}+\frac{\sigma}{\sqrt{\lambda}} \sqrt{2 \ln (1 / \delta)+2 \gamma_{t}(\lambda)}\right],
$$

where

- $k_{\lambda, t}(x, x)=k(x, x)-k_{t}(x)^{\top}\left(\mathbf{K}_{t}+\lambda I_{t}\right)^{-1} k_{t}(x)$: posterior variance.

Theorem (Durand \& M. 2017, Kernel estimation error)

$\forall \delta \in[0,1]$, with probability higher than $1-\delta$, it holds simultaneously over all $x \in \mathcal{X}$ and $\mathbf{t} \geqslant \mathbf{0}$,

$$
\left|f_{\star}(x)-f_{\lambda, t}(x)\right| \leqslant \sqrt{k_{\lambda, t}(x, x)}\left[\left\|f_{\star}\right\|_{k}+\frac{\sigma}{\sqrt{\lambda}} \sqrt{2 \ln (1 / \delta)+2 \gamma_{t}(\lambda)}\right],
$$

where

- $k_{\lambda, t}(x, x)=k(x, x)-k_{t}(x)^{\top}\left(\mathbf{K}_{t}+\lambda l_{t}\right)^{-1} k_{t}(x)$: posterior variance.
- $\gamma_{t}(\lambda)=\frac{1}{2} \sum_{t^{\prime}=1}^{t} \ln \left(1+\frac{1}{\lambda} k_{\lambda, t^{\prime}-1}\left(x_{t^{\prime}}, x_{t^{\prime}}\right)\right)$: information gain.

STREAMING CONFIDENCE BOUNDS

Theorem (Durand \& M. 2017, Kernel estimation error)

$\forall \delta \in[0,1]$, with probability higher than $1-\delta$, it holds simultaneously over all $x \in \mathcal{X}$ and $\mathbf{t} \geqslant \mathbf{0}$,

$$
\left|f_{\star}(x)-f_{\lambda, t}(x)\right| \leqslant \sqrt{k_{\lambda, t}(x, x)} B_{\lambda, t-1}(\delta),
$$

where

- $k_{\lambda, t}(x, x)=k(x, x)-k_{t}(x)^{\top}\left(\mathbf{K}_{t}+\lambda I_{t}\right)^{-1} k_{t}(x)$: posterior variance.
- $\gamma_{t}(\lambda)=\frac{1}{2} \sum_{t^{\prime}=1}^{t} \ln \left(1+\frac{1}{\lambda} k_{\lambda, t^{\prime}-1}\left(x_{t^{\prime}}, x_{t^{\prime}}\right)\right)$: information gain.
- $\left\|f_{\star}\right\|_{k}$: Reproducing Kernel Hilbert Space norm.

$k\left(x, x^{\prime}\right)$	Captures	γ_{T}		
$\left\langle x, x^{\prime}\right\rangle$	"Linear functions"	$O(d \ln (T))$		
$\exp \left(-\frac{\left\\|x-x^{\prime}\right\\|^{2}}{2 \ell^{2}}\right)$	"Smooth functions"	$O\left(\ln (T)^{d+1}\right)$		
\ldots	\ldots	\cdots		

Many kernels, for different properties of the signal (graph-smoothness, periodic, change points, etc.)

Kernel-UCB and Kernel-TS

Minimize the regret: $\quad \mathcal{R}_{T}=\sum_{t=1}^{T} f_{\star}(\star)-f_{\star}\left(x_{t}\right)$.

Kernel-UCB

$$
x_{t} \in \underset{x \in \mathcal{X}}{\operatorname{argmax}} f_{t}^{+}(x) \quad \text { where } f_{t}^{+}(x)=f_{\lambda, t-1}(x)+\sqrt{k_{\lambda, t-1}(x, x)} B_{\lambda, t-1}(\delta) .
$$

Kernel-TS (on discrete set $\mathbb{X} \subset \mathcal{X}$)

$\widehat{\mathbf{f}}_{t-1}=\left(f_{\lambda, t-1}(x)\right)_{x \in \mathbb{X}}, \hat{\Sigma}_{t-1}=\left(k_{\lambda, t-1}\left(x, x^{\prime}\right) B_{\lambda, t-1}(\delta)^{2}\right)_{x, x^{\prime} \in \mathbb{X}}$.
More info in (Durand et al., 2018, JMLR)

STRUCTURES

LINEAR BANDITS

STRUCTURED LOWER BOUNDS

Conclusion, Perspective

Structures

LINEAR BANDITS

Structured LOWER BOUNDS
 Lower bounds

Lipschitz bandits
Ranking bandits
Metric-graph of bandits

Conclusion, Perspective

Odalric-Ambrym Maillard

REGRET LOWER BOUNDS

Set of optimal arms for $\nu=\left(\nu_{a}\right)_{a \in \mathcal{A}}: \mathcal{A}_{\star}(\nu)=\operatorname{Argmax}_{a \in \mathcal{A}} \mu_{a}(\nu)$.

Definition (Uniformly Good strategies)

A bandit strategy is uniformly-good on \mathcal{D} if

$$
\forall \nu=\left(\nu_{a}\right)_{a \in \mathcal{A}} \in \mathcal{D}, \forall a \notin \mathcal{A}_{\star}(\nu), \quad \mathbb{E}\left[N_{T}(a)\right]=o\left(T^{\alpha}\right) \quad \text { for all } \alpha \in(0,1] .
$$

Theorem ((Lai, Robbins 85) "Price for being uniformly-good")

Any uniformly good strategy on $\mathcal{D}=\operatorname{Bern}^{\mathcal{A}}$ must satisfy

$$
\forall a \notin \mathcal{A}_{\star}(\nu) \quad \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\nu}\left[N_{T}(a)\right]}{\log (T)} \geqslant \frac{1}{\mathrm{kl}\left(\mu_{\mathrm{a}}(\nu), \mu_{\star}(\nu)\right)} .
$$

REGRET LOWER BOUNDS

Set of optimal arms for $\nu=\left(\nu_{a}\right)_{a \in \mathcal{A}}: \mathcal{A}_{\star}(\nu)=\operatorname{Argmax}_{a \in \mathcal{A}} \mu_{a}(\nu)$.

Definition (Uniformly Good strategies)

A bandit strategy is uniformly-good on \mathcal{D} if

$$
\forall \nu=\left(\nu_{a}\right)_{a \in \mathcal{A}} \in \mathcal{D}, \forall a \notin \mathcal{A}_{\star}(\nu), \quad \mathbb{E}\left[N_{T}(a)\right]=o\left(T^{\alpha}\right) \quad \text { for all } \alpha \in(0,1] .
$$

Theorem ((Lai, Robbins 85) "Price for being uniformly-good")

Any uniformly good strategy on $\mathcal{D}=\operatorname{Bern}^{\mathcal{A}}$ must satisfy

$$
\forall a \notin \mathcal{A}_{\star}(\nu) \quad \liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\nu}\left[N_{T}(a)\right]}{\log (T)} \geqslant \frac{1}{\mathrm{kl}\left(\mu_{\mathrm{a}}(\nu), \mu_{\star}(\nu)\right)} .
$$

Main tool: Change of measure

(Probability) $\quad \forall \Omega, \forall c \in \mathbb{R}, \mathbb{P}_{\nu}\left(\Omega \cap\left\{\log \left(\frac{d \nu}{d \tilde{\nu}}(X)\right) \leqslant c\right\}\right) \leqslant \exp (c) \mathbb{P}_{\tilde{\nu}}(\Omega)$.
(Expectation) $\quad \mathbb{E}_{\nu}\left[\log \left(\frac{d \nu}{d \tilde{\nu}}(X)\right)\right] \geqslant \sup _{g: \mathcal{X} \rightarrow[0,1]} \operatorname{kl}\left(\mathbb{E}_{\nu}[g(X)], \mathbb{E}_{\tilde{\nu}}[g(X)]\right)$.

Why KL? Log-LIkelihood (from Weyl 1940)

Consider $\theta, \theta^{\prime} \in \Theta$:

$$
\widehat{\mathcal{L}}_{T}=\sum_{s=1}^{T} \ln \left(\frac{\nu_{\theta_{A_{s}^{\prime}}}\left(Y_{s}\right)}{\nu_{\theta_{A_{s}}}\left(Y_{s}\right)}\right)=\sum_{a \in \mathcal{A}} \sum_{s=1}^{T} \mathbb{I}\left\{A_{s}=a\right\} \ln \left(\frac{\nu_{\theta_{a}^{\prime}}\left(Y_{s}\right)}{\nu_{\theta_{a}}\left(Y_{s}\right)}\right)
$$

Why KL? Log-Likelihood (from Weyl 1940)

Consider $\theta, \theta^{\prime} \in \Theta$:

$$
\widehat{\mathcal{L}}_{T}=\sum_{s=1}^{T} \ln \left(\frac{\nu_{\theta_{A_{s}^{\prime}}}\left(Y_{s}\right)}{\nu_{\theta_{A_{s}}}\left(Y_{s}\right)}\right)=\sum_{a \in \mathcal{A}} \sum_{s=1}^{T} \mathbb{I}\left\{A_{s}=a\right\} \ln \left(\frac{\nu_{\theta_{a}^{\prime}}\left(Y_{s}\right)}{\nu_{\theta_{a}}\left(Y_{s}\right)}\right)
$$

For any event Ω it holds (Change of measure)

$$
\begin{aligned}
\mathbb{P}_{\theta^{\prime}}[\Omega] & =\mathbb{E}_{\theta}\left[\exp \left(\widehat{\mathcal{L}}_{T}\right) \mathbb{I}\{\Omega\}\right]=\mathbb{E}_{\theta}\left[\exp \left(\widehat{\mathcal{L}}_{T}\right) \mid \Omega\right] \mathbb{P}_{\theta}[\Omega] \\
& \stackrel{\text { Jensen }}{\geqslant} \exp \left(\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mid \Omega\right]\right) \mathbb{P}_{\theta}[\Omega]=\exp \left(\frac{\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mathbb{I}\{\Omega\}\right]}{\mathbb{P}_{\theta}[\Omega]}\right) \mathbb{P}_{\theta}[\Omega]
\end{aligned}
$$

Reorganizing the terms, we get $-\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mathbb{I}\{\Omega\}\right] \geqslant \mathbb{P}_{\theta}[\Omega] \ln \left(\frac{\mathbb{P}_{\theta}[\Omega]}{\mathbb{P}_{\theta^{\prime}}[\Omega]}\right)$.

Why KL? Log-Likelihood (from Weyl 1940)

Consider $\theta, \theta^{\prime} \in \Theta$:

$$
\widehat{\mathcal{L}}_{T}=\sum_{s=1}^{T} \ln \left(\frac{\nu_{\theta_{A_{s}^{\prime}}}\left(Y_{s}\right)}{\nu_{\theta_{A_{s}}}\left(Y_{s}\right)}\right)=\sum_{a \in \mathcal{A}} \sum_{s=1}^{T} \mathbb{I}\left\{A_{s}=a\right\} \ln \left(\frac{\nu_{\theta_{a}^{\prime}}\left(Y_{s}\right)}{\nu_{\theta_{a}}\left(Y_{s}\right)}\right)
$$

For any event Ω it holds (Change of measure)

$$
\begin{aligned}
\mathbb{P}_{\theta^{\prime}}[\Omega] & =\mathbb{E}_{\theta}\left[\exp \left(\widehat{\mathcal{L}}_{T}\right) \mathbb{I}\{\Omega\}\right]=\mathbb{E}_{\theta}\left[\exp \left(\widehat{\mathcal{L}}_{T}\right) \mid \Omega\right] \mathbb{P}_{\theta}[\Omega] \\
& \stackrel{\text { Jensen }}{\geqslant} \exp \left(\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mid \Omega\right]\right) \mathbb{P}_{\theta}[\Omega]=\exp \left(\frac{\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mathbb{I}\{\Omega\}\right]}{\mathbb{P}_{\theta}[\Omega]}\right) \mathbb{P}_{\theta}[\Omega],
\end{aligned}
$$

Reorganizing the terms, we get $-\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mathbb{I}\{\Omega\}\right] \geqslant \mathbb{P}_{\theta}[\Omega] \ln \left(\frac{\mathbb{P}_{\theta}[\Omega]}{\mathbb{P}_{\theta^{\prime}}[\Omega]}\right)$. Likewise for the complement Ω^{c}. Summing up the terms, we obtain

$$
\begin{aligned}
-\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T}\right] & =\sum_{a \in \mathcal{A}} \mathbb{E}_{\theta}\left[N_{T}(a)\right] \operatorname{KL}\left(\theta_{a}, \theta_{a}^{\prime}\right) \\
& \geqslant \mathbb{P}_{\theta}[\Omega] \ln \left(\frac{\mathbb{P}_{\theta}[\Omega]}{\mathbb{P}_{\theta^{\prime}}[\Omega]}\right)+\left(1-\mathbb{P}_{\theta}[\Omega]\right) \ln \left(\frac{1-\mathbb{P}_{\theta}[\Omega]}{1-\mathbb{P}_{\theta^{\prime}}[\Omega]}\right) .
\end{aligned}
$$

Why KL? Log-Likelihood (from Weyl 1940)

Consider $\theta, \theta^{\prime} \in \Theta$:

$$
\widehat{\mathcal{L}}_{T}=\sum_{s=1}^{T} \ln \left(\frac{\nu_{\theta_{A_{s}^{\prime}}}\left(Y_{s}\right)}{\nu_{\theta_{A_{s}}}\left(Y_{s}\right)}\right)=\sum_{a \in \mathcal{A}} \sum_{s=1}^{T} \mathbb{I}\left\{A_{s}=a\right\} \ln \left(\frac{\nu_{\theta_{a}^{\prime}}\left(Y_{s}\right)}{\nu_{\theta_{a}}\left(Y_{s}\right)}\right)
$$

For any event Ω it holds (Change of measure)

$$
\begin{aligned}
\mathbb{P}_{\theta^{\prime}}[\Omega] & =\mathbb{E}_{\theta}\left[\exp \left(\widehat{\mathcal{L}}_{T}\right) \mathbb{I}\{\Omega\}\right]=\mathbb{E}_{\theta}\left[\exp \left(\widehat{\mathcal{L}}_{T}\right) \mid \Omega\right] \mathbb{P}_{\theta}[\Omega] \\
& \stackrel{\text { Jensen }}{\geqslant} \exp \left(\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mid \Omega\right]\right) \mathbb{P}_{\theta}[\Omega]=\exp \left(\frac{\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mathbb{I}\{\Omega\}\right]}{\mathbb{P}_{\theta}[\Omega]}\right) \mathbb{P}_{\theta}[\Omega],
\end{aligned}
$$

Reorganizing the terms, we get $-\mathbb{E}_{\theta}\left[\widehat{\mathcal{L}}_{T} \mathbb{I}\{\Omega\}\right] \geqslant \mathbb{P}_{\theta}[\Omega] \ln \left(\frac{\mathbb{P}_{\theta}[\Omega]}{\mathbb{P}_{\theta^{\prime}}[\Omega]}\right)$. Likewise for the complement Ω^{c}. Summing up the terms, we obtain

$$
\sum_{a \in \mathcal{A}} \mathbb{E}_{\theta}\left[N_{T}(a)\right] K L\left(\theta_{a}, \theta_{a}^{\prime}\right) \geqslant \operatorname{kl}\left(\mathbb{P}_{\theta}[\Omega], \mathbb{P}_{\theta^{\prime}}[\Omega]\right)
$$

Hence for all suboptimal arm $a \neq \star_{\theta}$,

$$
\mathbb{E}_{\theta}\left[N_{T}(a)\right] \geqslant \sup _{\Omega, \theta^{\prime}} \frac{\mathrm{kl}\left(\mathbb{P}_{\theta}[\Omega], \mathbb{P}_{\tilde{\theta}}[\Omega]\right)-\sum_{a^{\prime} \neq z^{\prime}} \mathrm{KL}\left(\theta_{a^{\prime}}, \theta_{a^{\prime}}^{\prime}\right) \mathbb{E}_{\theta}\left[N_{T}\left(a^{\prime}\right)\right]}{\mathrm{KL}\left(\theta_{a}, \theta_{a}^{\prime}\right)} .
$$

Hence for all suboptimal arm $a \neq \star_{\theta}$,

$$
\mathbb{E}_{\theta}\left[N_{T}(a)\right] \geqslant \sup _{\Omega, \theta^{\prime}} \frac{\operatorname{kl}\left(\mathbb{P}_{\theta}[\Omega], \mathbb{P}_{\tilde{\theta}}[\Omega]\right)-\sum_{a^{\prime} \neq a} \mathrm{KL}\left(\theta_{a^{\prime}}, \theta_{a^{\prime}}^{\prime}\right) \mathbb{E}_{\theta}\left[N_{T}\left(a^{\prime}\right)\right]}{\operatorname{KL}\left(\theta_{a}, \theta_{a}^{\prime}\right)}
$$

Choose θ^{\prime} such that a is optimal. Let $\Omega=\left\{N_{T}(a)>T^{\alpha}\right\}$.

- $\mathbb{P}_{\theta}[\Omega] \leqslant \mathbb{E}_{\theta}\left[N_{T}(a)\right] T^{-\alpha}=o(1)($ Consistency)
- $\sum_{a^{\prime} \in \mathcal{A}} N_{T}\left(a^{\prime}\right)=T$ (Construction)

Thuskl $\left(\mathbb{P}_{\theta}[\Omega], \mathbb{P}_{\tilde{\theta}}[\Omega]\right) \simeq \ln \left(\frac{1}{\mathbb{P}_{\tilde{\theta}}\left(N_{T}(a) \leqslant T^{\alpha}\right)}\right) \geqslant \ln \left(\frac{T-T^{\alpha}}{\sum_{a^{\prime} \neq a} \mathbb{E}_{\tilde{\theta}}\left[N_{T}\left(a^{\prime}\right)\right)}\right) \simeq \ln (T)$.

Hence for all suboptimal arm $a \neq \star_{\theta}$,

$$
\mathbb{E}_{\theta}\left[N_{T}(a)\right] \geqslant \sup _{\Omega, \theta^{\prime}} \frac{\mathrm{kl}^{2}\left(\mathbb{P}_{\theta}[\Omega], \mathbb{P}_{\tilde{\theta}}[\Omega]\right)-\sum_{a^{\prime} \neq z^{2}} \mathrm{KL}\left(\theta_{a^{\prime}}, \theta_{a^{\prime}}^{\prime}\right) \mathbb{E}_{\theta}\left[N_{T}\left(a^{\prime}\right)\right]}{\mathrm{KL}\left(\theta_{a}, \theta_{a}^{\prime}\right)} .
$$

Choose θ^{\prime} such that a is optimal. Let $\Omega=\left\{N_{T}(a)>T^{\alpha}\right\}$.

- $\mathbb{P}_{\theta}[\Omega] \leqslant \mathbb{E}_{\theta}\left[N_{T}(a)\right] T^{-\alpha}=o(1)($ Consistency)
- $\sum_{a^{\prime} \in \mathcal{A}} N_{T}\left(a^{\prime}\right)=T$ (Construction)

Thuskl $\left(\mathbb{P}_{\theta}[\Omega], \mathbb{P}_{\tilde{\theta}}[\Omega]\right) \simeq \ln \left(\frac{1}{\mathbb{P}_{\tilde{\theta}}\left(N_{T}(a) \leqslant T^{\alpha}\right)}\right) \geqslant \ln \left(\frac{T-T^{\alpha}}{\left.\sum_{a^{\prime} \neq \exists} \mathbb{E}_{\tilde{\theta}} N_{T}\left(a^{\prime}\right)\right]}\right) \simeq \ln (T)$.

- No constraint on $\theta_{a^{\prime}}^{\prime}$ for $a^{\prime} \neq a: \theta_{a^{\prime}}^{\prime}=\theta_{a^{\prime}}$ kills the blue terms.

$$
\liminf _{T \rightarrow \infty} \frac{\mathbb{E}_{\theta}\left[N_{T}(a)\right]}{\ln (T)} \geqslant \frac{1-0}{\inf _{\tilde{\theta}_{a}}\left\{\mathrm{KL}\left(\theta_{a}, \theta_{a}^{\prime}\right): \mu_{a}^{\prime}>\mu_{\star_{\theta}}\right\}}
$$

Insight from lower bound: Any uniformly-good strategy on \mathcal{D} must satisfy:

$$
\forall a \notin \mathcal{A}_{\star}(\nu), \liminf _{T} \frac{\mathbb{E}\left[N_{T}(a)\right]}{\log (T)} \geqslant \sup \{\frac{1}{\operatorname{KL}\left(\nu_{a}, \tilde{\nu}_{a}\right)}: \underbrace{\tilde{\nu}=\left(\nu_{1}, \ldots, \tilde{\nu}_{a}, \ldots, \nu_{A}\right), \mathcal{A}_{\star}(\tilde{\nu})=\{a\}}_{\text {most confusing (unstructured) }}\}
$$

$\triangleright \quad$ Insight from lower bound: Any uniformly-good strategy on \mathcal{D} must satisfy: $\forall a \notin \mathcal{A}_{\star}(\nu), \liminf _{T} \frac{\mathbb{E}\left[N_{T}(a)\right]}{\log (T)} \geqslant \sup \{\frac{1}{\operatorname{KL}\left(\nu_{a}, \tilde{\nu}_{a}\right)}: \underbrace{\tilde{\nu}=\left(\nu_{1}, \ldots, \tilde{\nu}_{a}, \ldots, \nu_{A}\right), \mathcal{A}_{\star}(\tilde{\nu})=\{a\}}_{\text {most confusing (unstructured) }}\}$

KL-UCB plays arms not pulled enough for being uniformly-good:

$$
a_{t+1} \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} \max \left\{\mathbb{E}_{\tilde{\nu}_{a}}[X]: N_{T}(a) \leqslant \frac{\log (T)}{\mathrm{KL}\left(\widehat{\nu}_{t, a}, \tilde{\nu}_{a}\right)}, \tilde{\nu} \text { most confusing for } a\right\}
$$

THE OPTIMISTIC PRINCIPLE REVISITED

\triangleright Insight from lower bound: Any uniformly-good strategy on \mathcal{D} must satisfy:
$\forall a \notin \mathcal{A}_{\star}(\nu), \liminf _{T} \frac{\mathbb{E}\left[N_{T}(a)\right]}{\log (T)} \geqslant \sup \{\frac{1}{\operatorname{KL}\left(\nu_{a}, \tilde{\nu}_{a}\right)}: \underbrace{\tilde{\nu}=\left(\nu_{1}, \ldots, \tilde{\nu}_{a}, \ldots, \nu_{A}\right), \mathcal{A}_{\star}(\tilde{\nu})=\{a\}}_{\text {most confusing (unstructured) }}\}$
\triangleright KL-UCB plays arms not pulled enough for being uniformly-good:

$$
a_{t+1} \in \underset{a \in \mathcal{A}}{\operatorname{argmax}} \max \left\{\mathbb{E}_{\tilde{\nu}_{a}}[X]: N_{T}(a) \leqslant \frac{\log (T)}{\mathrm{KL}\left(\widehat{\nu}_{t, a}, \tilde{\nu}_{a}\right)}, \tilde{\nu} \text { most confusing for } a\right\}
$$

Play an arm in order to
 rule-out a most confusing instance (Selects one causing maximal regret if not played.)

\triangleright Different from "expecting the best reward in the best world": testing.

\mathcal{D}-CONSTRAINED CONFIGURATION SETS

Following the same proof as for the fundamental Lemma one can obtain the following generalization:

Lemma (D-constrained regret lower bound)

Let \mathcal{D} be any set of bandit configurations and $\nu \in \mathcal{D}$. Then any uniformly-good strategy on \mathcal{D} must incur a regret

$$
\begin{aligned}
& \liminf _{T \rightarrow \infty} \frac{\mathfrak{R}_{T, \nu}}{\ln (T)} \geqslant \inf \left\{\sum_{a \in \mathcal{A}} c_{a}\left(\mu_{\star}(\nu)-\mu_{a}(\nu)\right):\right. \\
&\left.\forall a \in \mathcal{A}, c_{a} \geqslant 0, \inf _{\nu^{\prime} \in \tilde{\mathcal{D}}(\nu)} \sum_{a \in \mathcal{A}} c_{a} K L\left(\nu_{a}, \nu_{a}^{\prime}\right) \geqslant 1\right\} .
\end{aligned}
$$

where we introduced the set of maximally confusing distributions

$$
\tilde{\mathcal{D}}(\nu)=\left\{\nu^{\prime} \in \mathcal{D}: \mathcal{A}^{\star}\left(\nu^{\prime}\right) \cap \mathcal{A}^{\star}(\nu)=\emptyset, \forall a \in \mathcal{A}^{\star}(\nu), \operatorname{KL}\left(\nu_{a}, \nu_{a}^{\prime}\right)=0\right\} .
$$

- Solution to an optimization problem!
- Specialization to the multi-armed bandit setup of an even more general result from Graves\&Lai, 97 (extending Agrawal 89).

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making

Using similar steps as for unstructured lower bounds, we get $\forall a \notin \mathcal{A}^{\star}(\nu), \forall \nu^{\prime} \in \mathcal{D}$ s.t. $\mathcal{A}^{\star}\left(\nu^{\prime}\right)=\{a\}$

$$
\liminf _{T} \frac{\sum_{a^{\prime} \in \mathcal{A}} \mathbb{E}\left[N_{T}\left(a^{\prime}\right)\right] K L\left(\nu_{a^{\prime}}, \nu_{a^{\prime}}^{\prime}\right)}{\ln (T)} \geqslant \lim _{T} \inf \frac{\ln \left(T-T^{\alpha}\right)}{\ln (T)}-\frac{\ln \left(\sum_{a^{\prime} \neq a} \mathbb{E}_{\nu^{\prime}}\left[N_{T}\left(a^{\prime}\right)\right]\right)}{\ln (T)}
$$

Using similar steps as for unstructured lower bounds, we get
$\forall a \notin \mathcal{A}^{\star}(\nu), \forall \nu^{\prime} \in \mathcal{D}$ s.t. $\mathcal{A}^{\star}\left(\nu^{\prime}\right)=\{a\}$
$\liminf _{T} \frac{\sum_{a^{\prime} \in \mathcal{A}} \mathbb{E}\left[N_{T}\left(a^{\prime}\right)\right] K L\left(\nu_{a^{\prime}}, \nu_{a^{\prime}}^{\prime}\right)}{\ln (T)} \geqslant \liminf _{T} \frac{\ln \left(T-T^{\alpha}\right)}{\ln (T)}-\frac{\ln \left(\sum_{a^{\prime} \neq a} \mathbb{E}_{\nu^{\prime}}\left[N_{T}\left(a^{\prime}\right)\right]\right)}{\ln (T)}$
By uniformly-good assumption, it must be that $B=0$, hence

$$
\liminf _{T} \sum_{a^{\prime} \in \mathcal{A}} \frac{\mathbb{E}\left[N_{T}\left(a^{\prime}\right)\right]}{\ln (T)} \mathrm{KL}\left(\nu_{a^{\prime}}, \nu_{a^{\prime}}^{\prime}\right)=\sum_{a^{\prime} \in \mathcal{A}}\left(\liminf \frac{\mathbb{E}\left[N_{T}\left(a^{\prime}\right)\right]}{\ln (T)}\right) \operatorname{KL}\left(\nu_{a^{\prime}}, \nu_{a^{\prime}}^{\prime}\right) \geqslant 1 .
$$

This holds in particular choosing ν^{\prime} such that $\forall a^{\prime} \in \mathcal{A}^{\star}(\nu), \operatorname{KL}\left(\nu_{a^{\prime}}, \nu_{a^{\prime}}^{\prime}\right)=0$. We conclude by remarking that

$$
\liminf _{T \rightarrow \infty} \frac{\mathfrak{R}_{T}}{\ln (T)}=\sum_{a \in \mathcal{A}} \underbrace{\left(\liminf _{T \rightarrow \infty} \frac{\mathbb{E}\left[N_{T}(a)\right]}{\ln (T)}\right)}_{C_{a}}\left(\mu_{\star}(\nu)-\mu_{a}(\nu)\right) .
$$

PRICE TO PAY

What is the number of times a sub-optimal arm needs to be pulled?
The fundamental change of measure argument plus a simple reordering gives

$$
\mathbb{E}_{\nu}\left[N_{T}(a)\right] \geqslant \sup _{\nu^{\prime} \in \mathcal{D}} \frac{\sup _{\Omega} \mathrm{kl}\left(\mathbb{P} \tilde{\nu}[\Omega], \mathbb{P}_{\nu}[\Omega]\right)-\sum_{a^{\prime} \in \mathcal{A} \backslash\{a\}} \mathbb{E}_{\nu}\left[N_{T}\left(a^{\prime}\right)\right] \operatorname{KL}\left(\nu_{a^{\prime}}, \nu_{a^{\prime}}^{\prime}\right)}{\operatorname{KL}\left(\nu_{a}, \nu_{a}^{\prime}\right)} .
$$

This motivates the following definition:

Definition (Asymptotic price for uniformly-good strategies)

For $\nu \in \mathcal{D}, a \notin \mathcal{A}_{\star}(\nu)$, the asymptotic price to pay on arm a for being uniformly-good on \mathcal{D} is

$$
n_{T}(a, \nu, \mathcal{D})=\sup _{\nu^{\prime} \in \mathcal{D}: a \in \mathcal{A}_{\star}(\nu)} \frac{\ln (T)-\sum_{a^{\prime} \in \mathcal{A} \backslash\{a\}} \mathbb{E}_{\nu}\left[N_{T}\left(a^{\prime}\right)\right] \operatorname{KL}\left(\nu_{a^{\prime}}, \nu_{a^{\prime}}^{\prime}\right)}{\operatorname{KL}\left(\nu_{a}, \nu_{a}^{\prime}\right)} .
$$

No structure (most confusing obtained without changing other arms):

$$
\begin{aligned}
\mathbb{E}_{\nu}\left[N_{T}(a)\right] & \geqslant \sup _{\tilde{\nu} \in \mathcal{D}: \mathcal{A}_{\star}(\tilde{\nu})=\{a\}}\left\{\frac{\ln (T)}{\operatorname{KL}\left(\nu_{a}, \tilde{\nu}_{a}\right)}: \tilde{\nu}=\left(\nu_{1}, \ldots, \tilde{\nu}_{a}, \ldots, \nu_{A}\right)\right\} \\
& =\frac{\ln (T)}{\mathcal{K}_{\mathcal{D}}\left(\nu_{a}, \mu^{\star}(\nu)\right)} .
\end{aligned}
$$

$\triangleright \quad$ No structure (most confusing obtained without changing other arms):

$$
\begin{aligned}
\mathbb{E}_{\nu}\left[N_{T}(a)\right] & \geqslant \sup _{\tilde{\nu} \in \mathcal{D}: \mathcal{A}_{\star}(\tilde{\nu})=\{a\}}\left\{\frac{\ln (T)}{\operatorname{KL}\left(\nu_{a}, \tilde{\nu}_{a}\right)}: \tilde{\nu}=\left(\nu_{1}, \ldots, \tilde{\nu}_{a}, \ldots, \nu_{A}\right)\right\} \\
& =\frac{\ln (T)}{\mathcal{K}_{\mathcal{D}}\left(\nu_{a}, \mu^{\star}(\nu)\right)} .
\end{aligned}
$$

$\triangleright \quad$ Structure (most confusing instance requires changing other arms):
$\mathbb{E}_{\nu}\left[N_{T}(a)\right] \geqslant \sup _{\tilde{\tilde{\nu} \in \mathcal{D}: \mathcal{A}_{\star}(\tilde{\nu})=\{a\}}}\left\{\frac{\ln (T)-\sum_{a^{\prime} \in \mathcal{A} \backslash\{a\}} \mathbb{E}_{\nu}\left[N_{T}\left(a^{\prime}\right)\right] \operatorname{KL}\left(\nu_{a^{\prime}}, \tilde{\nu}_{a^{\prime}}\right)}{\operatorname{KL}\left(\nu_{a}, \tilde{\nu}_{a}\right)}\right\}$.

How to adapt bandit strategy to handle such structure (ongoing research)?

Finite set \mathcal{A}. For each $a \in \mathcal{A}$:

Finite set \mathcal{A}. For each $a \in \mathcal{A}$:

- Parameter space Θ_{a}.

Finite set \mathcal{A}. For each $a \in \mathcal{A}$:

- Parameter space Θ_{a}.
- Observation space \mathcal{Y}_{a}.
(Collections) $\quad\left(\mathcal{A},\left(\Theta_{a}\right)_{a \in \mathcal{A}},\left(\mathcal{Y}_{a}\right)_{a \in \mathcal{A}},\left(\nu_{a}\right)_{a \in \mathcal{A}},\left(\mu_{a}\right)_{a \in \mathcal{A}}\right)$

(Parameter) $\quad \theta \in \Theta$
Finite set \mathcal{A}. For each $a \in \mathcal{A}$:
- Parameter space Θ_{a}.
- Observation space \mathcal{Y}_{a}.
- Distribution of observations $\nu_{a}: \Theta_{a} \rightarrow \mathcal{P}\left(\mathcal{Y}_{a}\right)$
(Collections) $\quad\left(\mathcal{A},\left(\Theta_{a}\right)_{a \in \mathcal{A}},\left(\mathcal{Y}_{a}\right)_{a \in \mathcal{A}},\left(\nu_{a}\right)_{a \in \mathcal{A}},\left(\mu_{a}\right)_{a \in \mathcal{A}}\right)$

(Parameter) $\quad \theta \in \Theta$
Finite set \mathcal{A}. For each $a \in \mathcal{A}$:
- Parameter space Θ_{a}.
- Observation space \mathcal{Y}_{a}.
- Distribution of observations $\nu_{a}: \Theta_{a} \rightarrow \mathcal{P}\left(\mathcal{Y}_{a}\right)$
- Reward: $\mu_{a}: \Theta \rightarrow \mathbb{R} \quad\left(\Theta\right.$ and $\operatorname{not} \Theta_{a}$!)
- Classical Bernoulli MAB: $\mathcal{A}=\{1, \ldots, A\}, \Theta_{a}=[0,1], \mathcal{Y}_{a}=\{0,1\}$, $\nu_{a}\left(\theta_{a}\right)=\mathcal{B e r n}\left(\theta_{a}\right), \Theta=[0,1]^{\mathcal{A}}$ (unstructured) and $\mu_{a}(\theta)=\theta_{a}$.
- Classical Bernoulli MAB: $\mathcal{A}=\{1, \ldots, A\}, \Theta_{a}=[0,1], \mathcal{Y}_{a}=\{0,1\}$, $\nu_{a}\left(\theta_{a}\right)=\mathcal{B e r n}\left(\theta_{a}\right), \Theta=[0,1]^{\mathcal{A}}$ (unstructured) and $\mu_{a}(\theta)=\theta_{a}$.
- Linear bandits: $\mathcal{A} \subset \mathbb{R}^{d}, \Theta_{a}=\left\{\langle\alpha, a\rangle: \alpha \in \mathbb{R}^{d}\right\}, \mathcal{Y}_{a}=\mathbb{R}, \nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, 1\right)$, $\Theta=\left\{\theta=(\langle\alpha, a\rangle)_{a \in \mathcal{A}}, \alpha \in \mathbb{R}^{d}\right\}, \mu_{\mathrm{a}}(\theta)=\theta_{\mathrm{a}}$.

EXAMPLES

- Classical Bernoulli MAB: $\mathcal{A}=\{1, \ldots, A\}, \Theta_{a}=[0,1], \mathcal{Y}_{a}=\{0,1\}$, $\nu_{a}\left(\theta_{a}\right)=\mathcal{B e r n}\left(\theta_{a}\right), \Theta=[0,1]^{\mathcal{A}}$ (unstructured) and $\mu_{a}(\theta)=\theta_{a}$.
- Linear bandits: $\mathcal{A} \subset \mathbb{R}^{d}, \Theta_{a}=\left\{\langle\alpha, a\rangle: \alpha \in \mathbb{R}^{d}\right\}, \mathcal{Y}_{a}=\mathbb{R}, \nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, 1\right)$, $\Theta=\left\{\theta=(\langle\alpha, a\rangle)_{a \in \mathcal{A}}, \alpha \in \mathbb{R}^{d}\right\}, \mu_{a}(\theta)=\theta_{a}$.
- Lipschitz bandits: $\mathcal{A} \subset \mathcal{X}, \Theta_{a} \subset \mathbb{R}, \mathcal{Y}_{a}=\mathbb{R}, \nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, 1\right)$, $\Theta=\left\{\theta: \max _{a, a^{\prime} \in \mathcal{X}} \frac{\mid \theta_{a^{\prime}-\theta_{a^{\prime}} \mid}^{\ell\left(a, a^{\prime}\right)}}{l} \leqslant 1\right\}, \mu_{a}(\theta)=\theta_{a}$.

EXAMPLES

- Classical Bernoulli MAB: $\mathcal{A}=\{1, \ldots, A\}, \Theta_{a}=[0,1], \mathcal{Y}_{a}=\{0,1\}$, $\nu_{a}\left(\theta_{a}\right)=\mathcal{B e r n}\left(\theta_{a}\right), \Theta=[0,1]^{\mathcal{A}}$ (unstructured) and $\mu_{a}(\theta)=\theta_{a}$.
- Linear bandits: $\mathcal{A} \subset \mathbb{R}^{d}, \Theta_{a}=\left\{\langle\alpha, a\rangle: \alpha \in \mathbb{R}^{d}\right\}, \mathcal{Y}_{a}=\mathbb{R}, \nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, 1\right)$, $\Theta=\left\{\theta=(\langle\alpha, a\rangle)_{a \in \mathcal{A}}, \alpha \in \mathbb{R}^{d}\right\}, \mu_{a}(\theta)=\theta_{a}$.
- Lipschitz bandits: $\mathcal{A} \subset \mathcal{X}, \Theta_{a} \subset \mathbb{R}, \mathcal{Y}_{a}=\mathbb{R}, \nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, 1\right)$, $\Theta=\left\{\theta: \max _{a, a^{\prime} \in \mathcal{X}} \frac{\mid \theta_{a^{\prime}-\theta_{a^{\prime}}} \ell\left(a, a^{\prime}\right)}{x} \leqslant 1\right\}, \mu_{a}(\theta)=\theta_{a}$.
- Combinatorial semi-bandit: $\mathcal{A} \subset\{0,1\}^{d}, \Theta_{a} \subset \mathbb{R}^{d}, \mathcal{Y}_{a}=\mathbb{R}$, $\nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, l_{d}\right), \Theta=\left\{\theta: \theta_{a}=\left(\alpha_{1} a_{1}, \ldots, \alpha_{d} a_{d}\right), \alpha \in \mathbb{R}^{d}\right\}, \mu_{a}(\theta)=\left\langle\theta_{a}, \mathbf{1}\right\rangle$.
- Classical Bernoulli MAB: $\mathcal{A}=\{1, \ldots, A\}, \Theta_{a}=[0,1], \mathcal{Y}_{a}=\{0,1\}$, $\nu_{a}\left(\theta_{a}\right)=\mathcal{B e r n}\left(\theta_{a}\right), \Theta=[0,1]^{\mathcal{A}}$ (unstructured) and $\mu_{a}(\theta)=\theta_{a}$.
- Linear bandits: $\mathcal{A} \subset \mathbb{R}^{d}, \Theta_{a}=\left\{\langle\alpha, a\rangle: \alpha \in \mathbb{R}^{d}\right\}, \mathcal{Y}_{a}=\mathbb{R}, \nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, 1\right)$, $\Theta=\left\{\theta=(\langle\alpha, a\rangle)_{a \in \mathcal{A}}, \alpha \in \mathbb{R}^{d}\right\}, \mu_{a}(\theta)=\theta_{a}$.
- Lipschitz bandits: $\mathcal{A} \subset \mathcal{X}, \Theta_{a} \subset \mathbb{R}, \mathcal{Y}_{a}=\mathbb{R}, \nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, 1\right)$, $\Theta=\left\{\theta: \max _{a, a^{\prime} \in \mathcal{X}} \frac{\mid \theta_{a^{\prime}-\theta_{a^{\prime}}} \ell\left(a, a^{\prime}\right)}{} \leqslant 1\right\}, \mu_{a}(\theta)=\theta_{a}$.
- Combinatorial semi-bandit: $\mathcal{A} \subset\{0,1\}^{d}, \Theta_{a} \subset \mathbb{R}^{d}, \mathcal{Y}_{a}=\mathbb{R}$, $\nu_{a}\left(\theta_{a}\right)=\mathcal{N}\left(\theta_{a}, l_{d}\right), \Theta=\left\{\theta: \theta_{a}=\left(\alpha_{1} a_{1}, \ldots, \alpha_{d} a_{d}\right), \alpha \in \mathbb{R}^{d}\right\}, \mu_{a}(\theta)=\left\langle\theta_{a}, \mathbf{1}\right\rangle$.
- Ranking bandits: $\mathcal{A}=\left\{a \in \operatorname{Arr}_{N}^{L}\right\}, \Theta_{a}=[0,1]^{L}, \mathcal{Y}_{a}=\{0,1\}$, $\nu_{a}\left(\theta_{a}\right)=\operatorname{Fct}\left(\left(\mathcal{B e r n}\left(\theta_{a_{\ell}}\right)\right)_{\ell \leqslant L}\right), \Theta=\left\{\theta: \theta_{a}=\left(\alpha_{a_{\ell}}\right)_{\ell \leqslant L}, \alpha \in[0,1]^{N}\right\}$, $\mu_{a}(\theta)=\sum_{\ell=1}^{L} r(\ell) \theta_{a_{\ell}} \prod_{i=1}^{\ell}\left(1-\theta_{a_{i}}\right)$.

Theorem (Agrawal 1989)

Assume Θ is discrete, $\star(\theta)=\operatorname{Argmax}_{a \in \mathcal{A}} \mu_{a}(\theta)$ is unique. Then for any uniformly good strategy,

$$
\liminf _{T \rightarrow \infty} \frac{R_{T}(\theta)}{\ln (T)} \geqslant C(\theta) \quad \text { where }
$$

$C(\theta)=\min \left\{\frac{\sum_{\in \mathcal{A} \backslash \star(\theta)} \eta_{a}\left(\mu_{\star}(\theta)-\mu_{a}(\theta)\right)}{\inf _{\lambda \in \Lambda(\theta)} \sum_{a \in \mathcal{A} \backslash \star(\theta)} \eta_{a} \mathrm{KL}\left(\nu_{a}\left(\theta_{a}\right), \nu_{a}\left(\lambda_{a}\right)\right)}: \eta \in \mathcal{P}(\mathcal{A} \backslash \star(\theta))\right\}$
with $\Lambda(\theta)=\left\{\lambda \in \Theta: \star(\theta) \neq \star(\lambda)\right.$, and $\operatorname{KL}\left(\nu_{a}\left(\theta_{a}\right), \nu_{a}\left(\lambda_{a}\right)\right)=0$ for $\left.a=\star(\theta)\right\}$.

Theorem (Agrawal 1989)

Assume Θ is discrete, $\star(\theta)=\operatorname{Argmax}_{a \in \mathcal{A}} \mu_{a}(\theta)$ is unique. Then for any uniformly good strategy,

$$
\liminf _{T \rightarrow \infty} \frac{R_{T}(\theta)}{\ln (T)} \geqslant C(\theta) \quad \text { where }
$$

$C(\theta)=\min \left\{\frac{\sum_{\in \mathcal{A} \backslash \star(\theta)} \eta_{a}\left(\mu_{\star}(\theta)-\mu_{a}(\theta)\right)}{\inf _{\lambda \in \Lambda(\theta)} \sum_{a \in \mathcal{A} \backslash \star(\theta)} \eta_{a} \mathrm{KL}\left(\nu_{a}\left(\theta_{a}\right), \nu_{a}\left(\lambda_{a}\right)\right)}: \eta \in \mathcal{P}(\mathcal{A} \backslash \star(\theta))\right\}$
with $\Lambda(\theta)=\left\{\lambda \in \Theta: \star(\theta) \neq \star(\lambda)\right.$, and $\operatorname{KL}\left(\nu_{a}\left(\theta_{a}\right), \nu_{a}\left(\lambda_{a}\right)\right)=0$ for $\left.a=\star(\theta)\right\}$.

- Confusing parameters statistically indistinguishable from θ when playing only $\star(\theta)$.

Odalric-Ambrym Maillard

Theorem (Graves, Lai 1997)

Assume $\star(\theta)=\operatorname{Argmax}_{a \in \mathcal{A}} \mu_{a}(\theta)$ is unique. Then for any uniformly good strategy, $\liminf _{T \rightarrow \infty} \frac{R_{T}(\theta)}{\ln (T)} \geqslant C(\theta) \quad$ where

$$
\begin{aligned}
C(\theta)=\min & \left\{\sum_{a \in \mathcal{A}} n_{a}\left(\mu_{\star}(\theta)-\mu_{a}(\theta)\right): \forall a, n_{a} \geqslant 0\right. \\
& \text { and } \left.\inf _{\lambda \in \Lambda(\theta)} \sum_{a \in \mathcal{A}} n_{a} K L\left(\nu_{a}\left(\theta_{a}\right), \nu_{a}\left(\lambda_{a}\right)\right) \geqslant 1\right\}
\end{aligned}
$$

with $\Lambda(\theta)=\left\{\lambda \in \Theta: \star(\theta) \neq \star(\lambda)\right.$, and $\operatorname{KL}\left(\nu_{a}\left(\theta_{a}\right), \nu_{a}\left(\lambda_{a}\right)\right)=0$ for $\left.a=\star(\theta)\right\}$.

Theorem (Graves, Lai 1997)

Assume $\star(\theta)=\operatorname{Argmax}_{a \in \mathcal{A}} \mu_{a}(\theta)$ is unique. Then for any uniformly good strategy, $\liminf _{T \rightarrow \infty} \frac{R_{T}(\theta)}{\ln (T)} \geqslant C(\theta) \quad$ where

$$
\begin{aligned}
C(\theta)= & \min
\end{aligned} \quad\left\{\sum_{a \in \mathcal{A}} n_{a}\left(\mu_{\star}(\theta)-\mu_{a}(\theta)\right): \forall a, n_{a} \geqslant 0\right\}
$$

with $\Lambda(\theta)=\left\{\lambda \in \Theta: \star(\theta) \neq \star(\lambda)\right.$, and $\operatorname{KL}\left(\nu_{a}\left(\theta_{a}\right), \nu_{a}\left(\lambda_{a}\right)\right)=0$ for $\left.a=\star(\theta)\right\}$.

- Confusing parameters statistically indistinguishable from θ when playing only $\star(\theta)$.

Structures

LINEAR BANDITS

Structured lower bounds
 Lower bounds

Lipschitz bandits

Ranking bandits Metric-graph of bandits

Conclusion, Perspective

Lipschitz Bandits: Regret Lower Bounds and Optimal Algorithms

Stefan Magureanu, Richard Combes and Alexandre Proutiere, COLT 2014.

- The decision maker is given a constant L

Odalric-Ambrym Maillard

- The decision maker is given a constant L
- Each $k \in \mathcal{K}$, is assigned a fixed and known coordinate $x_{k} \in(0,1)$

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making

- The decision maker is given a constant L
- Each $k \in \mathcal{K}$, is assigned a fixed and known coordinate $x_{k} \in(0,1)$
- Then : $\Theta_{L}=\left\{\theta \in(0,1)^{K}:\left|\theta_{i}-\theta_{j}\right| \leqslant L\left|x_{i}-x_{j}\right|, \forall i, j \leqslant K\right\}$

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making

- The decision maker is given a constant L
- Each $k \in \mathcal{K}$, is assigned a fixed and known coordinate $x_{k} \in(0,1)$
- Then : $\Theta_{L}=\left\{\theta \in(0,1)^{K}:\left|\theta_{i}-\theta_{j}\right| \leqslant L\left|x_{i}-x_{j}\right|, \forall i, j \leqslant K\right\}$
- Our goal is to exploit this additional information in order to reduce the achievable regret, relative to that of the classic setting

When $\left\{x_{k}: k \in \mathcal{K}\right\}=(0,1)$ an efficient algorithm must perform two task:

When $\left\{x_{k}: k \in \mathcal{K}\right\}=(0,1)$ an efficient algorithm must perform two task:

- Adaptive discretization (from continuous \mathcal{X} to discrete \mathbb{X})?

When $\left\{x_{k}: k \in \mathcal{K}\right\}=(0,1)$ an efficient algorithm must perform two task:

- Adaptive discretization (from continuous \mathcal{X} to discrete \mathbb{X})?
- Efficient statistical testing:

When $\left\{x_{k}: k \in \mathcal{K}\right\}=(0,1)$ an efficient algorithm must perform two task:

- Adaptive discretization (from continuous \mathcal{X} to discrete \mathbb{X})?
- Efficient statistical testing:
- Correctly identify the suboptimal arms by optimally exploiting past observations and structure

When $\left\{x_{k}: k \in \mathcal{K}\right\}=(0,1)$ an efficient algorithm must perform two task:

- Adaptive discretization (from continuous \mathcal{X} to discrete \mathbb{X})?
- Efficient statistical testing:
- Correctly identify the suboptimal arms by optimally exploiting past observations and structure
- Perform this task optimally: regret lower bounds? algorithms matching this limit? (Magureanu et al., COLT 2014)

Odalric-Ambrym Maillard

Let us define the most confusing bad parameter λ^{k} of an arm k :

$$
\lambda_{j}^{k}=\max \left(\theta_{j}, \theta^{*}-L \times\left|x_{j}-x_{k}\right|\right), \forall j \in \mathcal{K}
$$

Lipschitz Bandits - Regret Lower Bounds

Theorem (Lower bound)

For all $\theta \in \Theta_{L}$ and uniformly good algorithms π, we have:

$$
\lim _{\inf _{T \rightarrow \infty}} \frac{R^{\pi}(T)}{\ln (T)} \geqslant C(\theta)
$$

where $C(\theta)$ is the minimal value of the following optimization problem:

$$
\begin{aligned}
& \min _{c_{k}>0 ; k \in \mathcal{K}^{-}} \sum_{k \in \mathcal{K}^{-}} c_{k}\left(\theta^{*}-\theta_{k}\right) \\
& \text { subject to: } \\
& \sum_{k^{\prime} \in \mathcal{K}^{-}} c_{k^{\prime}} \mathrm{KL}\left(\theta_{k^{\prime}}, \lambda_{\theta^{*}, k^{\prime}}^{k}\right) \geqslant 1, \forall k \in \mathcal{K}^{-}
\end{aligned}
$$

Lipschitz Bandits - Regret Lower Bounds

Theorem (Lower bound)

For all $\theta \in \Theta_{L}$ and uniformly good algorithms π, we have:

$$
\lim \inf _{T \rightarrow \infty} \frac{R^{\pi}(T)}{\ln (T)} \geqslant C(\theta)
$$

where $C(\theta)$ is the minimal value of the following optimization problem:

$$
\begin{aligned}
& \min _{c_{k}>0 ; k \in \mathcal{K}^{-}} \sum_{k \in \mathcal{K}^{-}} c_{k}\left(\theta^{*}-\theta_{k}\right) \\
& \text { subject to: }
\end{aligned} \sum_{k^{\prime} \in \mathcal{K}^{-}} c_{k^{\prime}} \mathrm{KL}\left(\theta_{k^{\prime}}, \lambda_{\theta^{*}, k^{\prime}}^{k}\right) \geqslant 1, \forall k \in \mathcal{K}^{-} .
$$

- Follows result by Graves, Todd L., and Tze Leung Lai. "Asymptotically efficient adaptive choice of control laws in controlled markov chains." SIAM journal on control and optimization 35.3 (1997): 715-743

Two algorithms are proposed:

Two algorithms are proposed:

- OSLB :

Two algorithms are proposed:

- OSLB:
- Asymptotically optimal

Two algorithms are proposed:

- OSLB:
- Asymptotically optimal
- Enforces exploration as dictated by the LP in the lower bound

Two algorithms are proposed:

- OSLB :
- Asymptotically optimal
- Enforces exploration as dictated by the LP in the lower bound
- Computationally complex and performs poorly numerically

Two algorithms are proposed:

- OSLB :
- Asymptotically optimal
- Enforces exploration as dictated by the LP in the lower bound
- Computationally complex and performs poorly numerically
- POSLB:

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequential decision making

Two algorithms are proposed:

- OSLB :
- Asymptotically optimal
- Enforces exploration as dictated by the LP in the lower bound
- Computationally complex and performs poorly numerically
- POSLB:
- Asymptotically Pareto-optimal - provably exploits the structure efficiently

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequbntial decision making

Two algorithms are proposed:

- OSLB :
- Asymptotically optimal
- Enforces exploration as dictated by the LP in the lower bound
- Computationally complex and performs poorly numerically
- POSLB:
- Asymptotically Pareto-optimal - provably exploits the structure efficiently
- Computationally light and work well numerically

Two algorithms are proposed:

- OSLB :
- Asymptotically optimal
- Enforces exploration as dictated by the LP in the lower bound
- Computationally complex and performs poorly numerically
- POSLB:
- Asymptotically Pareto-optimal - provably exploits the structure efficiently
- Computationally light and work well numerically
- Related to the UCB family of algorithms
- Both algorithms make use of the following index:

$$
b_{k}(n)=\sup \left\{q \in\left(\widehat{\theta}_{k}(n), 1\right): \sum_{j \in \mathcal{K}} N_{j}(n) \mathrm{KL}_{+}\left(\widehat{\theta}_{j}(n), \lambda_{j}^{q, k}\right) \leqslant f(n)\right\}
$$

where $f(n)=\ln (n)+3 K \ln \ln (n)$ and $\mathrm{KL}_{+}(x, y)=\mathrm{KL}(x, y)$ if $x<y$, and 0 otherwise

Algorithm $\operatorname{OSLB}(\varepsilon)$

Algorithm $\operatorname{OSLB}(\varepsilon)$

- At each round, $\operatorname{OSLB}(\varepsilon)$ computes $\widehat{c}(n)=c(\hat{\theta}(n))$ - the solution to the LP in the lower bound with θ replaced by the empirical mean $\widehat{\theta}(n)$

Algorithm $\operatorname{OSLB}(\varepsilon)$

- At each round, $\operatorname{OSLB}(\varepsilon)$ computes $\widehat{c}(n)=c(\widehat{\theta}(n))$ - the solution to the LP in the lower bound with θ replaced by the empirical mean $\widehat{\theta}(n)$
- Let $L(n)=\arg \max _{k} \widehat{\theta}_{k}(n)$ be the leader at round n

Algorithm $\operatorname{OSLB}(\varepsilon)$

- At each round, $\operatorname{OSLB}(\varepsilon)$ computes $\widehat{c}(n)=c(\hat{\theta}(n))$ - the solution to the LP in the lower bound with θ replaced by the empirical mean $\widehat{\theta}(n)$
- Let $L(n)=\arg \max _{k} \widehat{\theta}_{k}(n)$ be the leader at round n
- Let $\underline{k}(n)=\arg \min _{k} N_{k}(n)$ be the least played arm up to time n

Algorithm $\operatorname{OSLB}(\varepsilon)$

- At each round, $\operatorname{OSLB}(\varepsilon)$ computes $\widehat{c}(n)=c(\hat{\theta}(n))$ - the solution to the LP in the lower bound with θ replaced by the empirical mean $\widehat{\theta}(n)$
- Let $L(n)=\arg \max _{k} \widehat{\theta}_{k}(n)$ be the leader at round n
- Let $\underline{k}(n)=\arg \min _{k} N_{k}(n)$ be the least played arm up to time n
- Let $\bar{k}(n)=\arg \min \left\{N_{k}(n): k: \widehat{c}_{k}(n)>N_{k}(n) / \ln (n)\right\}$ be the least played arm among the arms played insufficiently many times

Optimal Algorithm - OSLB(ε)

Algorithm 1 OSLB (ε)

For all $n \geq 1$, select arm $k(n)$ such that:
If $\widehat{\theta^{\star}}(n) \geqslant \max _{k \neq L(n)} b_{k}(n)$, then $k(n)=L(n)$;
Else If $N_{\underline{k}(n)}(n)<\frac{\varepsilon}{K} N_{\bar{k}(n)}(n)$, then $k(n)=\underline{k}(n) ;$ (Forced Exploration)
Else $k(n)=\bar{k}(n)$.

OSLB (ε) - Regret Guarantees

Assumption

$\operatorname{OSLB}(\varepsilon)$ - Regret Guarantees

Assumption

- The solution of the LP in the lower bound is unique.

Theorem (asymptotic optimality)

For all $\varepsilon>0$, under the above assumption, the regret achieved under $\pi=\operatorname{OSLB}(\varepsilon)$ satisfies: for all $\theta \in \Theta_{L}$, for all $\delta>0$ and $T \geq 1$,

$$
\begin{equation*}
R^{\pi}(T) \leqslant C^{\delta}(\theta)(1+\varepsilon) \ln (T)+C_{1} \ln \ln (T)+K^{3} \varepsilon^{-1} \delta^{-2}+3 K \delta^{-2} \tag{3}
\end{equation*}
$$

where $C^{\delta}(\theta) \rightarrow C(\theta)$, as $\delta \rightarrow 0^{+}$, and $C_{1}>0$.

- $\operatorname{OSLB}(\varepsilon)$ is computationally expensive and performs poorly in practice
- $\operatorname{OSLB}(\varepsilon)$ is computationally expensive and performs poorly in practice
- Computationally cheaper algorithm: POSLB
- $\operatorname{OSLB}(\varepsilon)$ is computationally expensive and performs poorly in practice
- Computationally cheaper algorithm: POSLB
- POSLB is inspired from the family of UCB algorithms
- $\operatorname{OSLB}(\varepsilon)$ is computationally expensive and performs poorly in practice
- Computationally cheaper algorithm: POSLB
- POSLB is inspired from the family of UCB algorithms
- While not optimal it is Pareto optimal :
- $\operatorname{OSLB}(\varepsilon)$ is computationally expensive and performs poorly in practice
- Computationally cheaper algorithm: POSLB
- POSLB is inspired from the family of UCB algorithms
- While not optimal it is Pareto optimal :
- Considering $c_{k}=N_{k}(T) / \ln (T)$ yields equalities in all constraints in the lower bound LP

POSLB - PSEUDOCODE

Algorithm 2 POSLB

For all $n \geq 1$, select arm $k(n)$ such that:

POSLB - PSEUDOCODE

Algorithm 3 POSLB

For all $n \geq 1$, select arm $k(n)$ such that:
$q(n)=b_{L(n)}(n)$;
$k(n)=\arg \max _{k} f(n)-f_{k}(n, q(n))$ (ties are broken arbitrarily)

POSLB - PSEUDOCODE

Algorithm 4 POSLB

For all $n \geq 1$, select arm $k(n)$ such that:
$q(n)=b_{L(n)}(n)$;
$k(n)=\arg \max _{k} f(n)-f_{k}(n, q(n))$ (ties are broken arbitrarily)
where $f_{k}(n, q(n))=\left\{\begin{array}{ll}\sum_{j \in \mathcal{K}} N_{j}(n) \operatorname{KL}\left(\widehat{\theta}_{j}(n), \lambda_{j}^{q(n), k}(n)\right) & \text { if } k \neq L(n) \\ N_{k}(n) \operatorname{KL}\left(\widehat{\theta}_{k}(n), q(n)\right) & \text { if } k=L(n)\end{array}\right.$.
and $\lambda_{j}^{q, k}(n)=\max \left(q-|k-j| L, \widehat{\theta}_{j}(n)\right)$.

Performance Guarantees

Theorem (POSLB pulls and pareto optimality)

Under POSLB, for all $\theta \in \Theta_{L}$, all $T \geqslant 1$, all $0<\delta<\left(\theta^{\star}-\max _{k \neq k^{\star}} \theta_{k}\right) / 2$, and any suboptimal arm $k \in \mathcal{K}^{-}$:

$$
\mathbb{E}\left[N_{k}(T)\right] \leqslant \frac{f(T)}{l\left(\theta_{k}+\delta, \theta^{*}-\delta\right)}+C_{1} \ln (\ln (T))+2 \delta^{-2} .
$$

with $C_{1} \geqslant 0$ a constant. Further, under POSLB, for all $\theta \in \Theta_{L}$ and $k \in \mathcal{K}^{-}$, we have that:

$$
\lim _{T \rightarrow \infty} \frac{\mathbb{E}\left[\sum_{i \in \mathcal{K}^{-}} N_{i}(T) K L_{+}\left(\theta_{i}, \lambda_{i}^{\theta^{*}, k}\right)\right]}{f(T)}=1
$$

Figure: (Left) The expected rewards and the scaled amount of times suboptimal arms are played under KL-UCB and POSLB as a function of the arm. (Right) Regret under KL-UCB and POSLB as a function of time.

Odalric-Ambrym Maillard

Figure: Expected regret of different algorithms as function of time for a triangular reward function (left) and a quadratic reward function (right).

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequbntlal decision making

Lipschitz Bandits - Conclusions

- Lower-bound based index that efficiently exploits structure

Lipschitz Bandits - Conclusions

- Lower-bound based index that efficiently exploits structure
- Two algorithms:

Lipschitz Bandits - Conclusions

- Lower-bound based index that efficiently exploits structure
- Two algorithms:
- OSLB - asymptotically optimal but complex

Lipschitz Bandits - Conclusions

- Lower-bound based index that efficiently exploits structure
- Two algorithms:
- OSLB - asymptotically optimal but complex
- POSLB - Pareto-optimal algorithm inspired by the classical UCB

Lipschitz Bandits - Conclusions

- Lower-bound based index that efficiently exploits structure
- Two algorithms:
- OSLB - asymptotically optimal but complex
- POSLB - Pareto-optimal algorithm inspired by the classical UCB
- Stepping stone for exploiting structure in generic settings, with more practical applications
- Tentative generalization to arbitrary structure: OSSB, POSSB (Magureanu 2018, PHD).

Odalric-Ambrym Maillard

Structures

Structured lower bounds Lower bounds Lipschitz bandits
 Ranking bandits
 Metric-graph of bandits

Conclusion, Perspective

Position in Induced Exploration

Learning to rank: Regret lower bounds and efficient algorithms R Combes, S Magureanu, A Proutiere, C Laroche ACM SIGMETRICS Performance Evaluation Review 43

Showing results for still alive.

ARTISTS

Still Alive

Still Alive

SEE ALL ALBUMS

SEE ALL

ALBUM
ARTIST
BIGBANG
BIGBANG Special Edition Still Allve 1
Aperture Science Psychoacoustic Laborat.. Portal 2: Songs to Test By (Collectors Editi.

Lisa Miskovsky
BIGBANG

The Crash

Social Distortion
Nocturnal Rites
Onlop. Charline Max
Jonathan Coulton
(1) 14 3:19 ıи! 2:57 IIII

4:34 IIIII

3:19 IIIII
4:05 IIIIII
$4: 06$ IIIIIII
4:03 IIIIII
4:05 IIIIII
$3: 05$ m!

LEARNING TO RANK AS A BANDIT PROBLEM

Sequential Ranking setup

LEARNING TO RANK AS A BANDIT PROBLEM

Sequential Ranking setup

- N (huge) many given articles

LEARNING TO RANK AS A BANDIT PROBLEM

Sequential Ranking setup

- N (huge) many given articles
- At each $t=1, \ldots$, a user u_{t} appears. Choose to display L (ordered) articles.

LEARNING TO RANK AS A BANDIT PROBLEM

Sequential Ranking setup

- N (huge) many given articles
- At each $t=1, \ldots$, a user u_{t} appears. Choose to display L (ordered) articles.
- The user inspects the articles, in order, and clicks on the first interesting article then leaves.

LEARNING TO RANK AS A BANDIT PROBLEM

Sequential Ranking setup

- N (huge) many given articles
- At each $t=1, \ldots$, a user u_{t} appears. Choose to display L (ordered) articles.
- The user inspects the articles, in order, and clicks on the first interesting article then leaves.
- The decision maker observes which article was clicked and collects a reward.

RANKING BANDIT SETUP

- Actions: all combinations of L out of N articles $\mathcal{A}=\left\{a \in \operatorname{Arr}_{N}^{L}\right\}$

Ranking bandit setup

- Actions: all combinations of L out of N articles $\mathcal{A}=\left\{a \in \operatorname{Arr}_{N}^{L}\right\}$
- Feedback X_{k} for an inspected article k :
- 1 if clicked, 0 otherwise; Bernoulli $\mathcal{B}\left(\theta_{k}\right)$

RANKING BANDIT SETUP

- Actions: all combinations of L out of N articles $\mathcal{A}=\left\{a \in \operatorname{Arr}_{N}^{L}\right\}$
- Feedback X_{k} for an inspected article k :
- 1 if clicked, 0 otherwise; Bernoulli $\mathcal{B}\left(\theta_{k}\right)$
- Feedback for L displayed articles:
- the slot of the clicked article ℓ
- 0 for each article before $\ell, 1$ for the clicked article, nothing else Click probability on item ℓ in list a: $\theta_{a_{\ell}} \prod_{i=1}^{\ell}\left(1-\theta_{a_{i}}\right)$.
- Actions: all combinations of L out of N articles $\mathcal{A}=\left\{a \in \operatorname{Arr}_{N}^{L}\right\}$
- Feedback X_{k} for an inspected article k :
- 1 if clicked, 0 otherwise; Bernoulli $\mathcal{B}\left(\theta_{k}\right)$
- Feedback for L displayed articles:
- the slot of the clicked article ℓ
- 0 for each article before $\ell, 1$ for the clicked article, nothing else Click probability on item ℓ in list a: $\theta_{a_{\ell}} \prod_{i=1}^{\ell}\left(1-\theta_{a_{i}}\right)$.
- Rewards: $r(\ell)$ - usually decreasing in ℓ.

$$
\mu_{a}(\theta)=\sum_{\ell=1}^{L} r(\ell) \theta_{a_{\ell}} \prod_{i=1}^{\ell}\left(1-\theta_{a_{i}}\right) .
$$

Ranking bandit setup

- Actions: all combinations of L out of N articles $\mathcal{A}=\left\{a \in \operatorname{Arr}_{N}^{L}\right\}$
- Feedback X_{k} for an inspected article k :
- 1 if clicked, 0 otherwise; Bernoulli $\mathcal{B}\left(\theta_{k}\right)$
- Feedback for L displayed articles:
- the slot of the clicked article ℓ
- 0 for each article before $\ell, 1$ for the clicked article, nothing else Click probability on item ℓ in list a: $\theta_{a_{\ell}} \prod_{i=1}^{\ell}\left(1-\theta_{a_{i}}\right)$.
- Rewards: $r(\ell)$ - usually decreasing in ℓ.

$$
\mu_{a}(\theta)=\sum_{\ell=1}^{L} r(\ell) \theta_{a_{\ell}} \prod_{i=1}^{\ell}\left(1-\theta_{a_{i}}\right) .
$$

- Goal: Maximize the cumulative reward over T rounds

$$
\mathcal{R}_{\theta}(T)=T \max _{a} \mu_{a}(\theta)-\sum_{t=1}^{T} \mu_{a_{t}}(\theta)
$$

CHALLENGES

- The set of actions: Huge $|\mathcal{A}|=N!/(N-L)$!

CHALLENGES

- The set of actions: Huge $|\mathcal{A}|=N!/(N-L)$!
- Feedback for an inspected article: Random number of observations depending on the rewards of articles displayed

So?

CHALLENGES

- The set of actions: Huge $|\mathcal{A}|=N!/(N-L)$!
- Feedback for an inspected article: Random number of observations depending on the rewards of articles displayed

So?

- The set of actions: We can exploit structure to drastically reduce the cost of exploration

CHALLENGES

- The set of actions: Huge $|\mathcal{A}|=N!/(N-L)$!
- Feedback for an inspected article: Random number of observations depending on the rewards of articles displayed

So?

- The set of actions: We can exploit structure to drastically reduce the cost of exploration
- Feedback for an inspected article: How we explore matters
"Structure":
"Structure":
- Similarities between users
"Structure":
- Similarities between users
- Similarities between articles

Structure: Users, Items and Side-Information

"Structure":

- Similarities between users
- Similarities between articles
- Shape of reward function $r(/)$

Different systems according to the structure that is revealed to the decision maker

Regret Lower Bounds - Single Topic

Assume $\theta_{1}>\theta_{2}>. .>\theta_{N}$ (item 1 is preferred over 2, etc.)
Let $\Delta_{i}=r(i)-r(i+1), \Delta_{L}=r(L)$ and $N_{a}(t)$ the number of times the set a of articles is displayed until time t

Regret lower bound

If $\Delta_{i}>\Delta_{L}>0$ for all $i<L$, then

$$
\begin{aligned}
& \lim \inf _{T \rightarrow \infty} \frac{N_{a}(T)}{\ln (T)}=\frac{\mathbb{I}\{\exists i: a=\{1, \ldots, L-1, i\}\}}{\operatorname{KL}\left(\mathcal{B}\left(\theta_{i}\right), \mathcal{B}\left(\theta_{L}\right)\right) \prod_{j<L}\left(1-\theta_{j}\right)} \\
& \lim _{\inf _{T \rightarrow \infty}} \frac{R_{\theta}^{\pi}(T)}{\ln (T)}=r(L) \sum_{i=L+1}^{N} \frac{\theta_{L}-\theta_{i}}{\operatorname{KL}\left(\mathcal{B}\left(\theta_{i}\right), \mathcal{B}\left(\theta_{L}\right)\right.}
\end{aligned}
$$

\Longrightarrow Suggest exploration at last slot L.

Regret Lower Bounds - Single Topic

Assume $\theta_{1}>\theta_{2}>. .>\theta_{N}$ (item 1 is preferred over 2 , etc.)
Let $\Delta_{i}=r(i)-r(i+1), \Delta_{L}=r(L)$ and $N_{a}(t)$ the number of times the set a of articles is displayed until time t

Regret lower bound

If $r(i)=r(L)>0$ for all $i<L$:

$$
\begin{gathered}
\lim _{T \rightarrow \infty} \inf _{T \rightarrow \infty} \frac{N_{\mathrm{a}}(T)}{\ln (T)}=\frac{\mathbb{I}\{\exists i: u=\{i, 1, \ldots, L-1\}\}}{\operatorname{KL}\left(\mathcal{B}\left(\theta_{i}\right), \mathcal{B}\left(\theta_{L}\right)\right)} \\
\lim _{T \rightarrow \infty} \inf _{\theta \rightarrow \infty} \frac{R_{\theta}^{\pi}(T)}{\ln (T)}=r(L) \prod_{j<L}\left(1-\theta_{j}\right) \sum_{i=L+1}^{N} \frac{\theta_{L}-\theta_{i}}{\operatorname{KL}\left(\mathcal{B}\left(\theta_{i}\right), \mathcal{B}\left(\theta_{L}\right)\right)}
\end{gathered}
$$

\Longrightarrow Suggest exploration at first slot 1.

Odalric-Ambrym Maillard

Regret Lower Bounds - Explained

Showing results for still alive.

Theorem (lower bound)

For any uniformly good algorithm π, we have:

$$
\lim \inf _{T \rightarrow \infty} \frac{R^{\pi}(T)}{\ln (T)} \geqslant C(\theta)
$$

where

$$
C(\theta)=\inf _{c_{a} \geqslant 0, a \in \mathcal{A}} \sum_{a \in \mathcal{A}} c_{a}\left(\mu_{\star}(\theta)-\mu_{\mu}(\theta)\right)
$$

subject to:

$$
\forall i>L, \quad \sum_{a \in \mathcal{A}, i \in a} c_{a} K L\left(\mathcal{B}\left(\theta_{i}\right), \mathcal{B}\left(\theta_{L}\right)\right) \prod_{s<p_{a}(i)}\left(1-\theta_{a_{s}}\right) \geqslant 1 .
$$

where $p_{a}(i)=j$ s.t. $a_{j}=i$ is the position of i in list a.

Algorithm - Single Topic

Let $j(t)=\left(j_{1}(t), \ldots, j_{N}(t)\right)$ be the indices of the items with empirical means sorted in decreasing order and $\mathcal{L}(t)=\left(j_{1}(t), \ldots, j_{L}(t)\right)$.

$$
\mathcal{E}(t)=\{i \neq \mathcal{L}(t): \underbrace{\left.\max \left\{q \in[0,1]: N_{i}(t) \operatorname{KL}\left(\widehat{\theta}_{i}(t), q\right)\right) \leqslant f(t)\right\}}_{\text {upper confidence bound }} \geqslant \widehat{\theta}_{j_{L}(t)}(t)\}
$$

\Longrightarrow items with high enough upper bound to deserve being explored

$$
U_{i}^{\ell}=\left\{j_{1}(t), j_{2}(t), \ldots, j_{\ell-1}(t), i, j_{\ell}(t), \ldots, j_{L-1}(t)\right\}
$$

Algorithm 5 Position Induced Exploration(ℓ)

Init: $\mathcal{B}(1)=\emptyset, \widehat{\theta}_{i}(1)=0=b_{i}(1) \forall i, \mathcal{L}(1)=\{1, \ldots, L\}$
For $t \geq 1$:
If $\mathcal{E}(t)=\emptyset$, chooses $a=\mathcal{L}(t)$
Else $\begin{cases}a=\mathcal{L}(t), & \text { w.p. } 1 / 2 \\ a=U_{i}^{\ell}(n), i \sim \operatorname{Uniform}(\mathcal{E}(n)) & \text { w.p. } 1 / 2\end{cases}$

- Provably asymptotically optimal
- Provably asymptotically optimal
- Experiment: compare against
- Provably asymptotically optimal
- Experiment: compare against
- Slotted-(KL)UCB: top L items in order of their KL-UCB indexes.
- Provably asymptotically optimal
- Experiment: compare against
- Slotted-(KL)UCB: top L items in order of their KL-UCB indexes.
- Ranked Bandit Algorithm: runs L independent instances of KL-UCB on each slot.

Artificial Data

Figure: Performance of $\operatorname{PIE}(1) / \operatorname{PIE}(L)$ and other UCB-based algorithms. A single group of items and users. Error bars represent the standard deviation.

Figure: Performance of PIE(1) on real world data.

Learning to Rank - Conclusions

- We consider the Learning to Rank problem as a Bandit Optimization problem.

Learning to Rank - Conclusions

- We consider the Learning to Rank problem as a Bandit Optimization problem.
- Despite the daunting number of actions, we can Learn to Rank with very low cost.
- We consider the Learning to Rank problem as a Bandit Optimization problem.
- Despite the daunting number of actions, we can Learn to Rank with very low cost.
- Algorithm that optimally exploit structure.
- We consider the Learning to Rank problem as a Bandit Optimization problem.
- Despite the daunting number of actions, we can Learn to Rank with very low cost.
- Algorithm that optimally exploit structure.
- plus good empirical performance.

Structures

Structured lower bounds Lower bounds Lipschitz bandits Ranking bandits

Metric-graph of bandits

Conclusion, Perspective

- Bandit configurations: $\nu=\left(\nu_{a, b}\right)_{a \in \mathcal{A}, b \in \mathcal{B}}$ with means $\left(\mu_{a, b}\right)_{a \in \mathcal{A}, b \in \mathcal{B}}$
- \mathcal{A} : arms, \mathcal{B} : users.
- Active contextual bandit: At time t, learner chooses $b_{t} \in \mathcal{B}$, then $a_{t} \in \mathcal{A}$.
- Regret:

$$
\mathcal{R}(\nu, T)=\mathbb{E}_{\nu}\left[\sum_{t=1}^{T} \max _{a \in \mathcal{A}} \mu_{a, b_{t}}-X_{t}\right]=\sum_{a, b \in \mathcal{C}_{\nu}^{-}} \Delta_{a, b} \mathbb{E}_{\nu}\left[N_{a, b}(T)\right]
$$

where $\mathcal{C}_{\nu}^{-}=\left\{(a, b) \in \mathcal{A} \times \mathcal{B}: \mu_{\mathrm{a}, \mathrm{b}}<\mu_{b}^{\star}\right\}$.

Definition(Uniformly spread strategy)

There exists $\gamma_{1}>0$ and a random variable Γ_{2} with $\mathbb{E}_{\nu}\left[\Gamma_{2}\right]<0$, such that

$$
\forall b \in \mathcal{B}, \forall t \in \mathbb{N}, \quad N_{b}(t) \geqslant \gamma_{1} \cdot t-\Gamma_{2} .
$$

METRIC-GRAPH OF BANDITS

- Contextual bandits configuration means: $\left(\mu_{a, b}\right)_{a \in \mathcal{A}, b \in \mathcal{B}}$
- Set of allowed 2 -arm bandits $(\mathcal{A}=\{1,2\})$:

METRIC-GRAPH OF BANDITS

- Contextual bandits configuration means: $\left(\mu_{a, b}\right)_{a \in \mathcal{A}, b \in \mathcal{B}}$
- Set of allowed 2 -arm bandits $(\mathcal{A}=\{1,2\})$:

METRIC-GRAPH OF BANDITS

- Contextual bandits configuration means: $\left(\mu_{a, b}\right)_{a \in \mathcal{A}, b \in \mathcal{B}}$
- Set of allowed 2 -arm bandits $(\mathcal{A}=\{1,2\})$:

GRAPH OF BANDITS

Bandit configurations $\left(\nu \in \mathcal{P}([0,1])^{\mathcal{A} \times \mathcal{B}}\right.$ with mean $\left.\mu \in[0,1]^{\mathcal{A} \times \mathcal{B}}\right)$:

$$
\mathcal{D}_{\omega}=\left\{\nu: \forall b, b^{\prime} \in \mathcal{B} \quad \max _{a \in \mathcal{A}}\left|\mu_{\mathrm{a}, b}-\mu_{\mathrm{a}, b^{\prime}}\right| \leqslant \omega_{b, b^{\prime}}\right\},
$$

for a known weight matrix $\omega=\left(\omega_{b, b^{\prime}}\right)_{b, b^{\prime} \in \mathcal{B}}$, symmetric, null-diagonal, with positive entries, and satisfying $\omega_{b, b^{\prime}} \leqslant \omega_{b, b^{\prime \prime}}+\omega_{b^{\prime \prime}, b^{\prime}}$.
Large values: not structured. Low value: highly structured.

Odalric-Ambrym Maillard

Definition (Consistent strategy)

$$
\forall \nu \in \mathcal{D}_{\omega}, \forall(a, b) \in \mathcal{C}_{\nu}^{-}, \forall \alpha \in(0,1) \quad \lim _{T \rightarrow \infty} \mathbb{E}_{\nu}\left[\frac{N_{a, b}(T)^{\alpha}}{N_{b}(T)}\right]=0
$$

Proposition (Regret lower bound)

Any uniformly spread and consistent strategy must satisfy

$$
\liminf _{T \rightarrow \infty} \frac{\mathcal{R}(\nu, T)}{\ln (T)} \geqslant C_{\omega}^{\star}(\nu)
$$

where $C_{\omega}^{\star}(\nu)=\min _{n \in \mathbb{R}_{+}^{\mathbb{C}^{-}}} \sum_{a, b \in \mathcal{C}^{-}} n_{a, b} \Delta_{a, b}$ s.t.

$$
\forall(a, b) \in \mathcal{C}^{-}, \sum_{b^{\prime} \in \mathcal{B}:(a, b) \in \mathcal{C}^{-}} k l^{+}\left(\mu_{a, b^{\prime}} \mid \mu_{b}^{\star}-\omega_{b, b^{\prime}}\right) n_{a, b^{\prime}} \geqslant 1 .
$$

SPECIAL CASES

- Let ω_{λ} be a matrix where all the weights are equal to $\lambda \in[0,1]$ except for the zero diagonal.
- $\lambda=1$: no-structure, $\lambda=0$: one unique cluster.
- We recover that $C_{\omega_{1}}^{\star}(\nu)=\sum_{a, b \in \mathcal{C}-\frac{\Delta_{a, b}}{\mathrm{k}\left(\mu_{a, b} \mid \mu_{b}^{\star}\right)}}$ (unstructured lower bound)
- More generally:

METRIC-GRAPH OF BANDITS

- Explicit lower bound spanning unstructured to highly structured pbs.
- See (Saber et al., submitted) for an algorithm:
- Provably asymptotically optimal.
- Computationally cheap
- Without explicit forced exploration (still some implicit forcing).

Structures

LINEAR BANDITS

Structured Lower Bounds

Conclusion, Perspective

Take Home Message I

Confidence bounds in parametric regression: Time and space uniform

$$
\forall \delta \in(0,1), \mathbb{P}\left(\exists t \in \mathbb{N}, x \in \mathcal{X}:\left|f_{\star}(x)-f_{\theta_{t}}(x)\right| \geqslant\|\varphi(x)\|_{G_{t, \lambda}^{-1}} B_{t}(\delta)\right) \leqslant \delta
$$

- Quite tight (Equality everywhere, except Markov inequality and super-martingale).
- Extends to Kernel regression similarly.
- Optimal use of it? not quite ("The end of optimism", Lattimore et al.)

Take Home Message II

Pick your favorite structured bandit problem
Study the problem-dependent lower bound
Each arm should be pulled some minimum number of times.
Suggests an algorithm (sometimes optimal)!

OPEN PROBLEMS

- In Linear bandits:
- Features? Representation?
- Lower bounds ? Most confusing instances? Optimality?
- In generic structure:
- Generic algorithm (e.g. OSSB)?
- Forced exploration?
- More informative/Less conservative lower bounds?
- Better tracking of information?
- Beyond structure? No stochastic model?

Odalric-Ambrym Maillard
Habilitation: Mathematics of Statistical Sequbntlal decision making

More Details

Habilitation manuscript:
"Mathematics of Statistical Sequential Learning" https://hal.archives-ouvertes.fr/tel-02162189

Open positions:
http://odalricambrymmaillard.neowordpress.fr /research-projets/open-positions/

MERCI

Inria Lille - Nord Europe
odalricambrym.maillard@inria.fr
odalricambrymmaillard.wordpress.com

