
Multiagent Reinforcement 
Learning 

Marc Lanctot

RLSS @ Lille, July 11th 2019



Multi-Agent and AI
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3. Basic Formalisms & Algorithms
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Multiagent Reinforcement Learning

pommerman.com Laser Tag

http://www.youtube.com/watch?v=Z5cpIG3GsLw
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Multiagent Reinforcement Learning



General Artificial Intelligence

Traditional (Single-Agent) RL

Source: Wikipedia



General Artificial Intelligence

Source: Nowe, Vrancx & De Hauwere 2012  

Multiagent Reinforcement Learning
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Artificial Intelligence, Volume 171, Issue 7



General Artificial Intelligence

Centralized: 

● One brain / algorithm deployed across many agents

Decentralized:

● All agents learn individually

● Communication limitations defined by environment

Some Specific Axes of MARL



General Artificial Intelligence

Prescriptive: 

● Suggests how agents should behave

Descriptive:

● Forecast how agent will behave

Some Specific Axes of MARL



General Artificial Intelligence

Cooperative:    Agents cooperate to achieve a goal

Competitive:    Agents compete against each other

Neither:    Agents maximize their utility which may

   require cooperating and/or competing 

Some Specific Axes of MARL



General Artificial Intelligence

1. Centralized training for decentralized execution  

(very common)

2. Mostly prescriptive

3. Mostly competitive; sprinkle of cooperative and neither

Our Focus Today



Part 2: Foundations & 
Background



General Artificial Intelligence

  

Shoham & Leyton-Brown ‘09

masfoundations.org

http://masfoundations.org/
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Biscuits vs Cookies
A Note on Terminology

Player
Game

Strategy
Best Response

Utility
State

Agent
Environment
Policy
Greedy Policy 
Reward
(Information) State
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● Set of players  

● Each player has set of actions

● Set of joint actions

● A utility function      

Normal-form “One-Shot” Games
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Example: (Bi-)Matrix Games (n = 2)
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-1 , 1 0, 0
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column player
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a

b

A B
actions
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Example: (Bi-)Matrix Games (n = 2)

0 , 0 1 , -1

-1 , 1 0, 0
row player

column player

a

b

A B

utility to row player

utility to column player

for joint action (a,B)
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● Each player has set of actions

● Set of joint actions

● A utility function   

Each player: 

Normal-form “One-Shot” Games



General Artificial Intelligence

● Set of players  

● Each player has set of actions

● Set of joint actions

● A utility function    

Each player:

Problem! This is a joint policy 

Normal-form “One-Shot” Games
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Suppose we are player     and we fix policies of other players   (                            )

                                                 is a best response to 

Best Response
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Solving a Matrix Game

0 , 0 1 , -1

-1 , 1 0, 0
row player

column player

a

b

A B

Let’s start here
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Solving a Matrix Game

0 , 0 1 , -1

-1 , 1 0, 0
row player

column player

a

b

A B

Both players have incentive to deviate
(assuming the opponent stays fixed)
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Solving a Matrix Game

0 , 0 1 , -1

-1 , 1 0, 0
row player

column player

a

b

A B

(a,A) is a fixed point of this process
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Let’s Try Another….

 1 , -1 -1 , 1

-1 , 1 1, -1
row player

column player

a

b

A B
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Let’s Try Another….

 1 , -1 -1 , 1

-1 , 1 1, -1
row player

column player

a

b

A B



General Artificial Intelligence

A Nash equilibrium is a joint policy          such that no player has incentive to 

deviate unilaterally.

  

Nash equilibrium
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A Nash equilibrium is a joint policy          such that no player has incentive to 

deviate unilaterally.

 

  

Nash equilibrium: A Solution Concept



General Artificial Intelligence

● Nash equilibrium always exists in finite games

● Computing a Nash eq. is PPAD-Complete 

○ One solution is to focus on tractable subproblems

○ Another is to compute approximations

● Assumes players are (unbounded) rational

● Assumes knowledge:

○ Utility / value functions

○ Rationality assumption is common knowledge

Some Facts 
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General Artificial Intelligence

For any (possibly stochastic) joint policy                 ,

There exists a deterministic best response:

Best Response Condition



General Artificial Intelligence

For any (possibly stochastic) joint policy                 ,

There exists a deterministic best response:

Proof: Assume otherwise. The values of each deterministic policy (action) must 

be the same, by def. of BR. Then we can put full weight on any of them. 

Best Response Condition



General Artificial Intelligence

Matching Pennies: 

Two-Player Zero-Sum Games

 1 , -1 -1 , 1

-1 , 1 1, -1
row player

column player

a

b

A B



General Artificial Intelligence

● Solvable in polynomial time (!)

○ Easy to apply off-the-shelf solvers

● Will find one solution

● Matching Pennies: 

This is a Linear Program!



        Max-min: P1 looks for a         such that

Min-max: P1 looks for a         such that 

In two-player, zero-sum these are the same!

John von Neumann 1928    ---> The Minimax Theorem

Minimax



The optima

● These exist! (They sometimes might be stochastic.)

● Calles a minimax-optimal joint policy. Also, a Nash equilibrium.

● They are interchangeable:

● Each policy is a best response to the other.

Consequences of Minimax

also minimax-optimal
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Normal Form Games: Algorithms
● Fictitious Play:

R     P     P

R 0      1     1

P -1     0     0

P -1     0     0

● Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

● Iteration 1:

○ BR1
1,BR2

1 = P, P

○ (½, ½, 0), (½, ½, 0)

● Iteration 2:

○ BR1
2,BR2

2 = P, P

○ (⅓, ⅔, 0), (⅓, ⅔, 0)
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P -1     0     0     1
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S       1      -1    -1    0
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● Iteration 1:
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1,BR2

1 = P, P

○ (½, ½, 0), (½, ½, 0)

● Iteration 2:
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○ (⅓, ⅔, 0), (⅓, ⅔, 0)

● Iteration 3:

○ BR1
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○ (¼,½,¼), (¼,½,¼)
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Normal Form Games: Algorithms
● Fictitious Play:

R     P     P     S     S

R 0      1     1     -1     -1

P -1     0     0     1      1

P -1     0     0     1      1

S       1      -1    -1    0      0

S       1      -1    -1    0      0

● Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

● Iteration 1:

○ BR1
1,BR2

1 = P, P

○ (½, ½, 0), (½, ½, 0)

● Iteration 2:

○ BR1
2,BR2

2 = P, P

○ (⅓, ⅔, 0), (⅓, ⅔, 0)

● Iteration 3:

○ BR1
3,BR2

3 = S, S

○ (¼,½,¼), (¼,½,¼)



Multi-Agent Learning Tutorial

Normal Form Games: Algorithms
● double oracle [HB McMahan 2003]:

π1
0   BR1

1   BR1
2  BR1

3

π2
0

BR2
1

BR2
2

BR2
3

R1,R2

● Start with an arbitrary policy per 

player (π1
0,π2

0),

○ Compute (pn,qn) by solving 

the game at iteration n

○ Then, best response against 

(pn,qn) and get a new best 

response (BR1
n,BR1

n).

p2
0

p2
1

p2
2

π2
2

q2
0     q2

1     q
2

2

π1
2
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Normal Form Games: Algorithms
● double oracle:

R     P

R 0      1

P -1     0

● Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

● Iteration 1:

○ BR1
1,BR2

1 = P, P

○ Solve the game : (0, 1, 0), (0, 1, 

0)



Multi-Agent Learning Tutorial

Normal Form Games: Algorithms
● double oracle:

R     P     S   

R 0      1     -1

P -1     0     1

S       1      -1    0

● Start with (R, P, S)= (1, 0, 0), (1, 0, 0)

● Iteration 1:

○ BR1
1,BR2

1 = P, P

○ Solve the game : (0, 1, 0), (0, 1, 

0)

● Iteration 2:

○ BR1
2,BR2

2 = S, S

○ (⅓, ⅓, ⅓), (⅓, ⅓, ⅓)
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1, 1 0, 0 0, 0

0, 0 2, 2 0, 0

0, 0 0, 0 5, 5
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column player
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These are all Nash equilibria!

Cooperative Games

1, 1 0, 0 0, 0

0, 0 2, 2 0, 0

0, 0 0, 0 5, 5

row player

column player

a

b

A B C

c



General Artificial Intelligence

No constraints on utilities!

General-Sum Games

 3, 2 0, 0

0, 0 2, 3
row player

column player

a

b

A B



General Artificial Intelligence

What about sequential games…?

The Sequential Setting: Extensive-Form Games
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● Start with an episodic MDP
● Add a player identity function:

Simultaneous move node (many players 
play simultaneously)
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(Finite) Perfect Information Games: Model

● Start with an episodic MDP
● Add a player identity function:

● Define rewards per player:

● (Similarly for returns:             is the return to player i from        ) 



Part 3: Basic Formalisms & 
Algorithms
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General Artificial Intelligence

Solving a turn-taking perfect 

information game

Backward Induction
P1

P2P2

P1P1

 3, -3 -1, 1 6, -6
-2, 2 -4, 4

4, -4 0, 0
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General Artificial Intelligence

Solving a turn-taking perfect 

information game

Backward Induction
P1

P2P2

P1P1

 3, -3 -1, 1 6, -6
-2, 2 -4, 4

4, -4 0, 06, -6 -2, 2 

4, -4 -2, 2 

4, -4 



Intro to RL: Tabular Approximate Dyn. Prog.



 

Turn-Taking 2P Zero-sum Perfect Info. Games

● Player to play at s: 
● Reward to player i:
● Subset of legal actions
● Often assume episodic and 

Values of a state to player i:
Identities:

 



 

2P Zero-Sum Perfect Info. Value Iteration



A.K.A. Alpha-Beta, Backward Induction, Retrograde Analysis, etc…

Start from search state      ,

    Compute a depth-limited approximation:

         ---> Minimax Search

Minimax



● Analogous to adaptation of value iteration

● Foundation of AlphaGo, AlphaGo Zero, AlphaZero

○ Better policy improvement via MCTS

○ Deep network func. approximation
■ Policy prior cuts down breadth

■ Value network cuts the depth

Two-Player Zero-Sum Policy Iteration

Evaluation

     Move 
probabilities



  

2P Zero-Sum Games with Simultaneous Moves 

Image from Bozansky et al. 2016

https://www.sciencedirect.com/science/article/abs/pii/S0004370216300285


“Markov Soccer”

  Littman ‘94 He et al. ‘16

   Also: Lagoudakis & Parr ‘02, Uther & Veloso ‘03, Collins ‘07

Markov Games



  

Value Iteration for Zero-Sum Markov Games

computed above



1. Start with arbitrary joint value functions 

First MARL Algorithm: Minimax-Q (Littman ‘94)

my action opponent action



1. Start with arbitrary joint value functions 

First MARL Algorithm: Minimax-Q (Littman ‘94)

my action opponent action

Induces a matrix of values 



1. Start with arbitrary joint value functions

2. Define policy       as in value iteration (by solving an LP)

First MARL Algorithm: Minimax-Q (Littman ‘94)



1. Start with arbitrary joint value functions

2. Define policy       as in value iteration (by solving an LP)

3. Generate trajectories of tuple                              using 

behavior policy

First MARL Algorithm: Minimax-Q (Littman ‘94)



1. Start with arbitrary joint value functions

2. Define policy       as in value iteration (by solving an LP)

3. Generate trajectories of tuple                              using 

behavior policy

4. Update 

First MARL Algorithm: Minimax-Q (Littman ‘94)



Follow-ups to Minimax Q:

● Friend-or-Foe Q-Learning (Littman ‘01)

● Correlated Q-learning (Greenwald & Hall ‘03)

● Nash Q-learning (Hu & Wellman ‘03)

● Coco-Q (Sodomka et al. ‘13)

Function approximation:

● LSPI for Markov Games (Lagoudakis & Parr ‘02)

First Era of MARL



            Singh, Kearns & Mansour ‘03, Infinitesimal Gradient Ascent (IGA)  

First Era of MARL

https://arxiv.org/abs/1301.3892


Formalize optimization as a 

dynamical system: 

   policy gradients

Analyze using well-established 

techniques 

First Era of MARL

Image from Singh, Kearns, & Mansour ‘03



→  Evolutionary Game Theory: replicator dynamics

First Era of MARL

time derivative



→  Evolutionary Game Theory: replicator dynamics

First Era of MARL

time derivative utility of action a against 
the joint policy / population 
of other players



→  Evolutionary Game Theory: replicator dynamics

First Era of MARL

time derivative utility of action a against 
the joint policy / population 
of other players

Expected / average utility 
of the joint policy / 
population



Bloembergen et al. 2015

First Era of MARL

https://www.jair.org/index.php/jair/article/view/10952


WoLF: Win or Learn Fast. (Bowling & Veloso ‘01).

IGA is rational but not convergent!

● Rational: opponents converge to a fixed joint policy 

→ learning agent converges to a best response of joint policy

● Convergent: learner necessarily converges to a fixed policy

Use specific variable learning rate to ensure convergence (in 2x2 games)

First Era of MARL



Follow-ups to policy gradient and replicator dynamics:

● WoLF-IGA, WoLF-PHC

● WoLF-GIGA (Bowling ‘05)

● Weighted Policy Learner (Abdallah & Lesser ‘08)

● Infinitesimal Q-learning (Wunder et al. ‘10)

● Frequency-Adjusted Q-Learning (Kaisers et al. ‘10, Bloembergen et al. ‘11)

● Policy Gradient Ascent with Policy Prediction (Zhang & Lesser ‘10)

● Evolutionary Dynamics of Multiagent Learning (Bloembergen et al. ‘15)

First Era of MARL



Why call it “the first era”?

So…...



Why call it “the first era”?

Scalability was a major problem.

So…...



Multi-Agent and AI

 

 Second Era: Deep Learning meets Multiagent RL

Source: spectrum.ieee.org

Source: wikipedia.org



Deep Q-Networks (DQN)  Mnih et al. 2015

{ pixels, reward } { action }

Atari Emulator

Agent

“Human-level control through deep reinforcement learning”

● Represent the action value (Q) function using a 

convolutional neural network.

● Train using end-to-end Q-learning.

● Can we do this in a stable way?



Independent Q-Learning Approaches
Independent Q-learning [Tan, 1993] Independent Deep Q-Networks [Tampuu et al., 2015]



Foerster et al. ‘16

Learning to Communicate



Sukhbaatar et al. ‘16 

Learning to Communicate



   Foerster et al. ‘18  

BIC-Net (Peng et al.’17)

Cooperative Multiagent Tasks



   Leibo et al. ‘17 Lerer & Peyskavich ‘18 

Sequential Social Dilemmas

http://www.youtube.com/watch?v=0kaIqz6AvwE


● Idea: reduce nonstationarity & credit assignment issues using a central critic 

● Examples: MADDPG [Lowe et al., 2017] & COMA [Foerster et al., 2017]

● Apply to both cooperative and competitive games

Centralized Critic Decentralized Actor Approaches

Critic

Actor 2Actor 1

s  ro1 o2a1 a2

a2a1

Environment

Q(s|a)Q(s|a)

Decentralized actors trained via policy gradient:

Actor

Critic

Centralized critic trained to minimize loss:







AlphaGo vs. Lee Sedol

Lee Sedol (9p): winner of 18 world titles

Match was played in Seoul, March 2016

AlphaGo won the match 4-1



AlphaGo Zero

Mastering Go without Human Knowledge



AlphaZero: One Algorithm, Three Games

GoShogiChess



Bansal et al. ‘18

3D Worlds

https://arxiv.org/abs/1710.03748


Al-Shedivat et al. ‘17   

Meta-Learning in RoboSumo

https://arxiv.org/abs/1710.03641


  

Emergent Coordination Through Competition

Liu et al. ‘ 19    and    http://git.io/dm_soccer

https://arxiv.org/abs/1902.07151
http://git.io/dm_soccer


  

Capture-the-Flag (Jaderberg et al. ‘19)

https://deepmind.com/blog/capture-the-flag-science/

http://www.youtube.com/watch?v=OjVxXyp7Bxw
https://deepmind.com/blog/capture-the-flag-science/


https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

AlphaStar (Vinyals et al. ‘19)

https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/


 https://openai.com/blog/openai-five-finals/   

Dota 2: OpenAI Five

https://openai.com/blog/openai-five-finals/


  

Deep Multiagent RL Survey

https://arxiv.org/abs/1810.05587

https://arxiv.org/abs/1810.05587


Part 4: Partial Observability
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Foundations of Multiagent RL

Reinforcement 
Learning

Multiagent 
Reinforcement 

Learning

Approximate Dynamic 
Programming

Game Theory

Single Agent Multiple (e.g. 2) Agents

S
m

al
l 
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Multi-Agent and AI

“small2” map 

Independent Deep Q-networks    (Mnih et al. ‘15)

http://www.youtube.com/watch?v=jOjwOkCM_i8
http://www.youtube.com/watch?v=8vXpdHuoQH8


Multi-Agent and AI

“small3” map  

Independent Deep Q-networks    (Mnih et al. ‘15)

http://www.youtube.com/watch?v=zilU0hXvGK4
http://www.youtube.com/watch?v=Z5cpIG3GsLw


● Idea: Fictitious self-play (FSP) + reinforcement learning 
● Update rule in sequential setting equivalent to standard fictitious play (matrix game)
● Approximate NE via two neural networks:

Fictitious Self-Play [Heinrich et al. ‘15, Heinrich & Silver 2016]

Reservoir 
Buffer

Circular 
Buffer

AVG 
Net

BR 
Net

Policy 
Mixing

Parameter

1. Best response net (BR): 
○ Estimate a best response
○ Trained via RL

2. Average policy net (AVG): 
○ Estimate the time-average policy
○ Trained via supervised learning



Neural Fictitious Self-Play [Heinrich & Silver 2016]

“Closeness” to Nash

● Leduc Hold’em poker experiments:

● 1st scalable end-to-end approach to learn approximate Nash equilibria w/o prior domain knowledge
○ Competitive with superhuman computer poker programs when it was released 



General Artificial Intelligence

Active
AgentRandomDQN# 2

   Meta
Solver

DQN# 1

   Meta
Solver

Policy-Space Response Oracles (Lanctot et al. ‘17)

PSRO Meta Agent

 Policy 
Set

Meta Strategy

Random DQN #1 DQN #2

Random 0.5 0.45 0.4

DQN #1 0.6 0.55 0.45

DQN #2 0.7 0.6 0.56

Random

DQN #1

DQN #2

DQN #K
Random DQN #1

Random 0.5 0.45

DQN #1 0.6 0.55

Random

Random 0.5

DQN #1RandomOpponent 
Policy

https://arxiv.org/abs/1711.00832


Multi-Agent and AI

In RL: 

● Each player uses optimizes independently

● After many steps, joint policy (𝜋1 , 𝜋2
 ) co-learned for players 1 & 2

Computing JPC:    start 5 separate instances of the same experiment, with

○ Same hyper-parameter values

○ Differ only by seed (!)

● Reload all 25 combinations and play 𝜋1
i   with  𝜋2

j  for instances i, j 

Quantifying “Joint Policy Correlation”



Multi-Agent and AI

  

Joint Policy Correlation in Independent RL

 InRL in small2 (first) map  InRL in small4 map



Multi-Agent and AI

  

JPC Results - Laser Tag

Game Diag Off Diag Exp. Loss

LT small2 30.44  20.03 34.2 %

LT small3 23.06  9.06 62.5 %

LT small4 20.15  5.71 71.7 %

Gathering 
field

147.34  146.89 none

Pathfind 
merge

108.73  106.32 none



General Artificial Intelligence

Exploitability Descent (Lockhart et al. ‘19)

● A FP-like algorithm conv. without averaging! 

● Amenable to function approximation 

https://arxiv.org/abs/1903.05614


 

A simple MDP
A

B C D E

a      b

   Pr(B | A, a) = 0.75 Pr(C | A, a) = 0.25           Pr(D | A, b) = 0.4              Pr(E | A, b) = 0.6            

3   -1         0                  2          4       2             -3   2 

        c               d              e            f                                 g           h                 i            j



 

A simple MDP Multiagent System
A

B C D E

a      b

3   -1         0                  2          4       2             -3   2 

        c               d              e            f                                 g           h                 i            j



(A, a, F, 1, B, c) is a terminal history.

     

Terminal history A.K.A. Episode
A

B C D E

a      b

3   -1         0                  2          4       2             -3   2 

        c               d              e            f                                 g           h                 i            j



(A, a, F, 1, B, c) is a terminal history. (A, b, G, 3, D, g) is a another terminal history.

     

Terminal history A.K.A. Episode
A

B C D E

a      b

3   -1         0                  2          4       2             -3   2 

        c               d              e            f                                 g           h                 i            j



(A, a, F, 2, C) is a history. It is a prefix of (A, a, F, 2, C, e) and (A, a, F, 2, C, f).

Prefix (non-terminal) Histories
A

B C D E

a      b

3   -1         0                  2          4       2             -3   2 

        c               d              e            f                                 g           h                 i            j



Another simple MDP:

        

Perfect Recall of Actions and Observations

A
e

p

0

-0.05

100



Another simple MDP: A different MDP:

        

Perfect Recall of Actions and Observations

A
e

p

0

-0.05

100

A

B

C

 . . . 

e

e

e

0

0

0

100

100

-0.05

-0.05



An information state is a set of histories consistent with an agent’s observations.

3-card Poker deck:

Jack, Queen, King

Partially Observable Environment



Presentation Title — SPEAKER

Terminology
What is a “state”?

● An information state s corresponds to sequence of observations
○ with respect to the player to act at s

Example information state in Poker:

Environment is in one of many world/ground states 

 

Ante: 1 chip per player,              , P1 bets 1 chip,   P2 calls,



Presentation Title — SPEAKER

Recall: Turn-Taking Perfect Information Games

→ Exactly one history per information state!



General Artificial Intelligence

What………………. is a counterfactual value?

{Q,V}-values and Counterfactual Values

s
 a   b c    a b  c  a b c

The portion of the expected return (under s) from the start state, given that:

player i plays to reach information state s (then plays a).



General Artificial Intelligence

What………………. is a q-value?

Q-values in Partially Observable Environments

st
a   b  c  a  b  c  a b   c



General Artificial Intelligence

Q-values in Partially Observable Environments

All terminal histories z reachable 
from s, paired with their prefix 
histories ha, where h is in s

Reach probabilities: product of 
all policies’ state-action 
probabilities along the portion of 
the history between ha and z

Return achieved over 
terminal history z



General Artificial Intelligence

Q-values in Partially Observable Environments

By Bayes rule



General Artificial Intelligence

Q-values in Partially Observable Environments

Since h is in st  and h is unique to st



General Artificial Intelligence

Q-values in Partially Observable Environments



General Artificial Intelligence

Q-values in Partially Observable Environments

Only player i’s reach probabilities Player i’s opponent’s probabilities (inc. chance!)

Similarly here               and here



General Artificial Intelligence

Q-values in Partially Observable Environments

Due to perfect recall (!!)



General Artificial Intelligence

  

Q-values in Partially Observable Environments



General Artificial Intelligence

  

Q-values in Partially Observable Environments

This is a counterfactual value!



General Artificial Intelligence

  

Q-values in Partially Observable Environments

For full derivation, see Sec 3.2 of  Srinivasan et al. ‘18 

https://arxiv.org/abs/1810.09026


General Artificial Intelligence

            ¯\_(ツ)_/¯

Yeah.. so.... ? 



General Artificial Intelligence

Zinkevich et al. ‘08

● Algorithm to compute approx 

Nash eq. In 2P zero-sum games

● Hugely successful in Poker AI

● Size traditionally reduced apriori 

based on expert knowledge

● Key innovation: counterfactual 

values:

Counterfactual Regret Minimization (CFR)

Image form Sandholm ‘10



General Artificial Intelligence

● Policy evaluation is analogous

● Policy improvement: use regret minimization algorithms

○ Average strategies converge to Nash in self-play

● Convergence guarantees are on the average policies

CFR is policy iteration!



  

     (Moravcik et al. ‘17)

https://science.sciencemag.org/content/356/6337/508


  

     (Moravcik et al. ‘17)

https://science.sciencemag.org/content/356/6337/508


General Artificial Intelligence

   

Libratus (Brown & Sandholm ‘18)

https://science.sciencemag.org/content/359/6374/418


General Artificial Intelligence

Parameterized policy               with parameters            (e.g. a neural network)

Define a score function    

Main idea: do gradient ascent on J.

1. REINFORCE (Williams ‘92, see RL book ch. 13) + PG theorem:  you 

can do this via estimates from sample trajectories.

2. Advantage Actor-Critic (A2C) (Mnih et al ‘16): you can use deep 

networks to estimate the policy and baseline value v(s)

Policy Gradient Algorithms



● Policy gradient is doing a form of CFR minimization!

● Several new policy gradient variants inspired connection to regret

Regret Policy Gradients (Srinivasan et al. ‘18)

https://arxiv.org/abs/1810.09026


Replicator Dynamics Time-discretize

Parameterized policy

Update policy 
parameters to 

minimize distance to 
time-discretized RD

Neural Replicator 
Dynamics (NeuRD)

Neural Replicator Dynamics (NeuRD)

Logits, where policy is 

Advantage q(s,a)-v(s)

Omidshafiei, Hennes, Morrill et al. ‘19

https://arxiv.org/abs/1906.00190


Biased Rock-Paper-Scissors Leduc Poker

NeuRD: Results



Where to Go From Here?



General Artificial Intelligence

  

Shoham & Leyton-Brown ‘09

masfoundations.org

http://masfoundations.org/


General Artificial Intelligence

● If multi-agent learning is the answer, what is the question?
○ Shoham et al. ‘06

○ Hernandez-Leal et al. ‘19

● A comprehensive survey of MARL (Busoniu et al. ‘08)

● Game Theory and Multiagent RL (Nowé et al. ‘12)

● Study of Learning in Multiagent Envs (Hernandez-Leal et al. ‘17)

Surveys and Food for Thought



General Artificial Intelligence

Bard et al.  ‘19 Also Competition at IEEE Cog (ieee-cog.org)

The Hanabi Challenge

https://arxiv.org/abs/1902.00506
http://ieee-cog.org/


● Open source framework for research 

in RL & Games

● C++, Python, and Swift impl’s

● 25+ games

● 10+ algorithms

● Tell all your friends!  (Seriously!)

     → August 2019 

OpenSpiel: Coming Soon!



AAAI 2020 Workshop on RL in Games?

http://aaai-rlg.mlanctot.info/

AAAI19-RLG Summary:

● 39 accepted papers

○ 4 oral presentations

○ 35 posters

● 1 “Mini-Tutorial”

● 3 Invited Talks

● Panel & Discussion 

http://aaai-rlg.mlanctot.info/


Multi-Agent and AI

 Marc Lanctot

lanctot@google.com

  mlanctot.info/

Questions?

mailto:lanctot@google.com
http://mlanctot.info

