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K arms ↔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent:
I chooses an arm At
I receives a reward Rt = XAt ,t ∼ νAt

Sequential sampling strategy (bandit algorithm):

At+1 = Ft(A1,R1, . . . ,At ,Rt).

Goal: Maximize E
[∑T

t=1 Rt
]
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K arms ↔ K probability distributions : νa has mean µa

ν1 ν2 ν3 ν4 ν5

At round t, an agent:
I chooses an arm At
I receives a sample Xt = XAt ,t ∼ νAt

Sequential sampling strategy (bandit algorithm):

At+1 = Ft(A1,X1, . . . ,At ,Xt).

Goal: Maximize E
[∑T

t=1 Xt
]
→ not the only possible goal!
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B(µ1) B(µ2) B(µ3) B(µ4) B(µ5)

For the t-th patient in a clinical study,
I chooses a treatment At
I observes a response Xt ∈ {0, 1}: P(Xt = 1) = µAt

Maximize rewards ↔ cure as many patients as possible

Alternative goal: identify as quickly as possible the best treatment
(without trying to cure patients during the study)
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Probability that some version of a website generates a conversion:

. . .

µ1 µ2 µK

Best version: a? = argmax
a=1,...,K

µa

Sequential protocol: for the t-th visitor:
I display version At
I observe conversion indicator Xt ∼ B(µAt ).

Maximize rewards ↔ maximize the number of conversions

Alternative goal: identify the best version
(without trying to maximize conversions during the test)
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Goal: find the best version.
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.A/B Testing (K = 2)



A way to do A/B Testing:
I allocate nA users to page A and nB users to page B

(decided in advance, often nA = nB)
I perform a statistical test of “A better than B”

Alternative: fully adaptive A/B Testing
I sequentially choose which version to allocate to each visitor
I (adaptively choose when to stop the experiment)

Ü best arm identification in a bandit model
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Finding the best arm
in a bandit model
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Goal: identify an arm with large mean as quickly and accurately as
possible ' identify

a? = argmax
a=1,...,K

µa.

Algorithm: made of three components:
Ü sampling rule: At (arm to explore)
Ü recommendation rule: Bt (current guess for the best arm)
Ü stopping rule τ (when do we stop exploring?)

Probability of error [Even-Dar et al., 2006, Audibert et al., 2010]
The probability of error after n rounds is

pν(n) = Pν (Bn 6= a?) .

bla
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Goal: identify an arm with large mean as quickly and accurately as
possible ' identify

a? = argmax
a=1,...,K

µa.

Algorithm: made of three components:
Ü sampling rule: At (arm to explore)
Ü recommendation rule: Bt (current guess for the best arm)
Ü stopping rule τ (when do we stop exploring?)

Simple regret [Bubeck et al., 2009]
The simple regret after n rounds is

rν(n) = µ? − µBn .
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Goal: identify an arm with large mean as quickly and accurately as
possible ' identify

a? = argmax
a=1,...,K

µa.

Algorithm: made of three components:
Ü sampling rule: At (arm to explore)
Ü recommendation rule: Bt (current guess for the best arm)
Ü stopping rule τ (when do we stop exploring?)

Simple regret [Bubeck et al., 2009]
The simple regret after n rounds is

rν(n) = µ? − µBn .

∆minpν(n) ≤ Eν [rν(n)] ≤ ∆maxpν(n)
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Algorithm: made of three components:
Ü sampling rule: At (arm to explore)
Ü recommendation rule: Bt (current guess for the best arm)
Ü stopping rule τ (when do we stop exploring?)

I Objectives studied in the literature:

Fixed-confidence setting Fixed-budget setting Anytime exploration
input: risk parameter δ input: budget T no input
(tolerance parameter ε)

minimize E[τ ] τ = T for all t,
P(Bτ 6= a?) ≤ δ minimize P(BT 6= a?) minimize pν(t)

or P(rν(τ) < ε) ≤ δ or E[rT (ν)] or E[rν(t)]
[Even-Dar et al., 2006] [Bubeck et al., 2009] [Jun and Nowak, 2016]

[Audibert et al., 2010]
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Finding the Best Arm in a Bandit Model
Algorithms for Best Arm Identification
Performance Lower Bounds
An asymptotically optimal algorithm

Beyond Best Arm Identification
Active Identification in Bandit Models
Examples

Bandit for Optimization in a Larger Space
Black-Box Optimization
Hierarchical Bandits
Bayesian Optimization

Bandit Tools for Planning in Games
Upper Confidence Bounds for Trees
BAI tools for Planning in Games
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Context: bounded rewards (νa supported in [0, 1])
We know good algorithms to maximize rewards, for example UCB(α)

At+1 = argmax
a=1,...,K

µ̂a(t) +
√
α

ln(t)
Na(t)

I How good is it for best arm identification?

Possible recommendation rules:

Empirical Best Arm Bt = argmaxa µ̂a(t)
(EBA)

Most Played Arm Bt = argmaxa Na(t)
(MPA)

Empirical Distribution of Plays Bt ∼ pt , where
(EDP) pt =

(
N1(t)

t , . . . , NK (t)
t

)
[Bubeck et al., 2009]
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I UCB + Empirical Distribution of Plays

E [rν(n)] = E [µ? − µBn ] = E
[ K∑

b=1
(µ? − µb)1(Bn=b)

]

= E
[ K∑

b=1
(µ? − µb)P(Bn = b|Fn)

]

= E
[ K∑

b=1
(µ? − µb)Nb(n)

n

]

= 1
n

K∑
b=1

(µ? − µb)E[Nb(n)]

= Rν(n)
n .

Ü a conversion from cumulated regret to simple regret!
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I UCB + Empirical Distribution of Plays

E [rν (UCB(α), n)] ≤ Rν(UCB(α), n)
n ≤ C(ν) ln(n)

n

I UCB + Most Played Arm

Theorem [Bubeck et al., 2009]
With the Most Play Armed as a recommendation rule, for n large enough,

E [rν (UCB(α), n)] ≤ C

√
Kα ln(n)

n .

(more precise problem-dependent analysis in [Bubeck et al., 2009])
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Eν [rν (UCB(α), n)] '

√
Kα ln(n)

n .

I the uniform allocation strategy can beat UCB!

Theorem [Bubeck et al., 2009]
For n ≥ 4K ln(K )/∆2

min, the simple regret decays exponentially :

Eν [rν (Unif, n)] ≤ ∆max exp
(
−1

8
n
K ∆2

min

)

I the smaller the cumulative regret, the larger the simple regret

Theorem [Bubeck et al., 2009]

′′E[rν(A, n)] ≥ ∆min
2 exp (−C ×Rν(A, n))′′
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Answer:
I UCB has to be coupled with an appropriate recommendation rule
I it is not guaranteed to perform better than uniform exploration...

Variants of UCB?
I UCB-E for the fixed-budget setting [Audibert et al., 2010]
I LIL-UCB for the fixed-confidence setting [Jamieson et al., 2014]

Other algorithms?
I many specific algorithm for best arm identification
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Input: total number of plays T
Idea: split the budget in log2(K ) phases of equal length, eliminate the
worst half of the remaining arms after each phase.

Initialisation: S0 = {1, . . . ,K};
For r = 0 to dln2(K )e − 1, do

sample each arm a ∈ Sr tr =
⌊

T
|Sr |dlog2(K)e

⌋
times;

let µ̂r
a be the empirical mean of arm a;

let Sr+1 be the set of d|Sr |/2e arms with largest µ̂r
a

Output: BT the unique arm in Sdlog2(K)e

Theorem [Karnin et al., 2013]
Letting H2(ν) = maxa 6=a? a∆−2

[a] , for any bounded bandit instance,

Pν (BT 6= a?) ≤ 3 log2(K ) exp
(
− T

8 log2(K )H2(ν)

)
.
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Input: risk parameter δ ∈ (0, 1).
Idea: sample all remaining arm uniformly and perform eliminations of
arms which look sub-optimal

Initialization: S = {1, . . . ,K}
While |S| > 1

Draw all arms in S. t ← t + |S|.
S ← S\{a} if maxi∈S µ̂i (t)− µ̂a(t) ≥ 2

√
ln(Kt2/δ)

t .
Output: the unique arm Bτ ∈ S.

Theorem [Even-Dar et al., 2006]
Successive Elimination satisfies Pν (Bτ = a?) ≥ 1− δ. Moreover,

Pν

(
τδ = O

( K∑
a=2

1
∆2

a
ln
( K
δ∆a

)))
≥ 1− δ.
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Ia(t) = [LCBa(t),UCBa(t)].

0

1

771 459 200 45 48 23

I At round t, draw
Bt = argmax

b
µ̂b(t)

Ct = argmax
c 6=Bt

UCBc(t)

I Stop at round t if

LCBBt (t) > UCBCt (t)− ε

Theorem [Kalyanakrishnan et al., 2012]
For well-chosen confidence intervals, Pν(µBτ > µ? − ε) ≥ 1− δ and

E [τδ] = O
([

1
∆2

2 ∨ ε2 +
K∑

a=2

1
∆2

a ∨ ε2

]
ln
(1
δ

))
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Finding the Best Arm in a Bandit Model
Algorithms for Best Arm Identification
Performance Lower Bounds
An asymptotically optimal algorithm

Beyond Best Arm Identification
Active Identification in Bandit Models
Examples

Bandit for Optimization in a Larger Space
Black-Box Optimization
Hierarchical Bandits
Bayesian Optimization

Bandit Tools for Planning in Games
Upper Confidence Bounds for Trees
BAI tools for Planning in Games
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Context: Exponential family bandit model
ν = (ν1, . . . , νK ) ↔ µ = (µ1, . . . , µK )

(Bernoulli, Gaussian with known variance, Poisson...)

Algorithm: made of three components:
Ü sampling rule: At (arm to explore)
Ü stopping rule τ (when do we stop exploring?)
Ü recommendation rule: Bτ (guess for the best arm when stopping)

Objective
I a δ-correct strategy: for all µ with a unique optimal arm,

Pµ (Bτ = a?) ≥ 1− δ.
I with a small sample complexity Eµ[τδ].

Ü minimal sample complexity?
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Divergence function: kl(µ, µ′) = KL(νµ, νµ′).

Change of distribution lemma [Kaufmann et al., 2016]
µ and λ be such that a?(µ) 6= a?(λ). For any δ-correct algorithm,

K∑
a=1

Eµ[Na(τ)]kl(µa, λa) ≥ klBer(δ, 1− δ).

I For any a ∈ {2, . . . ,K}, introducing λ:

µa µ1 µ1+ εµ2
µK

{
λa = µ1 + ε
λi = µi , if i 6= a

Eµ[Na(τ)]kl(µa, µ1 + ε) ≥ klBer(δ, 1− δ)

Eµ[Na(τ)] ≥ 1
kl(µa, µ1) ln

( 1
3δ

)
.

bla
Emilie Kaufmann (CNRS) - Stochastic Bandits July, 2019 - 21

.A first lower bound



Divergence function: kl(µ, µ′) = (µ−µ′)2

2σ2 (Gaussian distributions).

Change of distribution lemma [Kaufmann et al., 2016]
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Divergence function: kl(µ, µ′) = KL(νµ, νµ′).

Change of distribution lemma [Kaufmann et al., 2016]
µ and λ be such that a?(µ) 6= a?(λ). For any δ-correct algorithm,

K∑
a=1

Eµ[Na(τ)]kl(µa, λa) ≥ klBer(δ, 1− δ).

I One obtains

Theorem [Kaufmann et al., 2016]
For any δ-correct algorithm,

Eµ[τ ] ≥
(

1
kl(µ1, µ2) +

K∑
a=2

1
kl(µa, µ1)

)
ln
( 1

3δ

)
.

bla
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Divergence function: kl(µ, µ′) = KL(νµ, νµ′).

Change of distribution lemma [Kaufmann et al., 2016]
µ and λ be such that a?(µ) 6= a?(λ). For any δ-correct algorithm,

K∑
a=1

Eµ[Na(τ)]kl(µa, λa) ≥ klBer(δ, 1− δ).

I One obtains

Theorem [Kaufmann et al., 2016]
For any δ-correct algorithm,

Eµ[τ ] ≥
(

1
kl(µ1, µ2) +

K∑
a=2

1
kl(µa, µ1)

)
ln
( 1

3δ

)
.

Ü not tight enough...
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Change of distribution lemma [Kaufmann et al., 2016]
µ and λ be such that a?(µ) 6= a?(λ). For any δ-correct algorithm,

K∑
a=1

Eµ[Na(τ)]kl(µa, λa) ≥ klBer(δ, 1− δ).

I Let Alt(µ) = {λ : a?(λ) 6= a?(µ)}.

inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τ)]kl(µa, λa) ≥ klBer(δ, 1− δ)

Eµ[τ ]× inf
λ∈Alt(µ)

K∑
a=1

Eµ[Na(τ)]
Eµ[τ ] kl(µa, λa) ≥ ln

( 1
3δ

)

Eµ[τ ]×
(

sup
w∈ΣK

inf
λ∈Alt(µ)

K∑
a=1

wakl(µa, λa)
)
≥ ln

( 1
3δ

)
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Theorem [Garivier and Kaufmann, 2016]
For any δ-PAC algorithm,

Eµ[τ ] ≥ T?(µ) ln
( 1

3δ

)
,

where
T?(µ)−1 = sup

w∈ΣK

inf
λ∈Alt(µ)

( K∑
a=1

wakl(µa, λa)
)
.

Moreover, the vector of optimal proportions,

w?(µ) = argmax
w∈ΣK

inf
λ∈Alt(µ)

( K∑
a=1

wakl(µa, λa)
)

is well-defined, and can be computed efficiently.
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µ̂(t) = (µ̂1(t), . . . , µ̂K (t)): vector of empirical means

I Introducing

Ut =
{

a : Na(t) <
√

t
}
,

one has

At+1 ∈


argmin

a∈Ut
Na(t) if Ut 6= ∅ (forced exploration)

argmax
1≤a≤K

[
(w?(µ̂(t)))a − Na(t)

t

]
(tracking)

Lemma
Under the Tracking sampling rule,

Pµ

(
lim

t→∞
Na(t)

t = (w?(µ))a

)
= 1.
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I a Generalized Likelihood Ratio:

Ẑ (t) = ln ` (X1, . . . ,Xt ; µ̂(t))
max

λ∈Alt(µ̂(t))
`(X1, . . . ,Xt ; λ) = inf

λ∈Alt(µ̂(t))

K∑
a=1

Na(t)kl(µ̂a(t), λa)

Ü high value of Ẑ (t) rejects the hypothesis “µ ∈ Alt(µ̂(t))”.

Stopping and recommendation rule

τδ = inf
{

t ∈ N : Ẑ (t) > β(t, δ)
}

Bτ = argmax
a=1,...,K

µ̂a(τ).

(can be traced back to [Chernoff, 1959])

Ü How to pick the threshold β(t, δ)?
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Ẑ (t) = inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)kl(µ̂a(t), λa)

= min
b 6=Bt

inf
{λ:λBt≤λb}

K∑
a=1

Na(t)kl(µ̂a(t), λa) bla

P (Bτδ 6= a?) ≤ P
(
∃t ∈ N?,∃a 6= a? : Bt = a, Ẑ (t) > β(t, δ)

)
≤ P

(
∃t ∈ N?,∃a 6= a? : inf

λa≤λa?

∑
i∈{a,a?}

Ni (t)kl(µ̂i (t), λi ) > β(t, δ)
)

≤
∑

a 6=a?
P
(
∃t ∈ N? : Na(t)kl(µ̂a(t), µa) + Na?(t)kl(µ̂a?(t), µa?) > β(t, δ)

)
︸ ︷︷ ︸

requires simultaneous deviations on the two arms

Bernoulli case: [Garivier and Kaufmann, 2016]
Exponential families: [Kaufmann and Koolen, 2018]
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Ẑ (t) = inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)kl(µ̂a(t), λa)

= min
b 6=Bt

inf
{λ:λBt≤λb}

[
NBt (t)kl(µ̂Bt (t), λBt ) + Nb(t)kl(µ̂b(t), λb)

]

P (Bτδ 6= a?) ≤ P
(
∃t ∈ N?,∃a 6= a? : Bt = a, Ẑ (t) > β(t, δ)

)
≤ P

(
∃t ∈ N?,∃a 6= a? : inf

λa≤λa?

∑
i∈{a,a?}

Ni (t)kl(µ̂i (t), λi ) > β(t, δ)
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∑
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Ẑ (t) = inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)kl(µ̂a(t), λa)

= min
b 6=Bt

inf
{λ:λBt≤λb}

[
NBt (t)kl(µ̂Bt (t), λBt ) + Nb(t)kl(µ̂b(t), λb)

]

P (Bτδ 6= a?) ≤ P
(
∃t ∈ N?,∃a 6= a? : Bt = a, Ẑ (t) > β(t, δ)

)
≤ P

(
∃t ∈ N?,∃a 6= a? : inf

λa≤λa?

∑
i∈{a,a?}

Ni (t)kl(µ̂i (t), λi ) > β(t, δ)
)

≤
∑

a 6=a?
P
(
∃t ∈ N? : Na(t)kl(µ̂a(t), µa) + Na?(t)kl(µ̂a?(t), µa?) > β(t, δ)

)
︸ ︷︷ ︸

requires simultaneous deviations on the two arms

Bernoulli case: [Garivier and Kaufmann, 2016]
Exponential families: [Kaufmann and Koolen, 2018]
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.A δ-correct stopping rule



Theorem
The Track-and-Stop strategy, that uses
I the Tracking sampling rule
I the GLRT stopping rule with

β(t, δ) ' ln
(K − 1

δ

)
+ 2 ln ln

(K − 1
δ

)
+ 6 ln(ln(t))

I and recommends Bτ = argmax
a=1...K

µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]
ln(1/δ) = T?(µ).

Why?

τδ = inf
{

t ∈ N? : inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)kl (µ̂a(t), λa) > β(t, δ)
}
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Theorem
The Track-and-Stop strategy, that uses
I the Tracking sampling rule
I the GLRT stopping rule with

β(t, δ) ' ln
(K − 1

δ

)
+ 2 ln ln

(K − 1
δ

)
+ 6 ln(ln(t))

I and recommends Bτ = argmax
a=1...K

µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]
ln(1/δ) = T?(µ).

Why?

τδ = inf
{

t ∈ N? : inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)kl (µ̂a(t), λa) > β(t, δ)
}
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Theorem
The Track-and-Stop strategy, that uses
I the Tracking sampling rule
I the GLRT stopping rule with

β(t, δ) ' ln
(K − 1

δ

)
+ 2 ln ln

(K − 1
δ

)
+ 6 ln(ln(t))

I and recommends Bτ = argmax
a=1...K

µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]
ln(1/δ) = T?(µ).

Why?

τδ = inf
{

t ∈ N? : t × inf
λ∈Alt(µ̂(t))

K∑
a=1

Na(t)
t kl (µ̂a(t), λa) > β(t, δ)

}
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Theorem
The Track-and-Stop strategy, that uses
I the Tracking sampling rule
I the GLRT stopping rule with

β(t, δ) ' ln
(K − 1

δ

)
+ 2 ln ln

(K − 1
δ

)
+ 6 ln(ln(t))

I and recommends Bτ = argmax
a=1...K

µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]
ln(1/δ) = T?(µ).

Why?

τδ ' inf
{

t ∈ N? : t × inf
λ∈Alt(µ)

K∑
a=1

(w?(µ))akl (µa, λa) > β(t, δ)
}
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Theorem
The Track-and-Stop strategy, that uses
I the Tracking sampling rule
I the GLRT stopping rule with

β(t, δ) ' ln
(K − 1

δ

)
+ 2 ln ln

(K − 1
δ

)
+ 6 ln(ln(t))

I and recommends Bτ = argmax
a=1...K

µ̂a(τ)

is δ-PAC for every δ ∈]0, 1[ and satisfies

lim sup
δ→0

Eµ[τδ]
ln(1/δ) = T?(µ).

Why?

τδ ' inf
{

t ∈ N? : t × T−1
? (µ) > β(t, δ)

}

Emilie Kaufmann (CNRS) - Stochastic Bandits July, 2019 - 28

.An asymptotically optimal algorithm



Experiments on two Bernoulli bandit models:
I µ1 = [0.5 0.45 0.43 0.4], such that

w?(µ1) = [0.417 0.390 0.136 0.057]

I µ2 = [0.3 0.21 0.2 0.19 0.18], such that

w?(µ2) = [0.336 0.251 0.177 0.132 0.104]

In practice, set the threshold to β(t, δ) = ln
(

ln(t)+1
δ

)
.

Track-and-Stop GLRT-SE KL-LUCB KL-SE
µ1 4052 4516 8437 9590
µ2 1406 3078 2716 3334

Table: Expected number of draws Eµ[τδ] for δ = 0.1,
averaged over N = 3000 experiments.
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.Numerical experiments



I TaS: a lower-bound inspired algorithm
I KL-UCB versus TaS: very different sampling rules!

0

1

947 312 91 58

0

1

600 558 210 40

I Two recent improvements of the Tracking sampling rule:
Ü relax the need for computing the optimal weights at every round

[Ménard, 2019]
Ü get rid of the forced exploration by using Upper Confidence Bounds

[Degenne et al., 2019]
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.Observations and improvements



I Unlike previously mentioned strategies, the sampling rule of TaS is
anytime, i.e. does not depend on a budget T or a risk parameter δ.

Ü is it also a good strategy in the fixed budget setting?
Ü can control E[rν(TaS, t)] for any t?

I Fixed-budget setting: no exactly matching upper and lower bound
best lower bounds: [Carpentier and Locatelli, 2016]

I Top-Two Thompson Sampling [Russo, 2016]: a Bayesian (anytime)
strategy that is optimal in a different (Bayesian, asymptotic) sense

Ü can we obtain frequentist guarantees for this algorithm?
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.Open problems



Beyond
Best Arm Identification
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.Outline



Context: exponential family bandit model

ν ↔ µ = (µ1, . . . , µK ) ∈ IK

Goal: Given M regions of IK , R1, . . . ,RM , the goal is to identify one
region to which µ belongs.

Formalization: build a
Ü sampling rule (At)
Ü stopping rule τ
Ü recommendation rule ı̂τ ∈ {1, . . . ,M}

such that, for some risk parameter δ,

Pµ (µ /∈ Rı̂τ ) ≤ δ and Eµ[τ ] is small.
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.Active Identification in Bandit Models



Context: exponential family bandit model

ν ↔ µ = (µ1, . . . , µK ) ∈ IK

Goal: Given M regions of IK , R1, . . . ,RM , the goal is to identify one
region to which µ belongs.

Two cases:
I R1, . . . ,RM form a partition : a lower-bound inspired sampling rule

+ a GLRT stopping rule essentially works
Bcomputing the optimal allocation may be difficult
[Juneja and Krishnasamy, 2019, Kaufmann and Koolen, 2018]

I R1, . . . ,RM are overlapping regions : a Track-and-Stop approach
does not always work [Degenne and Koolen, 2019]
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Anomaly detection: given a threshold θ:
I find all the arms whose mean is below θ [Locatelli et al., 2016]
I find whether there is an arm with mean below θ

[Kaufmann et al., 2018]

Phase I clinical trial: find the arm with mean closest to the threshold...
with increasing means. [Garivier et al., 2017]

Ra =
{

λ ∈ Inc : a = argmin
i
|θ − λi |

}
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.Bandits and thresholds



Find the best move at the root of a game tree by actively sampling its
leaves. s? = argmax

s∈C(s0)
Vs .

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Vs =


µs if s ∈ L,

maxc∈C(s) Vc if s is a MAX node,
minc∈C(s) Vc if s is a MIN node.

Ü more details later
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.Bandit and games



Bandit for Optimization
in a Larger Space
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f : {1, . . . ,K} −→ R max
a=1,...,K

f (a) ?

Sequential evaluations: at time t, choose At ∈ {1, . . . ,K}, observe

Xt ∼ νAt where νa has mean f (a).

After T observations,

Minimize the cumulative regret

minimize E
[ T∑

t=1
(f (a?)− f (At))

]

Minimize the simple regret (optimization error)
If BT is a guess of the argmax

minimize E [f (a?)− f (BT )]

Emilie Kaufmann (CNRS) - Stochastic Bandits July, 2019 - 41

.Bandit problems from an optimization perspective



f : {1, . . . ,K} −→ R max
a=1,...,K

f (a) ?

Sequential evaluations: at time t, choose At ∈ {1, . . . ,K}, observe

Xt ∼ νAt where νa has mean f (a).

0 1 2 3 4 5 6
0

1

2

3

4

5

6

f(1)

f(2)

f(3)

f(4)

f(5)

sequential optimization of a discrete function
based on noisy observations
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.Bandit problems from an optimization perspective



f : X −→ R max
x∈X

f (x) ?

Sequential evaluations: at time t, choose xt ∈ X , observe

yt = f (xt) + εt

f

sequential optimization of a black-box function
based on noisy observations
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.General Sequential (Noisy) Optimization



f : X −→ R max
x∈X

f (x) ?

Sequential evaluations: at time t, choose xt ∈ X , observe

yt = f (xt) + εt

After T observations,

Minimize the cumulative regret

minimize E
[ T∑

t=1
(f (x?)− f (xt))

]

Minimize the simple regret (optimization error)
If zT is a guess of the argmax

minimize E [f (x?)− f (zT )]
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.General Sequential (Noisy) Optimization



I learning based on (costly, noisy) function evaluations only!
I no access to gradients of f

fx y

Examples of function f
I a costly PDE solver (numerical experiments)
I a simulator of the effect of a chemical compound (drug discovery)
I training and evaluation a neural network

(hyper-parameter optimization)
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x
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x

f(x)
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How to choose the next querry?
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Bandit in metric spaces [Kleinberg et al., 2008]
X -armed bandits [Bubeck et al., 2011]

Idea: Partition the space, and adaptatively choose in which cell to sample

h=0

h=1

h=2

I For any depth h, X is partitioned in Kh cells (Ph,i )0≤Kh−1.

I K -ary tree T where depth h = 0 is the whole X .
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.Hierarchical partitioning



Assumptions (given a metric `(x , y))
I f (x?)− f (y) ≤ f (x?)− f (x) + max{f (x?)− f (x); `(x , y)}
I sup(x ,y)∈Ph,i `(x , y) ≤ νρh.

Idea: Use Upper-Confidence Bounds on the maximum values of the
function in each cell to guide exploration

U(h,i)(t) = µ̂(h,i)(t) +
√

2 ln(t)
N(h,i)(t) + νρh

B(h,i)(t) = min
{

U(h,i)(t); B(h+1,2i)(t);

B(h+1,2i+1)(t)
}

[Bubeck et al., 2011]
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.Hierarchical Optimistic Optimization (HOO)



Cumulative regret of HOO

E
[ T∑

t=1
(f (x?)− f (xt))

]
≤ CT

d+1
d+2 (ln(T ))

1
d+2

for some near-optimality dimension d .

Ü how to turn this into an optimizer?

zT ∼ U(x1, . . . , xT ), then

E [f (x?)− f (zT )]=R(HOO,T )
T ≤C

(ln(T )
T

) 1
d+2

a tree built by HOO

I Many variants!

DOO, SOO [Munos, 2011], StoSOO [Valko et al., 2013], POO
[Grill et al., 2015], GPO [Shang et al., 2019]...

Emilie Kaufmann (CNRS) - Stochastic Bandits July, 2019 - 48

.Results



Finding the Best Arm in a Bandit Model
Algorithms for Best Arm Identification
Performance Lower Bounds
An asymptotically optimal algorithm

Beyond Best Arm Identification
Active Identification in Bandit Models
Examples

Bandit for Optimization in a Larger Space
Black-Box Optimization
Hierarchical Bandits
Bayesian Optimization

Bandit Tools for Planning in Games
Upper Confidence Bounds for Trees
BAI tools for Planning in Games

Emilie Kaufmann (CNRS) - Stochastic Bandits July, 2019 - 49

.Outline



Assumption. the function f is drawn from some Gaussian Process :

f ∼ GP(0, k(x , y)).

i.e. for any distinct points x1, . . . , x` in X ,
f (x1)
f (x2)
. . .

f (x`)

 ∼ N (0,K ) where K = (k(xi , xj))1≤i ,j≤`

Bayesian inference
Given some (possibly noisy) observations of f in x1, . . . , xt , the posterior
on all the function value in any point is Gaussian

f (y)|x1, . . . , xt ∼ N
(
µt(y), σt(y)2

)
[Rasmussen and Williams, 2005]
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.Gaussian Process Regression



Ü use the current GP posterior to pick the new point to select

Example: [µt(y)± βσt(y)] is a kind of confidence interval on f (y).
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.Bayesian Optimization



GP-UCB [Srinivas et al., 2012] selects at round t + 1

xt+1 = argmax
x∈X

µt(x) +
√
β(t, δ)σt(x)

Ü Bayesian and frequentist guarantees in terms of cumulative regret for
different β(t, δ): P

(
RT (GP-UCB,T ) ≤ C

√
Tβ(T , δ)γT

)
≥ 1− δ.
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.GP-UCB



More generally, many Bayesian Optimization algorithms optimize an
acquisition function that depends on the posterior and select

xt+1 = argmax
x∈X

αt(x)

Many other acquisition functions: [Shahriari et al., 2016]
I Expected improvement
I Probability of improvement
I Entropy Search ...

Remark: optimization the acquisition function is another (non-trivial)
optimization problem!

I Thompson Sampling?
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.BO Algorithms



Bandit Tools for
Planning in Games
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Goal: decide for the next move based on evaluation of possible
trajectories in the game, ending with a random evaluation.

A famous bandit approach: [Kocsis and Szepesvári, 2006]
Ü use UCB in each node to decide the next children to explore
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.Playout-Based Monte-Carlo Tree Search



N(s) : number of visits of node s
S(s) : number of visits finishing ending with the root player winning

UCT in a MaxMin Tree
In a MAX node s (= root player move), go towards the children

argmax
c∈C(s)

S(c)
N(c) + c

√
ln(N(s))

N(c)

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3
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N(s) : number of visits of node s
S(s) : number of visits finishing ending with the root player winning

UCT in a MaxMin Tree
In a MIN node s (= adversary move), go towards the children

argmin
c∈C(s)

S(c)
N(c) − c

√
ln(N(s))

N(c)

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3
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In a MAX node s (= root player move), go towards the children

argmax
c∈C(s)

S(c)
N(c) + c

√
ln(N(s))

N(c)

8/11

2/6 2/3 4/2
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N(s) : number of visits of node s
S(s) : number of visits finishing ending with the root player winning

UCT in a MaxMin Tree
In a MAX node s (= root player move), go towards the children

argmax
c∈C(s)

S(c)
N(c) + c

√
ln(N(s))

N(c)

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3

+ first Go AI based on variants of UCT (+ heuristics)

bla
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N(s) : number of visits of node s
S(s) : number of visits finishing ending with the root player winning

UCT in a MaxMin Tree
In a MAX node s (= root player move), go towards the children

argmax
c∈C(s)

S(c)
N(c) + c

√
ln(N(s))

N(c)

8/11

2/6 2/3 4/2

N=19 visits

n3=6 visits
UCB3 = 4/6 + c√log(N)/n3

− UCT is not based on statistically-valid confidence intervals
− no sample complexity guarantees
− should we really minimize rewards?
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A fixed MAXMIN game tree T , with leaves L.

MAX node (= root player move)

MIN node (= adversary move)

Leaf `: stochastic oracle O` that evaluates the position
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.A simple model for MCTS



 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

At round t a MCTS algorithm:
I picks a path down to a leaf Lt
I get an evaluation of this leaf Xt ∼ OLt

Assumption: i.i.d. sucessive evaluations, EX∼O` [X ] = µ`
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.A simple model for MCTS



 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

A MCTS algorithm should find the best move at the root:

Vs =


µs if s ∈ L,

maxc∈C(s) Vc if s is a MAX node,
minc∈C(s) Vc if s is a MIN node.

s∗ = argmax
s∈C(s0)

Vs
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MCTS algorithm: (Lt , τ, ŝτ ), where
I Lt is the sampling rule
I τ is the stopping rule
I ŝτ ∈ C(s0) is the recommendation rule

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Goal: an (ε, δ)-PAC MCTS algorithm:

P(V ŝτ ≥ V s∗ − ε) ≥ 1 − δ

with a small sample complexity τ . [Teraoka et al., 2014]
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MCTS algorithm: (Lt , τ, ŝτ ), where
I Lt is the sampling rule
I τ is the stopping rule
I ŝτ ∈ C(s0) is the recommendation rule

 μ1  μ2  μ3  μ4  μ5  μ6  μ7  μ8

s0

Idea: use LUCB on the depth-one nodes
Ü requires confidence intervals on the values (Vs)s∈C0

Ü requires to identify a leaf to sample starting from s ∈ C0
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Using the samples collected for the leaves, one can build, for ` ∈ L,
[LCB`(t),UCB`(t)] a confidence interval on µ`

s0

Idea: Propagate these confidence intervals up in the tree
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MAX node:
UCBs(t) = max

c∈C(s)
UCBc(t) LCBs(t) = max

c∈C(s)
LCBc(t)

s0

Idea: Propagate these confidence intervals up in the tree
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MAX node:
UCBs(t) = max

c∈C(s)
UCBc(t) LCBs(t) = max

c∈C(s)
LCBc(t)

s0

Idea: Propagate these confidence intervals up in the tree
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.First tool: confidence intervals



MIN node:
UCBs(t) = min

c∈C(s)
UCBc(t) LCBs(t) = min

c∈C(s)
LCBc(t)

s0

Idea: Propagate these confidence intervals up in the tree
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.First tool: confidence intervals



`s(t): representative leaf of internal node s ∈ T .

s0

Idea: alternate optimistic/pessimistic moves starting from s
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.Second tool: representative leaves



I run a BAI algorithm on the depth-on nodes

→ selects Rt ∈ C0

I sample the representative leaf associated to that node:

Lt = `Rt (t)

(' from depth one, run UCT based on statistically valid CIs)
I update the confidence intervals
I stop when the BAI algorithm tell us to
I recommand the depth-one node chosen by the BAI algorithm
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.The BAI-MCTS architecture



For some exploration function β, define

LCB`(t) = µ̂`(t)−
√
β(N`(t), δ)

2N`(t) ,

UCB`(t) = µ̂`(t) +
√
β(N`(t), δ)

2N`(t) .

Theorem [Kaufmann et al., 2018]
Choosing

β(s, δ) ' ln
( |L| ln(s)

δ

)
,

LUCB-MCTS and UGapE-MCTS are (ε, δ)-PAC and

P
(
τ = O

(
H∗ε (µ) ln

(1
δ

)))
≥ 1− δ

for UGapE-MCTS.
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.Theoretical guarantees



H∗ε (µ) :=
∑
`∈L

1
∆2
` ∨∆2

∗ ∨ ε2

where
∆∗ := V (s∗)− V (s∗2 )
∆` := max

s∈Ancestors(`)\{s0}

∣∣∣VParent(s) − Vs
∣∣∣

0.5 0.3 0.2 0.4 0.3 0.5 0.6 0.1

0.5 0.4 0.3 0.6

0.4 0.3

0.4

(slightly improved complexity in the work of [Huang et al., 2017])
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.The complexity term



I Optimal and efficient algorithms for solving best action identification
in a maxmin tree...

I ... and other generic active identification problems
I UCT versus BAI-MCTS on large-scale problem?
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.Future work



I Best arm identification and regret minimization are two different
problems that require different sampling rules

I Upper and Lower Confidence Bounds are useful in both settings
I Optimal algorithms for BAI are inspired by the lower bounds

(cf. structured bandits)
I Tools for BAI → more general Active Identification problems

I Bandit tools inspire methods for sequential optimization in large
spaces (games trees or continuous spaces)
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.Take-home messages



That’s all!

now you’re ready to pull the right arm ;-)
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