

BANDIT PROBLEMS Part I - Stochastic Bandits (2/2) RLSS, Lille, July 2019

Emilie Kaufmann (CNRS) - Stochastic Bandits

PART I: Solving the stochastic MAB

PART II: Structured Bandits

PART III: Bandit for Optimization

RECAPS

Inría

The Stochastic Multi-Armed Bandit Stetup

K arms \leftrightarrow *K* probability distributions : ν_a has mean μ_a

At round *t*, an agent:

- chooses an arm A_t
- receives a reward $R_t = X_{A_t,t} \sim \nu_{A_t}$

Sequential sampling strategy (bandit algorithm):

$$A_{t+1} = F_t(A_1, R_1, \ldots, A_t, R_t).$$

Goal: Maximize $\mathbb{E}\left[\sum_{t=1}^{T} R_t\right]$

Regret of a bandit algorithm

Bandit instance: $\nu = (\nu_1, \nu_2, \dots, \nu_K)$, mean of arm *a*: $\mu_a = \mathbb{E}_{X \sim \nu_a}[X]$.

$$\mu_{\star} = \max_{\mathbf{a} \in \{1, \dots, K\}} \mu_{\mathbf{a}} \qquad \mathbf{a}_{\star} = \operatorname*{argmax}_{\mathbf{a} \in \{1, \dots, K\}} \mu_{\mathbf{a}}.$$

$$\mathcal{R}_{\nu}(\mathcal{A}, \mathcal{T}) := \underbrace{\mathcal{T}\mu_{\star}}_{\substack{\text{sum of rewards of} \\ \text{an oracle strategy} \\ \text{always selecting } a_{\star}}^{} - \underbrace{\mathbb{E}\left[\sum_{t=1}^{I} R_{t}\right]}_{\substack{\text{sum of rewards of} \\ \text{the strategy}\mathcal{A}}}$$

What regret rate can we achieve?

→ $\mathcal{R}_{\nu}(\mathcal{A}, T) = C_{\nu} \log(T)$ problem-dependent regret

→ $\mathcal{R}_{\nu}(\mathcal{A}, T) = C\sqrt{KT}$ problem-independent (worse-case) regret

Regret of a bandit algorithm

Bandit instance: $\nu = (\nu_1, \nu_2, \dots, \nu_K)$, mean of arm *a*: $\mu_a = \mathbb{E}_{X \sim \nu_a}[X]$.

$$\mu_{\star} = \max_{a \in \{1, \dots, K\}} \mu_a \qquad a_{\star} = \operatorname*{argmax}_{a \in \{1, \dots, K\}} \mu_a.$$

Maximizing rewards \leftrightarrow selecting a_* as much as possible \leftrightarrow minimizing the regret [Robbins, 52]

$$\mathcal{R}_{\nu}(\mathcal{A}, T) := \sum_{a=1}^{K} \underbrace{(\mu_{\star} - \mu_{a})}_{\Delta_{a}: \text{sub-optimality}} \times \underbrace{\mathbb{E}_{\nu}[N_{a}(T)]}_{\text{expected number of selections of arm } a}$$

What regret rate can we achieve?

→ $\mathcal{R}_{\nu}(\mathcal{A}, T) = C_{\nu} \log(T)$ problem-dependent regret

→ $\mathcal{R}_{\nu}(\mathcal{A}, T) = C\sqrt{KT}$ problem-independent (worse-case) regret

Performance lower bounds

 Problem-dependent for simple parametric model (Bernoulli, Gaussian with known variance, Exponential, Poisson...)

Theorem [Lai and Robbins, 1985]

For uniformly efficient algorithms, in a regime of large values of T,

$$\mathcal{R}_{
u}(\mathcal{A},\mathcal{T})\gtrsim \left(\sum_{a:\mu_a<\mu_\star}rac{\Delta_a}{\mathrm{kl}(\mu_a,\mu_\star)}
ight) \ln(\mathcal{T}).$$

Problem independent (worse-case)

Theorem [Cesa-Bianchi and Lugosi, 06][Bubeck and Cesa-Bianchi, 12]

Fix $T \in \mathbb{N}$. For every bandit algorithm \mathcal{A} , there exists a stochastic bandit model ν with rewards supported in [0, 1] such that

$$\mathcal{R}_{
u}(\mathcal{A},T) \geq rac{1}{20}\sqrt{KT}$$

Idea 1 : Uniform Exploration

Draw each arm T/K times

Idea 2 : Follow The Leader (FTL)

$$A_{t+1} = \underset{a \in \{1, \dots, K\}}{\operatorname{argmax}} \hat{\mu}_{a}(t)$$

where $\hat{\mu}_{a}(t)$ is an estimate of the unknown mean μ_{a} .

→ Linear regret!

(Sequential) Explore-Then-Commit

For 2 (Gaussian) arms:

explore uniformly until the random time

$$au = \inf\left\{t \in \mathbb{N}: |\hat{\mu}_1(t) - \hat{\mu}_2(t)| > \sqrt{rac{8\sigma^2\ln(\mathcal{T}/t)}{t}}
ight\}$$

•
$$\hat{a}_{\tau} = \operatorname{argmax}_{a} \hat{\mu}_{a}(\tau)$$
 and $(A_{t+1} = \hat{a}_{\tau})$ for $t \in \{\tau + 1, \dots, T\}$

Logarithmic regret!

$$\mathcal{R}_{\nu}(ext{S-ETC}, T) \leq rac{4\sigma^2}{\Delta} \ln \left(T\Delta^2\right) + C\sqrt{\ln(T)}.$$

this approach can be generalized to more than 2 arms, but cannot be asymptotically optimal (= match Lai and Robbins lower bound)

The optimism principle

For each arm *a*, build a confidence interval on the mean μ_k :

 $\mathcal{I}_{a}(t) = [\text{LCB}_{a}(t), \text{UCB}_{a}(t)]$

LCB = Lower Confidence BoundUCB = Upper Confidence Bound

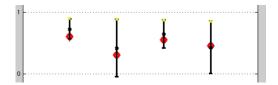


Figure: Confidence intervals on the means after t rounds

"act as if the the best possible model were the true model"

$$A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} \operatorname{UCB}_{a}(t).$$

nnin

Several UCB algorithm

• UCB for
$$\sigma^2$$
-sub Gaussian rewards

$$A_{t+1} = \underset{a=1,\dots,K}{\operatorname{argmax}} \hat{\mu}_{a}(t) + \sqrt{\frac{2\sigma^{2} \ln t}{N_{a}(t)}}$$

→ asymptotically optimal for Gaussian distributions, can be used for bounded distribution (with σ² = 1/4).

→ $O(\sqrt{KT \ln(T)})$ worse-case regret

Several UCB algorithms

kl-UCB with divergence
$$kl(x, y)$$

$$A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} \max\left\{q: \operatorname{kl}\left(\hat{\mu}_{a}(t),q\right) \leq \frac{\ln(t)}{N_{a}(t)}\right\}$$

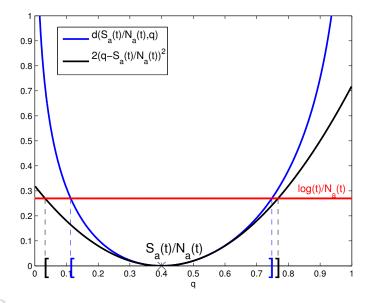
 asymptotically optimal for Bernoulli distribution and can be used for bounded distributions with

$$kl_{Ber}(x,y) = x \ln(x/y) + (1-x) \ln((1-x)/(1-y)).$$

→ $O(\sqrt{KT \ln(T)})$ worse-case regret

Innía

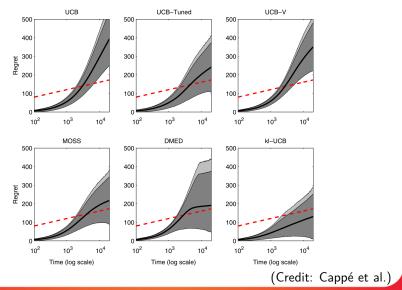
Comparison of the confidence intervals



milie Kaufmann (CNRS) - Stochastic Bandits

UCB versus kl-UCB

 $\mu = [0.1 \ 0.05 \ 0.05 \ 0.05 \ 0.02 \ 0.02 \ 0.02 \ 0.01 \ 0.01 \ 0.01]$



Emilie Kaufmann (CNRS) - Stochastic Bandits

July, 2019 - 13

A BAYESIAN LOOK AT THE MULTI-ARMED BANDIT MODEL

main

Emilie Kaufmann (CNRS) - Stochastic Bandits

July, 2019 - 14

1952 Robbins, formulation of the MAB problem

1985 Lai and Robbins: lower bound, first asymptotically optimal algorithm

1987 Lai, asymptotic regret of kl-UCB

- 1995 Agrawal, UCB algorithms
- 1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
- 2002 Auer et al: UCB1 with finite-time regret bound

2009 UCB-V, MOSS...

2011,13 Cappé et al: finite-time regret bound for kl-UCB

nnia

Historical perspective

- 1933 Thompson: a Bayesian mechanism for clinical trials
- 1952 Robbins, formulation of the MAB problem
- 1956 Bradt et al, Bellman: optimal solution of a Bayesian MAB problem
- 1979 Gittins: first Bayesian index policy
- 1985 Lai and Robbins: lower bound, first asymptocally optimal algorithm
- 1985 Berry and Fristedt: Bandit Problems, a survey on the Bayesian MAB
- 1987 Lai, asymptotic regret of kl-UCB + study of its Bayesian regret
- 1995 Agrawal, UCB algorithms
- 1995 Katehakis and Robbins, a UCB algorithm for Gaussian bandits
- 2002 Auer et al: UCB1 with finite-time regret bound
- 2009 UCB-V, MOSS...
- 2010 Thompson Sampling is re-discovered
- 2011,13 Cappé et al: finite-time regret bound for kl-UCB
- 2012,13 Thompson Sampling is asymptotically optimal

Frequentist versus Bayesian bandit

$$\nu_{\boldsymbol{\mu}} = (\nu^{\mu_1}, \ldots, \nu^{\mu_K}) \in (\mathcal{P})^K.$$

Two probabilistic models

Frequentist model	Bayesian model
μ_1,\ldots,μ_K	μ_1,\ldots,μ_K drawn from a
unknown parameters	prior distribution : $\mu_{a} \sim \pi_{a}$
arm a: $(Y_{a,s})_s \stackrel{\mathrm{i.i.d.}}{\sim} u^{\mu_a}$	arm a: $(Y_{a,s})_s \mu \stackrel{\text{i.i.d.}}{\sim} u^{\mu_a}$

The regret can be computed in each case

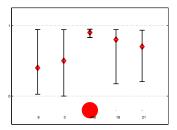
Frequentist regret
(regret)Bayesian regret
(Bayes risk)
$$\mathcal{R}_{\mu}(\mathcal{A}, T) = \mathbb{E}_{\mu} \Big[\sum_{t=1}^{T} (\mu_{\star} - \mu_{A_t}) \Big]$$
 $\mathbb{R}^{\pi}(\mathcal{A}, T) = \mathbb{E}_{\mu \sim \pi} \Big[\sum_{t=1}^{T} (\mu_{\star} - \mu_{A_t}) \Big]$
 $= \int \mathcal{R}_{\mu}(\mathcal{A}, T) d\pi(\mu)$

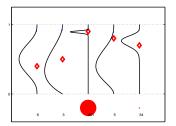
maia

Frequentist and Bayesian algorithms

Two types of tools to build bandit algorithms:

Frequentist tools	Bayesian tools
MLE estimators of the means	Posterior distributions
Confidence Intervals	$\pi_a^t = \mathcal{L}(\mu_a Y_{a,1}, \dots, Y_{a,N_a(t)})$





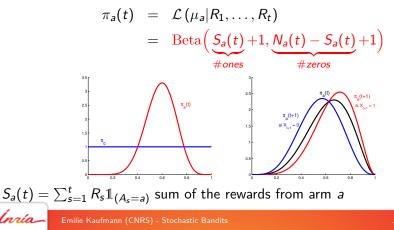
Emilie Kaufmann (CNRS) - Stochastic Bandits

Example: Bernoulli bandits

Bernoulli bandit model $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$

Bayesian view: μ₁,..., μ_K are random variables prior distribution : μ_a ~ U([0,1])

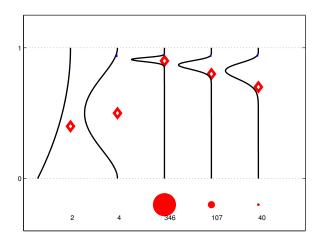
➔ posterior distribution:



July, 2019 - 19

Bayesian algorithm

A Bayesian bandit algorithm exploits the posterior distributions of the means to decide which arm to select.



Bayesian Bandits

Insights from the Optimal Solution Bayes-UCB Thompson Sampling

Emilie Kaufmann (CNRS) - Stochastic Bandits

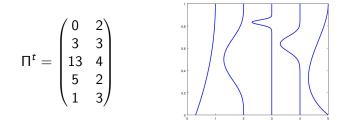
July, 2019 - 21

Some insights from the Bayesian solution

Bandit model $(\mathcal{B}(\mu_1), \ldots, \mathcal{B}(\mu_K))$

$$\pi_{a}^{t} = \text{Beta}\left(\underbrace{S_{a}(t)}_{\#ones} + 1, \underbrace{N_{a}(t) - S_{a}(t)}_{\#zeros} + 1\right)$$

The posterior distribution is fully summarized by a matrix containing the number of ones and zeros observed for each arm.



"State" Π^t that evolves.

Emilie Kaufmann (CNRS) - Stochastic Bandits

A first Markov Decision Process

After each arm selection A_t , we receive a reward R_t such that

$$\mathbb{P}\left(R_{t} = 1 | \Pi^{t-1} = \Pi, A_{t} = a\right) = \underbrace{\frac{\Pi^{t}(a, 1) + 1}{\prod^{t}(a, 1) + \Pi^{t}(a, 2) + 2}}_{\text{mean of } \pi_{a}(t-1)}$$

and the posterior gets updated:

$$\Pi^{t}(A_{t},1) = \Pi^{t-1}(A_{t},1) + R_{t} \Pi^{t}(A_{t},2) = \Pi^{t-1}(A_{t},2) + (1-R_{t})$$

Example of transition:

nnia

$$\begin{pmatrix} 1 & 2 \\ 5 & 1 \\ 0 & 2 \end{pmatrix} \xrightarrow{A_t=2} \begin{pmatrix} 1 & 2 \\ 6 & 1 \\ 0 & 2 \end{pmatrix} if R_t = 1$$

 \rightarrow Markov Decision Process with state Π^t

A first Markov Decision Process

After each arm selection A_t , we receive a reward R_t such that

$$\mathbb{P}\left(R_{t} = 1 | \Pi^{t-1} = \Pi, A_{t} = a\right) = \underbrace{\frac{\Pi^{t}(a, 1) + 1}{\prod^{t}(a, 1) + \Pi^{t}(a, 2) + 2}}_{\text{mean of } \pi_{a}(t-1)}$$

and the posterior gets updated:

$$\Pi^{t}(A_{t},1) = \Pi^{t-1}(A_{t},1) + R_{t} \Pi^{t}(A_{t},2) = \Pi^{t-1}(A_{t},2) + (1-R_{t})$$

Example of transition:

maia

$$\begin{pmatrix} 1 & 2 \\ 5 & 1 \\ 0 & 2 \end{pmatrix} \stackrel{A_t=2}{\longrightarrow} \begin{pmatrix} 1 & 2 \\ 5 & 2 \\ 0 & 2 \end{pmatrix} \text{ if } R_t = 0$$

 \rightarrow Markov Decision Process with state Π^t

An exact solution

Solving the Bayesian bandit \leftrightarrow maximizing rewards in some Markov Decision Process (modern perspective)

There exists an exact solution to

► The finite-horizon MAB: $\operatorname{argmax}_{(A_t)} \mathbb{E}_{\mu \sim \pi} \begin{bmatrix} T \\ t=1 \end{bmatrix} \qquad \operatorname{The discounted MAB:}_{\substack{\alpha \in \mathcal{I} \\ (A_t)}} \mathbb{E}_{\mu \sim \pi} \begin{bmatrix} \infty \\ \sum_{t=1}^{\infty} \gamma^{t-1} R_t \end{bmatrix}$

[Berry and Fristedt, Bandit Problems, 1985]

Optimal solution: solution to dynamic programming equations. **Problem:** The state space is very large

→ often intractable

maia

Gittins indices

[Gittins 79]: the solution of the discounted MAB

$$\underset{(A_t)}{\operatorname{argmax}} \mathbb{E}_{\mu \sim \pi} \left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \right]$$

is an index policy:

$$A_{t+1} = \underset{a=1...K}{\operatorname{argmax}} \ \frac{G_{\gamma}(\pi_a(t))}{G_{\gamma}(\pi_a(t))}.$$

The Gittins indices:

$$\mathcal{G}_\gamma(oldsymbol{p}) = \inf\{\lambda \in \mathbb{R}: V^*_\gamma(oldsymbol{p},\lambda) = 0\},$$

with

Innia

$$V_{\gamma}^{*}(p,\lambda) = \sup_{\substack{\text{stopping}\\ \text{times } \tau > 0}} \mathbb{E}_{\substack{Y_{t} \stackrel{\text{i.i.d}}{\sim} \mathcal{B}(\mu)}} \left[\sum_{t=1}^{\tau} \gamma^{t-1}(Y_{t} - \lambda) \right]$$

"price worth paying for committing to arm $\mu \sim {\it p}$ when rewards are discounted by α "

Emilie Kaufmann (CNRS) - Stochastic Bandits

July, 2019 - 25

Gittins indices for Finite Horizon?

The solution of the finite horizon MAB

$$\underset{(A_t)}{\operatorname{argmax}} \mathbb{E}_{\mu \sim \pi} \left[\sum_{t=1}^T R_t \right]$$

is NOT an index policy. [Berry and Fristedt 85]

 Finite-Horizon Gittins indices: depend on the remaining time to play r

$$G(p,r) = \inf\{\lambda \in \mathbb{R} : V_r^*(p,\lambda) = 0\},\$$

with

$$V_r^*(p,\lambda) = \sup_{\substack{\text{stopping times}\\ 0 < \tau \le r}} \mathbb{E}_{\substack{Y_t \stackrel{\text{i.i.d}}{\sim} \mathcal{B}(\mu) \\ \mu \sim p}} \left[\sum_{t=1}^{\tau} (Y_t - \lambda) \right]$$

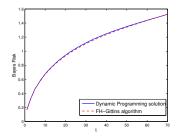
"price worth paying for playing arm $\mu \sim p$ for at most r rounds"

Finite-Horizon Gittins algorithm

FH Gittins algorithm:

$$A_{t+1} = \underset{a=1...K}{\operatorname{argmax}} G(\pi_a(t-1), T-t)$$

does NOT coincide with the Bayesian optimal solution but is conjectured to be a good approximation!



- good performance in terms of frequentist regret as well
 - ... with logarithmic regret [Lattimore, 2016]

Approximating the FH-Gittins indices

[Burnetas and Katehakis, 03]: when n is large,
$$G(\pi_a(t-1), n) \simeq \max\left\{q: N_a(t) \times \operatorname{kl}\left(\hat{\mu}_a(t), q\right) \leq \ln\left(\frac{n}{N_a(t)}\right)\right\}$$

• [Lai, 87]: the index policy associated to

$$I_a(t) = \max\left\{q: N_a(t) \times \operatorname{kl}\left(\hat{\mu}_a(t), q\right) \leq \ln\left(\frac{T}{N_a(t)}\right)\right\}$$

is a good approximation of the Bayesian solution for large T.

 \rightarrow looks like the kl-UCB index, with a different exploration rate...

Bayesian Bandits

Insights from the Optimal Solution Bayes-UCB Thompson Sampling

milie Kaufmann (CNRS) - Stochastic Bandits

July, 2019 - 29

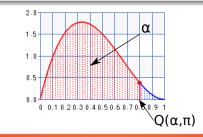
The Bayes-UCB algorithm

- $\Pi_0 = (\pi_1(0), \dots, \pi_K(0))$ be a prior distribution over (μ_1, \dots, μ_K)
- $\Pi_t = (\pi_1(t), \dots, \pi_K(t))$ be the posterior distribution over the means (μ_1, \dots, μ_K) after t observations

The Bayes-UCB algorithm chooses at time t

$$A_{t+1} = \underset{a=1,\dots,K}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\ln t)^c}, \pi_a(t)\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .



nnia

The Bayes-UCB algorithm

Π₀ = (π₁(0),..., π_K(0)) be a prior distribution over (μ₁,..., μ_K)
 Π_t = (π₁(t),..., π_K(t)) be the posterior distribution over the means (μ₁,..., μ_K) after t observations

The Bayes-UCB algorithm chooses at time t

$$A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\ln t)^c}, \pi_a(t)\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .

Bernoulli reward with uniform prior:

•
$$\pi_a(0) \stackrel{i.i.d}{\sim} \mathcal{U}([0,1]) = \text{Beta}(1,1)$$

• $\pi_a(t) = \text{Beta}(S_a(t) + 1, N_a(t) - S_a(t) + 1)$

The Bayes-UCB algorithm

Π₀ = (π₁(0),..., π_K(0)) be a prior distribution over (μ₁,..., μ_K)
 Π_t = (π₁(t),..., π_K(t)) be the posterior distribution over the means (μ₁,..., μ_K) after t observations

The Bayes-UCB algorithm chooses at time t

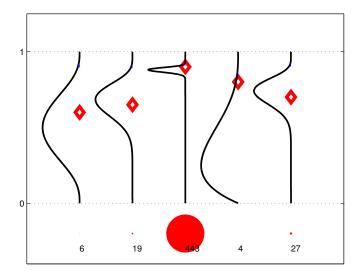
$$A_{t+1} = \underset{a=1,\ldots,K}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\ln t)^c}, \pi_a(t)\right)$$

where $Q(\alpha, \pi)$ is the quantile of order α of the distribution π .

Gaussian rewards with Gaussian prior:

$$\begin{array}{l} \bullet \quad \pi_a(0) \stackrel{i.i.d}{\sim} \mathcal{N}(0,\kappa^2) \\ \bullet \quad \pi_a(t) = \mathcal{N}\left(\frac{S_a(t)}{N_a(t) + \sigma^2/\kappa^2}, \frac{\sigma^2}{N_a(t) + \sigma^2/\kappa^2}\right) \end{array}$$

Bayes UCB in action



July, 2019 - 31

Theoretical results in the Bernoulli case

Bayes-UCB is asymptotically optimal for Bernoulli rewards

Theorem [K., Cappé, Garivier 2012]

Let $\epsilon > 0$. The Bayes-UCB algorithm using a uniform prior over the arms and parameter $c \ge 5$ satisfies

$$\mathbb{E}_{\mu}[N_{a}(T)] \leq \frac{1+\epsilon}{\mathrm{kl}(\mu_{a},\mu_{\star})} \ln(T) + o_{\epsilon,c} \left(\ln(T) \right).$$

Links with $\operatorname{kl-UCB}$

Lemma [K. et al., 12]

The index $q_a(t)$ used by Bayes-UCB satisfies

 $\tilde{u}_{a}(t) \leq q_{a}(t) \leq u_{a}(t)$

where

$$u_{a}(t) = \max\left\{q: \operatorname{kl}\left(\frac{S_{a}(t)}{N_{a}(t)}, q\right) \leq \frac{\ln(t) + c\ln(\ln(t))}{N_{a}(t)}\right\}$$
$$\tilde{u}_{a}(t) = \max\left\{q: \operatorname{kl}\left(\frac{S_{a}(t)}{N_{a}(t) + 1}, q\right) \leq \frac{\ln\left(\frac{t}{N_{a}(t) + 2}\right) + c\ln(\ln(t))}{(N_{a}(t) + 1)}\right\}$$

Proof: rely on the Beta-Binomial trick :

$$F_{\text{Beta}(a,b)}(x) = 1 - F_{\text{Bin}(a+b-a,x)}(a-1)$$

[Agrawal and Goyal, 12]

Beyond Bernoulli bandits

For one-dimensional exponential families , Bayes-UCB rewrites

$$A_{t+1} = \underset{a}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\ln t)^{c}}, \pi_{a,N_{a}(t),\hat{\mu}_{a}(t)}\right)$$

Extra assumption: there exists μ^-, μ^+ such that for all $a, \mu_a \in [\mu^-, \mu^+]$

Theorem [K. 17]

Let $\overline{\mu}_{a}(t) = (\hat{\mu}_{a}(t) \lor \mu^{-}) \land \mu^{+}$. The index policy $A_{t+1} = \underset{a}{\operatorname{argmax}} Q\left(1 - \frac{1}{t(\ln t)^{c}}, \pi_{a,N_{a}(t),\overline{\mu}_{a}(t)}\right)$

with parameter $c \geq 7$ is such that, for all $\epsilon > 0$,

$$\mathbb{E}_{\mu}[N_{a}(T)] \leq \frac{1+\epsilon}{\mathrm{kl}(\mu_{a},\mu_{\star})} \ln(T) + O_{\epsilon}(\sqrt{\ln(T)}).$$

An interesting by-product

 Tools from the analysis of Bayes-UCB can be used to analyze two variants of kl-UCB

kl-UCB-H⁺

$$u_a^{H,+}(t) = \max\left\{q: N_a(t) imes \mathrm{kl}\left(\hat{\mu}_a(t),q\right) \le \ln\left(rac{T \ln^c T}{N_a(t)}
ight)
ight\}$$

$kl-UCB^+$

$$u_a^+(t) = \max\left\{q: N_a(t) \times \operatorname{kl}\left(\hat{\mu}_a(t), q\right) \le \operatorname{ln}\left(\frac{t \ln^c t}{N_a(t)}\right)\right\}$$

The index policy associated to $u_a^{H,+}(t)$ and $u_a^+(t)$ satisfy, for all $\epsilon > 0$,

$$\mathbb{E}_{\boldsymbol{\mu}}[N_{\boldsymbol{a}}(T)] \leq \frac{1+\epsilon}{\mathrm{kl}(\mu_{\boldsymbol{a}},\mu_{\star})} \ln(T) + O_{\epsilon}(\sqrt{\ln(T)}).$$

Bayesian Bandits

Insights from the Optimal Solution Bayes-UCB Thompson Sampling

Emilie Kaufmann (CNRS) - Stochastic Bandits

Historical perspective

- 1933 Thompson: in the context of clinical trial, the allocation of a treatment should be some increasing function of its posterior probability to be optimal
- 2010 Thompson Sampling rediscovered under different names Bayesian Learning Automaton [Granmo, 2010] Randomized probability matching [Scott, 2010]
- 2011 An empirical evaluation of Thompson Sampling: an efficient algorithm, beyond simple bandit models

[Chapelle and Li, 2011]

- 2012 First (logarithmic) regret bound for Thompson Sampling [Agrawal and Goyal, 2012]
- 2012 Thompson Sampling is asymptotically optimal for Bernoulli bandits [K., Korda and Munos, 2012][Agrawal and Goyal, 2013]
- 2013- Many successful uses of Thompson Sampling beyond Bernoulli bandits (contextual bandits, reinforcement learning)

nnia

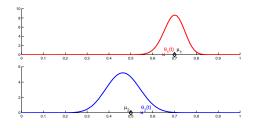
Thompson Sampling

Two equivalent interpretations:

- "select an arm at random according to its probability of being the best"

Thompson Sampling: a randomized Bayesian algorithm

$$\forall a \in \{1..K\}, \quad \theta_a(t) \sim \pi_a(t) \\ A_{t+1} = \underset{a=1...K}{\operatorname{argmax}} \theta_a(t).$$



nnia

Thompson Sampling is asymptotically optimal

Problem-dependent regret

$$\forall \epsilon > 0, \quad \mathbb{E}_{\mu}[N_{a}(T)] \leq (1+\epsilon) \frac{1}{\mathrm{kl}(\mu_{a}, \mu_{\star})} \ln(T) + o_{\mu,\epsilon}(\ln(T)).$$

This results holds:

Innia

- ► for Bernoulli bandits, with a uniform prior
 - [K. Korda, Munos 12][Agrawal and Goyal 13]
- ▶ for Gaussian bandits, with Gaussian prior[Agrawal and Goyal 17]
- ▶ for exponential family bandits, with Jeffrey's prior [Korda et al. 13]

Problem-independent regret [Agrawal and Goyal 13]

For Bernoulli and Gaussian bandits, Thompson Sampling satisfies

$$\mathcal{R}_{\mu}(\mathrm{TS},T) = O\left(\sqrt{KT\ln(T)}\right).$$

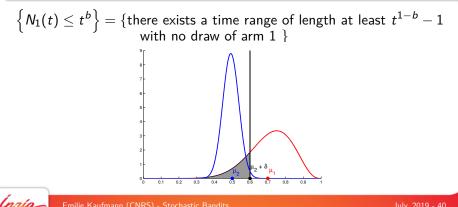
Thompson Sampling is also asymptotically optimal for Gaussian with unknown mean and variance [Honda and Takemura, 14]

Understanding Thompson Sampling

▶ a key ingredient in the analysis of [K. Korda and Munos 12]

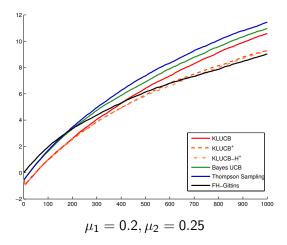
Proposition

There exists constants
$$b = b(\mu) \in (0,1)$$
 and $C_b < \infty$ such that
 $\sum_{t=1}^{\infty} \mathbb{P}\left(N_1(t) \le t^b\right) \le C_b.$



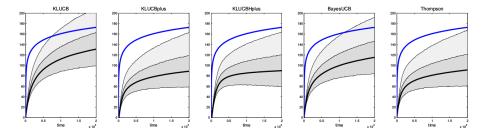
Bayesian versus Frequentist algorithms

Short horizon, T = 1000 (average over N = 10000 runs)



Bayesian versus Frequentist algorithms

► Long horizon, T = 20000 (average over N = 50000 runs)



10 arms bandit problem $\mu = \begin{bmatrix} 0.1 \ 0.05 \ 0.05 \ 0.05 \ 0.02 \ 0.02 \ 0.02 \ 0.01 \ 0.01 \ 0.01 \end{bmatrix}$

Emilie Kaufmann (CNRS) - Stochastic Bandit

Ínría

OTHER RANDOMIZED ALGORITHMS

Innia

Emilie Kaufmann (CNRS) - Stochastic Bandits

July, 2019 - 43

Two families of asymptotically optimal algorithms

- Confidence bound algorithms
- Thompson Sampling
- Provably optimal finite-time regret under the assumption that the rewards distribution belong to some class D
- ► A different algorithm for each D: TS or kl-UCB for Bernoulli, Poisson, for Exponential, etc.

Can we build a universal algorithm that would be asymptotically optimal over different classes \mathcal{D} ?

A Puzzling strategy

Best Empirical Sub-sampling Average

"Sub-sampling for multi-armed bandits", Baransi, Maillard, Mannor *ECML*, 2014.

BESA

- Competitive regret against state-of-the-art for various D.
- Same algorithm for all \mathcal{D} .
- Not relying on upper confidence bounds, not Bayesian...
- …and extremely simple to implement.

➔ How? Optimality? For which distributions ?

Going back to "Follow the leader"

FTL

- Play each arm once.
- 3 At time t, define $\tilde{\mu}_a(t) = \hat{\mu}(R^a_{1:N_a(t)})$ for all $a \in \mathcal{A}$.
 - $\hat{\mu}(\mathcal{X})$: empirical average of population \mathcal{X} .

•
$$R_{1:N_a(t)}^a = \{R_s : A_s = a, s \le t\}$$

Solution Choose (break ties in favor of the smallest $N_a(t)$)

$$A_{t+1} = \operatorname*{argmax}_{a' \in \{a,b\}} \tilde{\mu}_{a'}(t) \,.$$

Properties

- Generally bad: linear regret.
- ▶ A variant (*e*-greedy) performs ok if well-tuned [Auer et al, 2002].

Follow the FAIR leader (aka BESA)

Idea: Compare two arms based on "equal opportunity" i.e. same number of observations.

BESA at time t for two arms a, b:

- Sample two sets of indices $\mathcal{I}_a(t) \sim \operatorname{Wr}(N_a(t); N_b(t))$ and $\mathcal{I}_b(t) \sim \operatorname{Wr}(N_b(t); N_a(t))$.
 - Wr(n, N): sample *n* points from $\{1, ..., N\}$ without replacement (return all the set if $n \ge N$).
- Objice $\tilde{\mu}_a(t) = \hat{\mu}(R^a_{1:N_a(t)}(\mathcal{I}_a(t)))$ and $\tilde{\mu}_b(t) = \hat{\mu}(R^b_{1:N_{t,b}}(\mathcal{I}_b(t)))$.

Solution Choose (break ties in favor of the smallest $N_{a'}(t)$)

$$A_{t+1} = \operatorname*{argmax}_{a' \in \{a,b\}} \tilde{\mu}_{a'}(t) \,.$$

more than two arms? tournament.

Example

$$\begin{array}{c|c} \boldsymbol{\mathcal{X}} = (x_1, \ldots, x_N), \text{a finite population of } N \text{ real points.} \\ \hline x_1 & x_2 & x_3 & x_4 & x_5 & \ldots & x_{N-2} & x_{N-1} & x_N \end{array}$$

Sub-sample of size $n \leq N$ from $\mathcal{X}: X_1, \ldots, X_n$ picked uniformly randomly without replacement from \mathcal{X} .

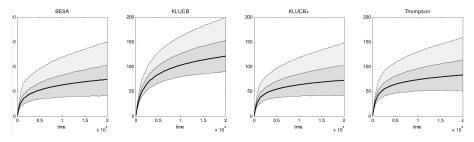
 x_1 X_{n-1} X_1 x_4 X_2 \dots x_{N-2} X_n x_N

• Example:
$$N_a(t) = 3$$
 and $N_b(t) = 10$:
 $\mathcal{I}_a(t) = \{1, 2, 3\},$
 $|\mathcal{I}_b(t)| = 3$, sampled without replacement from $\{1, \dots, 10\}.$

Good practical performance (T = 20,000, N = 50,000)

▶ 10 **Bernoulli**(0.1, 3{0.05}, 3{0.02}, 3{0.01})

	BESA	kl-UCB	kl-UCB+	ΤS	Others
Regret	74.4	121.2	72.8	83.4	100-400
Beat BESA	-	1.6%	35.4%	3.1%	
Run Rime	13.9X	2.8X	3.1X	Х	



Others: UCB, Moss, UCB-Tunes, DMED, UCB-V.

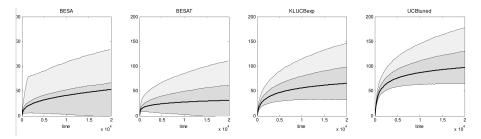
(Credit: Akram Baransi)

milie Kaufmann (CNRS) - Stochastic Bandits

Good practical performance (T = 20,000, N = 50,000)

• Exponential
$$(\frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{2}, 1)$$

	BESA	KL-UCB-exp	UCB-tuned	FTL 10	Others
Regret	53.3	65.7	97.6	306.5	60-110,120+
Beat BESA	-	5.7%	4.3%	-	
Run Rime	6X	2.8X	Х	-	



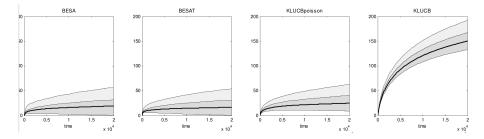
Others: UCB, Moss, kl-UCB, UCB-V.

July, 2019 - 50

(Credit: Akram Baransi)

• Poisson
$$(\{\frac{1}{2} + \frac{i}{3}\}_{i=1,...,6})$$

	BESA	KL-UCB-Poisson	kl-UCB	FTL 10
Regret	19.4	25.1	150.6	144.6
Beat BESA	-	4.1%	0.7%	-
Run Rime	3.5X	1.2X	Х	-



(Credit: Akram Baransi)

Emilie Kaufmann (CNRS) - Stochastic Bandits

July, 2019 - 51

Regret bound (slightly simplified statement)

With two arms $\{\star, a\}$, define

$$\alpha(\boldsymbol{M},\boldsymbol{n}) = \mathbb{E}_{Z^{\star} \sim \nu_{\star,n}} \left[\left(\mathbb{P}_{Z \sim \nu_{a,n}}(Z > Z^{\star}) + \frac{1}{2} \mathbb{P}_{Z \sim \nu_{a,n}}(Z = Z^{\star}) \right)^{\boldsymbol{M}} \right]$$

Theorem [Baransi et al. 14]

If $\exists lpha \in (0,1), c > 0$ such that $lpha(M,1) \leq c lpha^M$, then

$$\mathcal{R}_{
u}(extsf{BESA}, \mathcal{T}) \leq rac{11 \ln(\mathcal{T})}{\mu_{\star} - \mu_{a}} + \mathcal{C}_{
u} + \mathcal{O}(1) \,.$$

Example

• Bernoulli
$$\mu_a, \mu_\star$$
: $\alpha(M, 1) = O\left(\left(\frac{\mu_a \vee (1-\mu_a)}{2}\right)^M\right)$

Future work: understand when BESA fails, and whether it can be asymptotically optimal in some cases...

Another class of (randomized) bandit algorithms that do not exploit any assumption on \mathcal{D} is that of adversarial bandit algorithms.

[Auer, Cesa-Bianchi, Freund, Shapire, *The non-stochastic multi-armed bandit*, 2002]

Can we achieve $O(\sqrt{KT})$ regret with respect to the best static action if the rewards are arbitrarily generated?

Some answers in the next classes and practical sessions!

SUMMARY

Emilie Kaufmann (CNRS) & Odalric-Abrym Maillard (Inria) - Stochastic Bandits

July, 2019 - 54

Now you are aware of:

- several methods for facing an exploration/exploitation dilemma
- notably two powerful classes of methods
 - optimistic "UCB" algorithms
 - Bayesian approaches, mostly Thompson Sampling

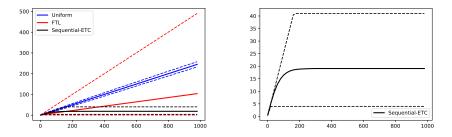
And you are therefore ready to apply them for solving more complex (structured) bandit problems and for Reinforcement Learning!

You also saw a bunch of important tools:

- performance lower bounds, guiding the design of algorithms
- Kullback-Leibler divergence to measure deviations
- self-normalized concentration inequalities
- Bayesian tools

First practical session

Objective: run UCB, kl-UCB, Thompson Sampling and some tweaks of those algorithms, and see what performs best (on simulated data).



 visualize expected regret averaged over multiple runs / distribution of the regret

Files: link on the RLSS webpage.

Check out the

The Bandit Book

by Tor Lattimore and Csaba Szepesvari

(https://tor-lattimore.com/downloads/book/book.pdf)

- ▶ W.R. Thompson (1933). On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika.
- H. Robbins (1952). Some aspects of the sequential design of experiments. Bulletin of the American Mathematical Society.
- Bradt, R., Johnson, S., and Karlin, S. (1956). On sequential designs for maximizing the sum of n observations. Annals of Mathematical Statistics.
- R. Bellman (1956). A problem in the sequential design of experiments. The indian journal of statistics.
- Gittins, J. (1979). Bandit processes and dynamic allocation indices. *Journal of the Royal Statistical Society*.
- Berry, D. and Fristedt, B. Bandit Problems (1985). Sequential allocation of experiments. *Chapman and Hall*.
- Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. *Advances in Applied Mathematics*.
- Lai, T. (1987). Adaptive treatment allocation and the multi-armed bandit problem. Annals of Statistics.
- Agrawal, R. (1995). Sample mean based index policies with O(log n) regret for the multi-armed bandit problem. Advances in Applied Probability.

- Katehakis, M. and Robbins, H. (1995). Sequential choice from several populations. Proceedings of the National Academy of Science.
- Burnetas, A. and Katehakis, M. (1996). Optimal adaptive policies for sequential allocation problems. Advances in Applied Mathematics.
- Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed bandit problem. *Machine Learning*.
- Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R. (2002). The nonstochastic multiarmed bandit problem. SIAM Journal of Computing.
- Burnetas, A. and Katehakis, M. (2003). Asymptotic Bayes Analysis for the finite horizon one armed bandit problem. Probability in the Engineering and Informational Sciences.
- Cesa-Bianchi, N. and Lugosi, G. (2006). Prediction, Learning and Games. Cambridge University Press.
- Audibert, J-Y., Munos, R. and Szepesvari, C. (2009). Exploration-exploitation trade-off using varianceestimates in multi-armed bandits. *Theoretical Computer Science*.
- Audibert, J.-Y. and Bubeck, S. (2010). Regret Bounds and Minimax Policies under Partial Monitoring. *Journal of Machine Learning Research*.

- Li, L., Chu, W., Langford, J. and Shapire, R. (2010). A Contextual-Bandit Approach to Personalized News Article Recommendation. WWW.
- Honda, J. and Takemura, A. (2010). An Asymptotically Optimal Bandit Algorithm for Bounded Support Models. COLT.
- Bubeck, S. (2010). Jeux de bandits et fondation du clustering. PhD thesis, Université de Lille 1.
- A. Anandkumar, N. Michael, A. K. Tang, and S. Agrawal (2011). Distributed algorithms for learning and cognitive medium access with logarithmic regret. *IEEE Journal on Selected Areas in Communications*
- Garivier, A. and Cappé, O. (2011). The KL-UCB algorithm for bounded stochastic bandits and beyond. COLT.
- Maillard, O.-A., Munos, R., and Stoltz, G. (2011). A Finite-Time Analysis of Multi-armed Bandits Problems with Kullback-Leibler Divergences. COLT.
- Chapelle, O. and Li, L. (2011). An empirical evaluation of Thompson Sampling. NIPS.
- E. Kaufmann, O. Cappé, A. Garivier (2012). On Bayesian Upper Confidence Bounds for Bandits Problems. *AISTATS*.

naín

- Agrawal, S. and Goyal, N. (2012). Analysis of Thompson Sampling for the multi-armed bandit problem. COLT.
- E. Kaufmann, N. Korda, R. Munos (2012), Thompson Sampling : an Asymptotically Optimal Finite-Time Analysis. Algorithmic Learning Theory.
- Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Fondations and Trends in Machine Learning.
- Agrawal, S. and Goyal, N. (2013). Further Optimal Regret Bounds for Thompson Sampling. AISTATS.
- O. Cappé, A. Garivier, O-A. Maillard, R. Munos, and G. Stoltz (2013). Kullback-Leibler upper confidence bounds for optimal sequential allocation. *Annals of Statistics*.
- Korda, N., Kaufmann, E., and Munos, R. (2013). Thompson Sampling for 1-dimensional Exponential family bandits. *NIPS*.
- Honda, J. and Takemura, A. (2014). Optimality of Thompson Sampling for Gaussian Bandits depends on priors. *AISTATS*.
- Baransi, Maillard, Mannor (2014). Sub-sampling for multi-armed bandits. ECML.

nnin

- Honda, J. and Takemura, A. (2015). Non-asymptotic analysis of a new bandit algorithm for semi-bounded rewards. JMLR.
- Kaufmann, E., Cappé O. and Garivier, A. (2016). On the complexity of best arm identification in multi-armed bandit problems. JMLR
- Lattimore, T. (2016). Regret Analysis of the Finite-Horizon Gittins Index Strategy for Multi-Armed Bandits. COLT.
- Garivier, A., Kaufmann, E. and Lattimore, T. (2016). On Explore-Then-Commit strategies. NIPS.
- E.Kaufmann (2017), On Bayesian index policies for sequential resource allocation. Annals of Statistics.
- Agrawal, S. and Goyal, N. (2017). Near-Optimal Regret Bounds for Thompson Sampling. *Journal of ACM*.
- Maillard, O-A (2017). Boundary Crossing for General Exponential Families. Algorithmic Learning Theory.

- Cowan, W., Honda, J. and Katehakis, M.N. (2018). Normal Bandits of Unknown Means and Variances. JMLR.
- Garivier, A. and Ménard, P. and Stoltz, G. (2018). Explore first, exploite next: the true shape of regret in bandit problems, *Mathematics of Operations Research*
- Garivier, A. and Hadiji, H. and Ménard, P. and Stoltz, G. (2018). KL-UCB-switch: optimal regret bounds for stochastic bandits from both a distribution-dependent and a distribution-free viewpoints. arXiv: 1805.05071.

