

Decisions beyond Structure RLSS

July 02, Lille

Odalric-Ambrym Maillard

INRIA LILLE – NORD EUROPE

....SequeL...

Odalric-Ambrym Maillard RLSS LECTURE: DECISIONS BEYOND STRUCTURE

 $\triangleright \qquad \mathsf{Observe \ a \ signal} \ y_1, \dots, y_t \in \mathcal{Y}$

(nría_

 $\triangleright \quad \text{Observe a signal } y_1, \dots, y_t \in \mathcal{Y}$

▷ Goal: Predict observation at time t + 1?

 $\triangleright \quad \text{Observe a signal } y_1, \dots, y_t \in \mathcal{Y}$

- ▷ Goal: Predict observation at time t + 1?
- Many available models:
 - \diamond *l.i.d.*: [0, 1]-bounded ?
 - Parametric: $y_t = \langle \theta, \varphi(t) \rangle + \xi_t$ for φ : polynomials, wavelets, etc. ?
 - $\diamond \qquad \textit{Markov: } y_t \sim P(\cdot|y_{t-1}), \textit{ k-order Markov: } y_t \sim P(\cdot|y_{t-1}, \ldots, y_{t-k}) ?$
 - ♦ Auto-regressive ...?

Which model is best?

 $\triangleright \quad \text{Sample a signal } y_1, \ldots, y_t = (a_t, r_t) \in \mathcal{Y} = \mathcal{A} \times [0, 1], \ r_t \sim \nu_{a_t}.$

Inría

Sample a signal $y_1, \ldots, y_t = (a_t, r_t) \in \mathcal{Y} = \mathcal{A} \times [0, 1], r_t \sim \nu_{a_t}$.

nnía

 \triangleright

Sample a signal $y_1, \ldots, y_t = (a_t, r_t) \in \mathcal{Y} = \mathcal{A} \times [0, 1], r_t \sim \nu_{a_t}$.

- ▷ Goal: choose $a_t \in A$ to maximize rewards.
- Many available algorithms:
 - ♦ Bandits: UCB? UCB-V? KL-UCB? TS?
 - ◊ Structured bandits: OFUL, GP-UCB? OSLB?
 - ♦ MDPs: UCRL? Q-learning? DQL?

Which algorithm is best?

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

Innia

Ínría

 $\triangleright \quad \text{Set of models } \mathcal{M}.$ At each time step:

Ínría

 $\triangleright \quad \text{Set of models } \mathcal{M}.$

At each time step:

- ▷ Each model $m \in \mathcal{M}$ outputs a *decision* $x_{t,m} \in \mathcal{X}$:
 - $\diamond \quad \mathcal{X} = \mathcal{Y}, \qquad \qquad \mathcal{X} = \mathcal{P}(\mathcal{Y}), \qquad \qquad \mathcal{X} = \mathcal{A}.$

Innía

Decisions and Losses

 \triangleright Set of models \mathcal{M} .

At each time step:

- ▷ Each model $m \in \mathcal{M}$ outputs a *decision* $x_{t,m} \in \mathcal{X}$:
 - $\diamond \quad \mathcal{X} = \mathcal{Y}, \qquad \qquad \mathcal{X} = \mathcal{P}(\mathcal{Y}), \qquad \qquad \mathcal{X} = \mathcal{A}.$
- ▷ We output *decision* $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.

maia

Decisions and Losses

 \triangleright Set of models \mathcal{M} .

At each time step:

- ► Each model $m \in \mathcal{M}$ outputs a *decision* $x_{t,m} \in \mathcal{X}$: • $\mathcal{X} = \mathcal{Y}, \qquad \mathcal{X} = \mathcal{P}(\mathcal{Y}), \qquad \mathcal{X} = \mathcal{A}.$
- ▷ We output *decision* $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.
- $\triangleright \quad \text{All decisions evaluated via a } loss \ \ell : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$
 - Quadratic: $\ell(x, y) = \frac{(x-y)^2}{2}$,
 - Self-information: $\ell(x, y) = -\log(x(y))$,

$$\diamond \quad \ell(x,y) = 1 - y(x)$$

 \triangleright Set of models \mathcal{M} .

At each time step:

- ▷ We output *decision* $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.
- $\triangleright \quad \text{ All decisions evaluated via a } \textit{loss } \ell: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}^+$

• Quadratic:
$$\ell(x,y) = \frac{(x-y)^2}{2}$$
,

• Self-information:
$$\ell(x, y) = -\log(x(y))$$
,

$$\diamond \quad \ell(x,y) = 1 - y(x)$$

▷ We receive *observation* $y_t \in \mathcal{Y}$, and incur *loss* $\ell_t(x_t) := \ell(x_t, y_t)$.

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

 $\triangleright \quad \text{Set of models } \mathcal{M}.$

At each time step:

- ► Each model $m \in \mathcal{M}$ outputs a *decision* $x_{t,m} \in \mathcal{X}$: • $\mathcal{X} = \mathcal{Y}, \qquad \mathcal{X} = \mathcal{P}(\mathcal{Y}), \qquad \mathcal{X} = \mathcal{A}.$
- ▷ We output *decision* $x_t \in \mathcal{X}$ based on $(x_{t,m})_{m \in \mathcal{M}}$.
- $\triangleright \quad \text{All decisions evaluated via a } \textit{loss } \ell: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^+$

• Quadratic:
$$\ell(x, y) = \frac{(x-y)^2}{2}$$
,

• Self-information: $\ell(x, y) = -\log(x(y))$,

$$\diamond \quad \ell(x,y) = 1 - y(x)$$

▷ We receive *observation* $y_t \in \mathcal{Y}$, and incur *loss* $\ell_t(x_t) := \ell(x_t, y_t)$.

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

in Expectation? High probability?

w.r.t.

(nría_

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

▶ best *model* (Model selection) ?

$$\min_{\mathbf{m}\in\mathcal{M}}\sum_{t=1}^{T}\ell_t(x_{t,\mathbf{m}})$$

Inría

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \ \dots$$

w.r.t.

best model (Model selection) ?

$$\min_{\boldsymbol{m}\in\mathcal{M}}\sum_{t=1}^{T}\ell_t(\boldsymbol{x}_{t,\boldsymbol{m}})$$

best combination of models (Model aggregation)?

$$\min_{\boldsymbol{q}\in\mathcal{P}(\mathcal{M})}\sum_{m\in\mathcal{M}}\boldsymbol{q}_m\left(\sum_{t=1}^T\ell_t(\boldsymbol{x}_{t,m})\right) \quad \text{or} \quad \min_{\boldsymbol{q}\in\mathcal{P}(\mathcal{M})}\sum_{t=1}^T\ell_t\left(\sum_{m\in\mathcal{M}}\boldsymbol{q}_m\boldsymbol{x}_{t,m}\right)$$

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \ \dots$$

w.r.t.

best model (Model selection) ?

$$\min_{\boldsymbol{m}\in\mathcal{M}}\sum_{t=1}^{T}\ell_t(\boldsymbol{x}_{t,\boldsymbol{m}})$$

best combination of models (Model aggregation)?

$$\min_{\boldsymbol{q}\in\mathcal{P}(\mathcal{M})}\sum_{m\in\mathcal{M}}\boldsymbol{q}_m\left(\sum_{t=1}^T\ell_t(\boldsymbol{x}_{t,m})\right) \quad \text{or} \quad \min_{\boldsymbol{q}\in\mathcal{P}(\mathcal{M})}\sum_{t=1}^T\ell_t\left(\sum_{m\in\mathcal{M}}\boldsymbol{q}_m\boldsymbol{x}_{t,m}\right)$$

▷ best *sequence* of models ?

$$\sum_{t=1}^{T} \min_{m \in \mathcal{M}} \ell_t(x_{t,m})$$

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \ \dots$$

w.r.t.

best model (Model selection) ?

$$\min_{\boldsymbol{m}\in\mathcal{M}}\sum_{t=1}^{T}\ell_t(\boldsymbol{x}_{t,\boldsymbol{m}})$$

best combination of models (Model aggregation)?

$$\min_{\boldsymbol{q}\in\mathcal{P}(\mathcal{M})}\sum_{m\in\mathcal{M}}\boldsymbol{q}_m\left(\sum_{t=1}^T\ell_t(\boldsymbol{x}_{t,m})\right) \quad \text{or} \quad \min_{\boldsymbol{q}\in\mathcal{P}(\mathcal{M})}\sum_{t=1}^T\ell_t\left(\sum_{m\in\mathcal{M}}\boldsymbol{q}_m\boldsymbol{x}_{t,m}\right)$$

▷ best *sequence* of models ?

$$\sum_{t=1}^{T} \min_{m \in \mathcal{M}} \ell_t(x_{t,m})$$

TABLE OF CONTENTS

AGGREGATION OF EXPERTS **A simple aggregation strategy** Simple aggregation, revisited Best convex combinations Best sequence: Fixed Share Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

mala

Inría

▷ Choose x_t as a convex combination of the $(x_{t,m})_{m \in \mathcal{M}}$?

$$x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$$
 where $p_t \in \mathcal{P}(\mathcal{M})$.

Ínría

 $\triangleright \quad \text{Choose } x_t \text{ as a convex combination of the } (x_{t,m})_{m \in \mathcal{M}} ?$

$$x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$$
 where $p_t \in \mathcal{P}(\mathcal{M})$.

 $\triangleright \quad \text{Assume that } \ell_t(\cdot) = \ell(\cdot, y_t) \text{ is convex, then}$

$$\ell_t(x_t) \leqslant \sum_{m \in \mathcal{M}} p_t(m) \ell_t(x_{t,m}) = \mathbb{E}_{M \sim p_t}[\ell_t(x_{t,M})]$$

 \implies Better on average to choose x_t this way than sampling one $M \sim p_t$.

nnia

▷ Choose x_t as a convex combination of the $(x_{t,m})_{m \in \mathcal{M}}$?

$$x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$$
 where $p_t \in \mathcal{P}(\mathcal{M})$.

 $\triangleright \quad \text{Assume that } \ell_t(\cdot) = \ell(\cdot, y_t) \text{ is convex, then}$

 \triangleright

$$\ell_t(x_t) \leqslant \sum_{m \in \mathcal{M}} p_t(m) \ell_t(x_{t,m}) = \mathbb{E}_{M \sim p_t}[\ell_t(x_{t,M})]$$

⇒ Better on average to choose x_t this way than sampling one $M \sim p_t$. Technical property: Let r.v. X s.t. $a \leq X \leq b$ a.s. then

$$\forall \eta \in \mathbb{R}^+, \quad \mathbb{E}[X] \leqslant -\frac{1}{\eta} \log \mathbb{E}[\exp(-\eta X)] + \eta \frac{(b-a)^2}{8}$$

 \implies assume that ℓ is bounded by 1, then

$$\mathbb{E}_{M \sim p_t}[\ell_t(x_{t,M})] \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

Inría

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

▶ This suggests:

$$p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m) e^{-\eta \ell_t(x_{t,m})}$$

(nría_

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = rac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m) e^{-\eta \ell_t(x_{t,m})}$$

$$\triangleright \quad \text{We get} \quad \ell_t(x_t) \leqslant -\frac{1}{\eta} \log \left(\frac{W_{t+1}}{W_t} \right) + \frac{\eta}{8} \text{ where } W_t = \sum_{m \in \mathcal{M}} w_t(m)$$

Ínría

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = rac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m) e^{-\eta \ell_t(x_{t,m})}$$

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = rac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m) e^{-\eta \ell_t(x_{t,m})}$$

 $\triangleright \quad \text{ Finally, } \mathcal{W}_1 = |\mathcal{M}| \text{ and for any } \boldsymbol{m^\star} \in \mathcal{M},$

$$W_{T+1} \ge w_{t+1}(m^*) = \exp\left(-\eta \sum_{t=1}^T \ell_t(x_{t,m^*})\right).$$

$$\ell_t(x_t) \leqslant -\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_t(m) e^{-\eta \ell_t(x_{t,m})} + \frac{\eta}{8}$$

This suggests:

$$p_t(m) = rac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \qquad w_{t+1}(m) = w_t(m) e^{-\eta \ell_t(x_{t,m})}$$

$$We get \quad \ell_t(x_t) \leq -\frac{1}{\eta} \log\left(\frac{W_{t+1}}{W_t}\right) + \frac{\eta}{8} \text{ where } W_t = \sum_{m \in \mathcal{M}} w_t(m)$$

$$Summing \text{ over } t \text{ yields } \sum_{t=1}^T \ell_t(x_t) \leq -\frac{1}{\eta} \log\left(\frac{W_{T+1}}{W_1}\right) + \frac{\eta T}{8}$$

 $\triangleright \quad \ \ \text{Finally,} \ \ W_1 = |\mathcal{M}| \ \text{and for any} \ \ m^\star \in \mathcal{M},$

$$W_{T+1} \ge w_{t+1}(m^{\star}) = \exp\left(-\eta \sum_{t=1}^{T} \ell_t(x_{t,m^{\star}})\right).$$
$$\sum_{t=1}^{T} \ell_t(x_t) \le \sum_{t=1}^{T} \ell_t(x_{t,m^{\star}}) + \frac{\log(|\mathcal{M}|)}{\eta} + \frac{\eta T}{8}.$$

► Hence

AGGREGATION WITH EXPONENTIAL WEIGHTS

This leads to the following strategy

Ínría

AGGREGATION WITH EXPONENTIAL WEIGHTS

This leads to the following strategy

$$Choose x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m} \text{ where } p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)},$$

$$\diamond \quad \forall m \in \mathcal{M}, w_1(m) = 1 \text{ and } w_{t+1}(m) = w_t(m) e^{-\eta \ell_t(x_{t,m})}$$

Theorem (Cesa-Bianchi, Lugosi 2006)

Assume that ℓ_t is *convex* and *bounded* by 1, then this strategy satisfies:

$$\sum_{t=1}^{T} \ell_t(x_t) - \min_{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,m}) \leq \frac{\log(|\mathcal{M}|)}{\eta} + \frac{\eta T}{8}$$

AGGREGATION WITH EXPONENTIAL WEIGHTS

This leads to the following strategy

Theorem (Cesa-Bianchi, Lugosi 2006)

Assume that ℓ_t is *convex* and *bounded* by 1, then this strategy satisfies:

$$\sum_{t=1}^{T} \ell_t(x_t) - \min_{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,m}) \leq \frac{\log(|\mathcal{M}|)}{\eta} + \frac{\eta T}{8}$$

▷ In particular for the choice of parameter $\eta = \sqrt{8 \log(|\mathcal{M}|)/T}$,

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leq \sqrt{\frac{T \log(|\mathcal{M}|)}{2}}$$

AGGREGATION WITH EXPONENTIAL WEIGHTS?

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

Ínría

AGGREGATION WITH EXPONENTIAL WEIGHTS?

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

▷ No statistical assumption on y_t : ℓ_t only convex and bounded!

Innía

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- ▷ No statistical assumption on y_t : ℓ_t only convex and bounded!
- \triangleright Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

innia

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- ▷ No statistical assumption on y_t : ℓ_t only convex and bounded!
- ▷ Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of η ($\eta = \eta_t$) ? Using $\eta_t = \sqrt{8 \log(|\mathcal{M}|)/t}$ at time *t*, one can show (more involved):

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq 2\sqrt{\frac{T \log(|\mathcal{M}|)}{2}} + \sqrt{\frac{\log(|\mathcal{M}|)}{2}}$$

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- ▷ No statistical assumption on y_t : ℓ_t only convex and bounded!
- ▷ Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of η ($\eta = \eta_t$) ? Using $\eta_t = \sqrt{8 \log(|\mathcal{M}|)/t}$ at time *t*, one can show (more involved):

$$L_T - \min_{m \in \mathcal{M}} L_{T,m} \leqslant 2\sqrt{\frac{T \log(|\mathcal{M}|)}{2}} + \sqrt{\frac{\log(|\mathcal{M}|)}{2}}$$

Examples of convex/bounded losses?

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leqslant \sqrt{\frac{T}{2} \log(|\mathcal{M}|)}$$

- ▷ No statistical assumption on y_t : ℓ_t only convex and bounded!
- ▷ Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of η ($\eta = \eta_t$) ? Using $\eta_t = \sqrt{8 \log(|\mathcal{M}|)/t}$ at time *t*, one can show (more involved):

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq 2\sqrt{\frac{T \log(|\mathcal{M}|)}{2}} + \sqrt{\frac{\log(|\mathcal{M}|)}{2}}$$

- Examples of convex/bounded losses?
- Simplify this assumption, cf. Technical property ??

TABLE OF CONTENTS

AGGREGATION OF EXPERTS A simple aggregation strategy Simple aggregation, revisited

Best convex combinations Best sequence: Fixed Share Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

anía

We only used this:

$$\ell_t\left(\underbrace{\mathbb{E}_{M\sim p_t}[x_{t,M}]}_{x_t}\right) \leqslant -\frac{1}{\eta} \log \mathbb{E}_{M\sim p_t} \exp\left(-\eta \ell_t(x_{t,M})\right) + \frac{\eta}{8}$$

Ínría

We only used this:

$$\ell_t\big(\underbrace{\mathbb{E}_{M\sim p_t}[x_{t,M}]}_{x_t}\big) \leqslant -\frac{1}{\eta}\log\mathbb{E}_{M\sim p_t}\exp\big(-\eta\ell_t(x_{t,M})\big) + \frac{\eta}{8}$$

Satisfied if convex, bounded by 1.
 Ok for *quadratic* loss, pb for *self-information*: not bounded when x small!

Innia

We only used this:

$$\ell_t\big(\underbrace{\mathbb{E}_{M\sim p_t}[x_{t,M}]}_{x_t}\big) \leqslant -\frac{1}{\eta}\log\mathbb{E}_{M\sim p_t}\exp\big(-\eta\ell_t(x_{t,M})\big) + \frac{\eta}{8}$$

- Satisfied if convex, bounded by 1.
 Ok for *quadratic* loss, pb for *self-information*: not bounded when x small!
- ▷ What about dropping $\eta/8$ term? Equivalent to $\exp(-\eta \ell_t(\cdot))$ is concave: η -exp-concavity.
 - ♦ *Self-information* loss is 1-exp-concave (with = instead of \leq)
 - ♦ *Quadratic* loss is η -exp-concave for $\eta \leq \frac{1}{2(b-a)^2}$ on $\mathcal{X} = \mathcal{Y} \subset [a, b]$.
 - $\diamond \quad Absolute \text{ loss } \ell(x, y) = |x y| \text{ is not exp-concave for any } \eta.$

Ínría

▷ Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_t} \exp(-\eta \ell_t(x_{t,M}))$? Entropy formula:

$$-\frac{1}{\eta}\log \mathbb{E}_{M\sim p}\exp\left(-\eta X_{M}\right) = \inf_{q\in\mathcal{P}(\mathcal{M})}\mathbb{E}_{M\sim q}[X_{M}] + \frac{1}{\eta}\mathrm{KL}(q,p).$$

Innía

▷ Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_t} \exp(-\eta \ell_t(x_{t,M}))$? Entropy formula:

$$-\frac{1}{\eta} \log \mathbb{E}_{M \sim p} \exp\left(-\eta X_{M}\right) = \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[X_{M}] + \frac{1}{\eta} \mathrm{KL}(q, p) \,.$$

▶ Hence, η -exp-concavity becomes:

η -exp-concavity

A loss ℓ is η -exp-concave if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \forall y \in \mathcal{Y}$,

$$\ell(\mathbb{E}_{M \sim p}[\mathbf{x}_{M}], y) \leq \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[\ell(\mathbf{x}_{M}, y)] + \frac{1}{\eta} \mathrm{KL}(q, p)$$

▷ Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_t} \exp \left(-\eta \ell_t(x_{t,M})\right)$? Entropy formula:

$$-\frac{1}{\eta} \log \mathbb{E}_{M \sim p} \exp\left(-\eta X_{M}\right) = \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[X_{M}] + \frac{1}{\eta} \mathrm{KL}(q, p) \,.$$

▶ Hence, η -exp-concavity becomes:

η -exp-concavity

A loss ℓ is η -exp-concave if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \forall y \in \mathcal{Y}$,

$$\ell(\mathbb{E}_{M\sim p}[\mathbf{x}_{M}], y) \leqslant \inf_{q\in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M\sim q}[\ell(\mathbf{x}_{M}, y)] + \frac{1}{\eta} \mathrm{KL}(q, p)$$

▷ Further, infimum obtained for $q(m) = \frac{\exp(-\eta X_m)p(m)}{\sum_{m' \in \mathcal{M}} \exp(-\eta X_{m'})p(m')}$.

Generalization: we don't need that $x_t = \mathbb{E}_{M \sim p_t}[x_{t,M}]$.

η -mixability

A loss ℓ is η -mixable if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \forall y \in \mathcal{Y},$

$$\ell(\mathbf{x}_{\mathbf{x},\mathbf{p}},y) \leqslant \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[\ell(\mathbf{x}_M,y)] + \frac{1}{\eta} \mathrm{KL}(q,p)$$

 $[\textbf{x}], \textbf{p} \mapsto \textbf{x}_{\textbf{x},\textbf{p}}$ is called the *substitution function*.

Generalization: we don't need that $x_t = \mathbb{E}_{M \sim p_t}[x_{t,M}]$.

η -mixability

A loss ℓ is η -mixable if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \forall y \in \mathcal{Y},$

$$\ell(\mathbf{x}_{\mathbf{x},\mathbf{p}},y) \leqslant \inf_{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}[\ell(\mathbf{x}_M,y)] + \frac{1}{\eta} \mathrm{KL}(q,p)$$

 $[\textbf{x}], \textbf{p} \mapsto \textbf{x}_{\textbf{x},\textbf{p}}$ is called the substitution function.

- $\triangleright \quad \eta\text{-exp-concave loss is } \eta\text{-mixable with } x_{\mathbf{x},\mathbf{p}} = \mathbb{E}_{M \sim p} \mathbf{x}_{\mathbf{M}}.$
- *Quadratic* loss is η -exp-concave for $\eta \leq \frac{1}{2}$ on $\mathcal{X} = \mathcal{Y} \subset [0, 1]$, but η -mixable for η up to $\eta \leq 2$!

Ínría

▷ Consider an η -mixable loss ℓ , and let $p_1 = \text{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.

Innía

- ▷ Consider an η -mixable loss ℓ , and let $p_1 = \text{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- ▷ At time t + 1, given $\mathbf{x}_t \in \mathcal{X}^M$, and $p_t \in \mathcal{P}(\mathcal{M})$, output decision $x_t = x_{\mathbf{x}_t, p_t}$,

main

- ▷ Consider an η -mixable loss ℓ , and let $p_1 = \text{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- At time t + 1, given $\mathbf{x}_t \in \mathcal{X}^M$, and $p_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = x_{\mathbf{x}_t, p_t}$,
- $\triangleright \qquad \text{Receive } y_t \text{ and update}$

$$\mathbf{p}_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}_M} \mathbb{E}_{M \sim q}[\underbrace{\ell(\mathbf{x}_{t,M}, y_t)}_{\ell_{t,M}}] + \frac{1}{\eta} \mathrm{KL}(q, p_t).$$

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_{\mathcal{T}} - \min_{m \in \mathcal{M}} L_{\mathcal{T},m} \leq \frac{\log(|\mathcal{M}|)}{\eta}$$

- ▷ Consider an η -mixable loss ℓ , and let $p_1 = \text{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- ▷ At time t + 1, given $\mathbf{x}_t \in \mathcal{X}^M$, and $p_t \in \mathcal{P}(\mathcal{M})$, output decision $x_t = x_{\mathbf{x}_t, p_t}$,
- $\triangleright \qquad \text{Receive } y_t \text{ and update}$

$$\mathbf{p}_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}_M} \mathbb{E}_{M \sim q}[\underbrace{\ell(\mathbf{x}_{t,M}, y_t)}_{\ell_{t,M}}] + \frac{1}{\eta} \mathrm{KL}(q, p_t).$$

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq \frac{\log(|\mathcal{M}|)}{\eta}$$

Still for arbitrary $y_t \in \mathcal{Y}$.

- ▷ Consider an η -mixable loss ℓ , and let $p_1 = \text{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- At time t + 1, given $\mathbf{x}_t \in \mathcal{X}^M$, and $p_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = x_{\mathbf{x}_t, p_t}$,
- $\triangleright \qquad \text{Receive } y_t \text{ and update}$

$$\mathbf{p}_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}_M} \mathbb{E}_{M \sim q}[\underbrace{\ell(\mathbf{x}_{t,M}, y_t)}_{\ell_{t,M}}] + \frac{1}{\eta} \mathrm{KL}(q, p_t).$$

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq \frac{\log(|\mathcal{M}|)}{\eta}$$

- Still for arbitrary $y_t \in \mathcal{Y}$.
- $\triangleright \quad \text{Independent on } T !$

- ▷ Consider an η -mixable loss ℓ , and let $p_1 = \text{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
- ▷ At time t + 1, given $\mathbf{x}_t \in \mathcal{X}^M$, and $p_t \in \mathcal{P}(\mathcal{M})$, output decision $\mathbf{x}_t = x_{\mathbf{x}_t, p_t}$,
- $\triangleright \qquad \text{Receive } y_t \text{ and update}$

$$\mathbf{p}_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}_M} \mathbb{E}_{M \sim q}[\underbrace{\ell(\mathbf{x}_{t,M}, y_t)}_{\ell_{t,M}}] + \frac{1}{\eta} \mathrm{KL}(q, p_t).$$

Theorem

Assume that ℓ_t is η -mixable, then after T time steps, this strategy satisfies:

$$L_{T} - \min_{m \in \mathcal{M}} L_{T,m} \leq \frac{\log(|\mathcal{M}|)}{\eta}$$

- Still for arbitrary $y_t \in \mathcal{Y}$.
- $\triangleright \quad \text{Independent on } T !$
- ▷ but only for specific, possibly small η (all $\eta' \leq \eta$, but not larger).

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is $\eta\text{-mixable},$ then after ${\cal T}$ time steps, the aggregation strategy with $p_1=\pi,$ satifies

$$orall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{\mathcal{M} \sim q} \Big[L_{\mathcal{T},\mathcal{M}} \Big] \leqslant rac{1}{\eta} \Big(ext{KL}(q,\pi) - ext{KL}(q,p_{\mathcal{T}+1}) \Big) \,.$$

Innía

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is $\eta\text{-mixable},$ then after ${\cal T}$ time steps, the aggregation strategy with $p_1=\pi,$ satifies

$$orall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{\mathcal{M} \sim q} \Big[L_{\mathcal{T},\mathcal{M}} \Big] \leqslant rac{1}{\eta} \Big(ext{KL}(q,\pi) - ext{KL}(q,p_{\mathcal{T}+1}) \Big) \,.$$

Now, we compete against *convex combination* of loss of experts!

Innia

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is $\eta\text{-mixable},$ then after ${\cal T}$ time steps, the aggregation strategy with $p_1=\pi,$ satifies

$$orall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{\mathcal{M} \sim q} \Big[L_{\mathcal{T},\mathcal{M}} \Big] \leqslant rac{1}{\eta} \Big(extsf{KL}(q,\pi) - extsf{KL}(q,p_{\mathcal{T}+1}) \Big) \,.$$

- Now, we compete against *convex combination* of loss of experts!
- ▷ In particular for $q = \delta_{m^*}$, we deduce

$$L_T - L_{T,m^\star} \leqslant rac{1}{\eta} \log\left(rac{1}{\pi(m^\star)}
ight).$$

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_t is $\eta\text{-mixable},$ then after ${\cal T}$ time steps, the aggregation strategy with $p_1=\pi,$ satifies

$$orall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \mathbb{E}_{M \sim q} \Big[L_{\mathcal{T},M} \Big] \leqslant rac{1}{\eta} \Big(ext{KL}(q,\pi) - ext{KL}(q, p_{\mathcal{T}+1}) \Big) \,.$$

- ▷ Now, we compete against *convex combination* of loss of experts!
- ▷ In particular for $q = \delta_{m^*}$, we deduce

$$L_{\mathcal{T}} - L_{\mathcal{T},m^{\star}} \leqslant rac{1}{\eta} \log\left(rac{1}{\pi(m^{\star})}
ight).$$

▶ We can move from finitely many to *countably* many experts: $\pi(m) = \frac{1}{m(m+1)}, \quad \pi(m) = \log(2) \left(\frac{1}{\log(m+1)} - \frac{1}{\log(m+2)} \right).$

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leq \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q, p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \ldots, \ell(x_M))$.

Innia

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leqslant \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q, p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \ldots, \ell(x_M))$.

Strategy: Play $x_{\mathbf{x}_t,\mathbf{p}_t}$, update $p_{t+1} = \underset{q \in \mathcal{P}(\mathcal{M})}{\operatorname{argmin}} \langle q, \ell_{\mathbf{x}_t} \rangle + \frac{1}{\eta} \mathcal{B}(q, p_t).$

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leq \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q, p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \ldots, \ell(x_M))$.

- Strategy: Play $x_{\mathbf{x}_t,\mathbf{p}_t}$, update $p_{t+1} = \underset{q \in \mathcal{P}(\mathcal{M})}{\operatorname{argmin}} \langle q, \ell_{\mathbf{x}_t} \rangle + \frac{1}{\eta} \mathcal{B}(q, p_t).$
- Performance:

$$orall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \langle q, \mathbf{L}_{\mathcal{T}}
angle \leqslant rac{1}{\eta} \Big(\mathcal{B}(q, \pi) - \mathcal{B}(q, p_{\mathcal{T}+1}) \Big) \,.$$

Assumption: ℓ is η -Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x},\mathbf{p}} \in \mathcal{X}, \ \ell(x_{\mathbf{x},\mathbf{p}}) \leq \min_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}} \rangle + \frac{1}{\eta} \mathcal{B}(q, p).$$

where $\ell_{\mathbf{x}}$ denotes the vector $(\ell(x_1), \ldots, \ell(x_M))$.

- ▷ Strategy: Play $x_{\mathbf{x}_t, \mathbf{p}_t}$, update $p_{t+1} = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{M})} \langle q, \ell_{\mathbf{x}_t} \rangle + \frac{1}{\eta} \mathcal{B}(q, p_t)$.
- Performance:

$$orall q \in \mathcal{P}(\mathcal{M}) \quad L_{\mathcal{T}} - \langle q, \mathsf{L}_{\mathcal{T}}
angle \leqslant rac{1}{\eta} \Big(\mathcal{B}(q, \pi) - \mathcal{B}(q, p_{\mathcal{T}+1}) \Big) \,.$$

Other interpretation: Use Legendre-Fenchel dual objective function, perform gradient descent!

SMALL LOSSES

When the best expert has *small loss*, we may prefer to express regret bounds on terms of this loss:

Consider a loss convex and bounded in [0, 1], then:

$$L_T - L_T^{\star} \leq \left(\frac{\eta}{1 - \exp(-\eta)} - 1\right) L_T^{\star} + \frac{\log(M)}{1 - \exp(-\eta)}$$

where $L_T^{\star} = \min_{m \in \mathcal{M}} L_{t,m}$

Proof: We can show that any loss ℓ convex and bounded in [0, 1] satisfies the following extension of η -mixability property:

$$\ell(\mathbb{E}_{M\sim q}(\mathsf{x}_{M}))\leqslant -rac{\eta}{1-\exp(-\eta)}rac{1}{\eta}\ln\left(\mathbb{E}_{m\sim q}\exp(-\eta\ell(\mathsf{x}_{M}))
ight).$$

The rest is obtained by following the initial derivation.

TABLE OF CONTENTS

AGGREGATION OF EXPERTS

A simple aggregation strategy Simple aggregation, revisited

Best convex combinations

Best sequence: Fixed Share Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

nnia

Minimize
$$\sum_{t=1}^{T} \ell_t(x_t) \dots$$

w.r.t.

Ínría

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \ \dots$$

w.r.t.

best combination of models (Model aggregation)?

$$\inf \mathbf{q} \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

Ínría

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \ \dots$$

w.r.t.

best combination of models (Model aggregation)?

$$\inf \mathbf{q} \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

▷ Left: best combination of losses Right: loss of best combination.

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \ \dots$$

w.r.t.

best combination of models (Model aggregation)?

$$\inf \mathbf{q} \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

- ▶ Left: best combination of losses Right: loss of best combination.
- ▷ Right is harder: $\ell_t(\mathbf{q} \cdot \mathbf{x}_t) \leq \mathbf{q} \cdot \ell_t$ by convexity.

Innia

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(x_t) \ \dots$$

w.r.t.

best combination of models (Model aggregation)?

$$\inf \mathbf{q} \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

- ▷ Left: best combination of losses Right: loss of best combination.
- ▶ Right is harder: $\ell_t(\mathbf{q} \cdot \mathbf{x}_t) \leq \mathbf{q} \cdot \boldsymbol{\ell}_t$ by convexity.
- ▷ From set of experts \mathcal{M} (finite) to set of experts $\mathcal{P}(\mathcal{M})$ (continuous) !

DIFFERENT OBJECTIVES

$$\mathsf{Minimize} \quad \sum_{t=1}^{T} \ell_t(\mathsf{x}_t) \ \dots$$

w.r.t.

best combination of models (Model aggregation)?

$$\inf \mathbf{q} \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} \mathbf{q}_m \left(\sum_{t=1}^T \ell_t(\mathbf{x}_{t,m}) \right) \quad \text{or} \quad \inf_{\mathbf{q} \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^T \ell_t \left(\sum_{m \in \mathcal{M}} \mathbf{q}_m \mathbf{x}_{t,m} \right)$$

- ▷ Left: best combination of losses Right: loss of best combination.
- ▶ Right is harder: $\ell_t(\mathbf{q} \cdot \mathbf{x}_t) \leq \mathbf{q} \cdot \boldsymbol{\ell}_t$ by convexity.
- ▷ From set of experts \mathcal{M} (finite) to set of experts $\mathcal{P}(\mathcal{M})$ (continuous) !
- ▷ If ℓ is η -exp-concave on \mathcal{X} , then $\overline{\ell} : q \to \ell_t(\mathbf{q} \cdot \mathbf{x}_t)$ is η -exp-concave on $\mathcal{P}(\mathcal{M})$.

Ínría

$$\triangleright \quad \overline{p}_1(q) = \frac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))}, \ p_1 = \frac{1}{|\mathcal{M}|} \mathbf{1}.$$

Ínría

$$\triangleright \quad \overline{p}_1(q) = \frac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))}, \ p_1 = \frac{1}{|\mathcal{M}|} \mathbf{1}.$$

> Choose
$$x_t = \sum_{m \in \mathcal{M}} p_t(m) x_{t,m}$$
, where $p_t = \mathbb{E}_{q \sim \overline{p}_t}[q]$.

Ínría

$$> \overline{p}_1(q) = rac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))}, \ p_1 = rac{1}{|\mathcal{M}|} \mathbf{1}.$$

▷ When receiving $(x_{t,m})_{m \in M}$, update

$$p_{t+1}(q) = \frac{\overline{p}_t(q) \exp(-\eta \overline{\ell}_t(q))}{\int_{\mathcal{P}(\mathcal{M})} \overline{p}_t(u) \exp(-\eta \overline{\ell}_t(q)) du}$$

Aggregation over $\mathcal{P}(\mathcal{M})$:Performance

$$L_{\mathcal{T}} - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{I} \overline{\ell}_{t}(q) \leqslant \frac{M}{\eta} \left(1 + \log\left(1 + \frac{T}{M}\right) \right).$$

Ínría

Aggregation over $\mathcal{P}(\mathcal{M})$:Performance

$$L_T - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{I} \overline{\ell}_t(q) \leqslant \frac{M}{\eta} \left(1 + \log\left(1 + \frac{T}{M}\right) \right).$$

► For comparison we had: $L_T - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_m q(m) L_{T,m} \leq \frac{\log(\mathcal{M})}{\eta}$.

Inría

Aggregation over $\mathcal{P}(\mathcal{M})$:Performance

$$L_{T} - \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{I} \overline{\ell}_{t}(q) \leq \frac{M}{\eta} \left(1 + \log\left(1 + \frac{T}{M}\right) \right).$$

- ► For comparison we had: $L_T \inf_{q \in \mathcal{P}(\mathcal{M})} \sum_m q(m) L_{T,m} \leq \frac{\log(\mathcal{M})}{\eta}$.
- \triangleright Proof technique: Similar +

Odalric-Ambrym Maillard RLSS Lecture: Decisions beyond Structuri

Ínría

 \triangleright Consider Binary prediction and self-information loss ℓ .

Innía

- \triangleright Consider Binary prediction and self-information loss ℓ .
- ▷ Aggregation over all Bernoulli $\mathcal{B}(\theta)$, $\theta \in [0, 1]$.

Innia

- \triangleright Consider Binary prediction and self-information loss ℓ .
- ▷ Aggregation over all Bernoulli $\mathcal{B}(\theta)$, $\theta \in [0, 1]$.
- ▷ KT-predictor: Use prior $g(\theta) = \frac{1}{\sqrt{\theta(1-\theta)}}$.

Innia

- $\triangleright \quad \mbox{Consider Binary prediction and self-information loss } \ell.$
- ▷ Aggregation over all Bernoulli $\mathcal{B}(\theta)$, $\theta \in [0, 1]$.
- ▷ KT-predictor: Use prior $g(\theta) = \frac{1}{\sqrt{\theta(1-\theta)}}$.
- Yields a fully explicit solution:

$$q_t(1) = rac{t \widehat{ heta}_t + 1/2}{t+1}$$

Efficient computation despite aggregation of continuum of models.

Example of Universal prediction

- \triangleright Consider Binary prediction and self-information loss ℓ .
- ▷ Aggregation over all Bernoulli $\mathcal{B}(\theta)$, $\theta \in [0, 1]$.
- ▷ KT-predictor: Use prior $g(\theta) = \frac{1}{\sqrt{\theta(1-\theta)}}$.
- Yields a fully explicit solution:

$$q_t(1) = \frac{t\widehat{\theta}_t + 1/2}{t+1}$$

Efficient computation despite aggregation of continuum of models.

Called "Universal prediction". Extends to all Markov models of arbitrary order.

TABLE OF CONTENTS

AGGREGATION OF EXPERTS A simple aggregation strategy Simple aggregation, revisited Best convex combinations Best sequence: Fixed Share Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

anía

▷ So far, we only considered *fixed* experts:

$$\min_{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,m}), \quad \min_{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q(m) L_{T,m} \quad \min_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_t(\sum_{m \in \mathcal{M}} q(m) x_{t,m})$$

Ínría

▷ So far, we only considered *fixed* experts:

$$\min_{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,m}), \quad \min_{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q(m) L_{T,m} \quad \min_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_t(\sum_{m \in \mathcal{M}} q(m) x_{t,m})$$

▶ What about best *sequence* of experts:

$$\min_{m_1,...,m_T \in S_k(\mathcal{M})} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } S_k(\mathcal{M}) : \text{ at most } k \text{ switches.}$$

- Difficulty: Concentrating mass *exponentially fast* to a single expert means putting near 0 on others.
- When switching to other best expert, need to catch-up!
- from \mathcal{M} to \mathcal{M}^T many experts??

▷ So far, we only considered *fixed* experts:

$$\min_{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_t(x_{t,m}), \quad \min_{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q(m) L_{T,m} \quad \min_{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_t(\sum_{m \in \mathcal{M}} q(m) x_{t,m})$$

▶ What about best *sequence* of experts:

$$\min_{m_1,\ldots,m_T \in \mathcal{S}_k(\mathcal{M})} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } \mathcal{S}_k(\mathcal{M}) : \text{ at most } k \text{ switches.}$$

- Difficulty: Concentrating mass *exponentially fast* to a single expert means putting near 0 on others.
- ♦ When switching to other best expert, *need to catch-up*!
- $\diamond \qquad \text{from } \mathcal{M} \text{ to } \mathcal{M}^{\mathsf{T}} \text{ many experts} ??$

FIXED SHARE AND MARKOV HEDGE

Fixed-share solution

Ínría

FIXED SHARE AND MARKOV HEDGE

Fixed-share solution

▷ Guarantees each *m* never has not *too small* weight, hence can catch-up fast enough.

Inría

FIXED SHARE AND MARKOV HEDGE

Fixed-share solution

- ▷ Guarantees each *m* never has not *too small* weight, hence can catch-up fast enough.
- $\triangleright \quad \tilde{p}_{t+1}(\cdot) = (1-\alpha)p_{t+1}(\cdot) + \frac{\alpha}{M}$

nría Odalric-Ambry RLSS Lecture:

FIXED-SHARE PERFORMANCE

For all sequence $q_1, \ldots, q_T \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$L_{T} - \sum_{t=1}^{l} q_{t} \ell_{t} \leq \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M}{\alpha}\right) + \frac{T-k-1}{\eta} \log\left(\frac{1}{1-\alpha}\right).$$

Ínría

FIXED-SHARE PERFORMANCE

For all sequence $q_1, \ldots, q_T \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$L_{T} - \sum_{t=1}^{l} q_{t}\ell_{t} \leq \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M}{\alpha}\right) + \frac{T-k-1}{\eta} \log\left(\frac{1}{1-\alpha}\right).$$

▷ Choosing $\alpha = k/(T-1)$ yields

$$L_T - \sum_{t=1}^T q_t \ell_t \leqslant \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M(T-1)}{k}\right) + \frac{k}{\eta}$$

(nría_

FIXED-SHARE PERFORMANCE

For all sequence $q_1, \ldots, q_T \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$L_{T} - \sum_{t=1}^{l} q_{t}\ell_{t} \leq \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M}{\alpha}\right) + \frac{T-k-1}{\eta} \log\left(\frac{1}{1-\alpha}\right).$$

▷ Choosing $\alpha = k/(T-1)$ yields

$$L_T - \sum_{t=1}^T q_t \ell_t \leqslant \frac{\log(M)}{\eta} + \frac{k}{\eta} \log\left(\frac{M(T-1)}{k}\right) + \frac{k}{\eta}$$

 \triangleright α going to 0 but not exponentially fast.

MARKOV-HEDGE

Let us consider \tilde{p}_t obtained from p_t as $\tilde{p}_{t+1}(\cdot) = \sum_{m' \in \mathcal{M}} \theta(\cdot|m') p_{t+1}(m')$, from a Markov chain with initial low ω and *transition matrix* θ . For all sequence $m_1, \ldots, m_T \in \mathcal{M}$ with at most k switches

$$L_T - \sum_{t=1}^T \ell_{t,m_t} \leqslant \frac{1}{\eta} \log\left(\frac{1}{\omega(m_1)}\right) + \frac{1}{\eta} \sum_{t=2}^T \log\left(\frac{1}{\theta_t(m_t|m_{t-1})}\right)$$

Innia

MARKOV-HEDGE

Let us consider \tilde{p}_t obtained from p_t as $\tilde{p}_{t+1}(\cdot) = \sum_{m' \in \mathcal{M}} \theta(\cdot|m') p_{t+1}(m')$, from a Markov chain with initial low ω and *transition matrix* θ . For all sequence $m_1, \ldots, m_T \in \mathcal{M}$ with at most k switches

$$\mathcal{L}_{T} - \sum_{t=1}^{T} \ell_{t,m_{t}} \leqslant \frac{1}{\eta} \log\left(\frac{1}{\omega(m_{1})}\right) + \frac{1}{\eta} \sum_{t=2}^{T} \log\left(\frac{1}{\theta_{t}(m_{t}|m_{t-1})}\right)$$

$$\triangleright \quad \text{Fixed share: } \theta(m'|m) = (1 - \alpha) \mathbb{I}\{m = m'\} + \alpha/M.$$

MARKOV-HEDGE

Let us consider \tilde{p}_t obtained from p_t as $\tilde{p}_{t+1}(\cdot) = \sum_{m' \in \mathcal{M}} \theta(\cdot|m') p_{t+1}(m')$, from a Markov chain with initial low ω and *transition matrix* θ . For all sequence $m_1, \ldots, m_T \in \mathcal{M}$ with at most k switches

$$L_T - \sum_{t=1}^T \ell_{t,m_t} \leqslant \frac{1}{\eta} \log\left(\frac{1}{\omega(m_1)}\right) + \frac{1}{\eta} \sum_{t=2}^T \log\left(\frac{1}{\theta_t(m_t|m_{t-1})}\right).$$

$$\triangleright \quad \text{Fixed share: } \theta(m'|m) = (1 - \alpha) \mathbb{I}\{m = m'\} + \alpha/M.$$

▷ Variable share, sleeping experts, etc.

Note: even though huge amount of experts $O(M^T)$ they share a *rich structure*. This enables to have an efficient strategy maintaining only few quantities O(MT).

TABLE OF CONTENTS

AGGREGATION OF EXPERTS A simple aggregation strategy Simple aggregation, revisited Best convex combinations Best sequence: Fixed Share Few recurring experts: Freund, MPP

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

-ala

▷ Best *sequence* of experts:

$$\min_{m_1,\ldots,m_T \in \mathcal{S}_k(\mathcal{M})} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } \mathcal{S}_k(\mathcal{M}) : \text{at most } k \text{ switches.}$$

Ínría

▷ Best *sequence* of experts:

$$\min_{m_1,...,m_T \in S_k(\mathcal{M})} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } S_k(\mathcal{M}) : \text{ at most } k \text{ switches.}$$

▶ Best sequence of experts with *few good* experts:

$$\min_{m_1,...,m_T \in \mathcal{S}_k(\mathcal{M}_0)} \sum_{t=1}^T \ell_t(x_{t,m_t}) \text{ where } \mathcal{M}_0 \subset \mathcal{M} \text{ unknown but small }.$$

• Intuition: the good experts should be good in the recent past.

MIXING PAST POSTERIORS

Ensure that experts good in the recent past have large enough weight and catch-up.

Innia

MIXING PAST POSTERIORS

- Ensure that experts good in the recent past have large enough weight and catch-up.
- $\triangleright \quad \text{Mixing past posterior } \tilde{p}_{t+1}(\cdot) = \sum_{s=0}^{t} \beta_{t+1}(s) p_s(\cdot)$

Innia

MIXING PAST POSTERIORS

- Ensure that experts good in the recent past have large enough weight and catch-up.
- $\triangleright \quad \text{Mixing past posterior } \tilde{p}_{t+1}(\cdot) = \sum_{s=0}^{t} \beta_{t+1}(s) p_s(\cdot)$
- In particular:

MIXING PAST POSTERIORS: PERFORMANCE

Assume ℓ is η -mixable. For all sequence $(q_t)_{t\in\mathcal{T}}$ with k switches between at most n values,

$$L_{T} - \sum_{t=1}^{T} q_{t} \cdot \ell_{t} \leqslant \frac{n}{\eta} \log \left(|\mathcal{M}| \right) + \frac{1}{\eta} \sum_{t=1}^{T} \log \left(\frac{1}{\beta_{t}(\tau_{t})} \right).$$

where τ_t is last $\tau < t$ such that $q_{\tau} = q_t$ (or 0 if first occurrence).

Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.

Innia

OTHER MODELS

- Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.
- ▷ Growing experts (Mourtada&M. 2017): When set of base experts *M* is no longer fixed but may increase with time; Especially useful to handle non-stationarity.

main

OTHER MODELS

- Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.
- ▷ Growing experts (Mourtada&M. 2017): When set of base experts *M* is no longer fixed but may increase with time; Especially useful to handle non-stationarity.

▷ ...

Most results are minimax-optimal, valid for any input sequence. This contrasts with typical results for bandits: instance-optimal, for stochastic sequence.

maia

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

Innia

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION **Aggregation in the bandit world**

Exp3 Exp3 variants Exp4

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

innia

Odalric-Ambrym Maillard RLSS Lecture: Decisions beyond Structure

Adjusting for the differences:

Ínría

Adjusting for the differences:

▷ Decision are arms X = A. Consider one expert per arm M = A.

Innia

Adjusting for the differences:

- ▷ Decision are arms X = A. Consider one expert per arm M = A.
- ▷ Losses $(\ell_{t,m})_{m \in \mathcal{M}}$ become rewards $(r_{t,a})_{a \in \mathcal{A}}$

Innia

Adjusting for the differences:

- ▷ Decision are arms X = A. Consider one expert per arm M = A.
- ▷ Losses $(\ell_{t,m})_{m \in \mathcal{M}}$ become rewards $(r_{t,a})_{a \in \mathcal{A}}$
- Can only output an arm $A_t \in \mathcal{A}$ (not a combination):
 - $x_t = \sum_{m \in \mathcal{M}} p_{t,m} x_{t,m}$ becomes $x_t = x_{t,m_t}$ with $m_t \sim p_t$.
 - \diamond \quad Less good, but ok as long as $\mathbb E$ performance.
- **Problem**: we only observe the reward of A_t (i.e., only r_{t,A_t}) !! *Partial information*: We don't observe $r_{t,a}$ for all arms.

Terminology: Adversarial setup. We want guarantees against arbitrary (bounded) sequence of rewards/losses.

maia

THE EXPONENTIALLY WEIGHTED AVERAGE FORECASTER

 $\begin{array}{ll} \triangleright & \text{Output } m_t \sim p_t \text{ where } p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}, \\ & \diamond & \forall m \in \mathcal{M}, w_1(m) = 1 \text{ and } w_{t+1}(m) = w_t(m) \exp(-\eta \ell_{t,m}). \end{array}$

 $\ell_{t,m}$ is not available for all arms! $\ell_{t,m} = 1 - r_{t,a}$?

$$\widehat{\ell}_{t,m} = \begin{cases} \frac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

Ínría

$$\widehat{\ell}_{t,m} = \begin{cases} \frac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

Why it is a good idea:

Ínría

$$\widehat{\ell}_{t,m} = \begin{cases} \frac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

Why it is a good idea:

 $\triangleright \quad \widehat{\ell}_{t,m} \text{ is an } unbiased \text{ estimator of } \ell_{t,m}:$

$$\mathbb{E}[\widehat{\ell}_{t,m}] = \frac{\ell_{t,m}}{p_t(m)} p_t(m) + 0(1-p_t(m)) = \ell_{t,m}$$

$$\widehat{\ell}_{t,m} = \begin{cases} \frac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

Why it is a good idea:

 $\triangleright \quad \widehat{\ell}_{t,m} \text{ is an } unbiased \text{ estimator of } \ell_{t,m}:$

$$\mathbb{E}[\widehat{\ell}_{t,m}] = \frac{\ell_{t,m}}{p_t(m)} p_t(m) + 0(1-p_t(m)) = \ell_{t,m}$$

Why it may be a bad idea:

$$\widehat{\ell}_{t,m} = \begin{cases} \frac{\ell_{t,m}}{p_t(m)} & \text{if } m = m_t \\ 0 & \text{otherwise} \end{cases}$$

Why it is a good idea:

 $\triangleright \quad \widehat{\ell}_{t,m} \text{ is an } unbiased \text{ estimator of } \ell_{t,m}:$

$$\mathbb{E}[\widehat{\ell}_{t,m}] = \frac{\ell_{t,m}}{p_t(m)}p_t(m) + 0(1-p_t(m)) = \ell_{t,m}$$

Why it may be a bad idea:

 \triangleright $p_{t,m}$ typically small for bad arms, hence this estimates has large variance for bad arms!

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

Aggregation in the bandit world

Exp3

Exp3 variants Exp4

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

main

Ínría

Exp3: Exponential-weight algorithm for Exploration and Exploitation

 $\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$

Ínría

$$\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\triangleright \quad \text{Output } m_t \sim p_t \text{ where } p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$$

(nría_

$$\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\triangleright \quad \text{Output } m_t \sim p_t \text{ where } p_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$$

$$\triangleright$$
 Receive r_{t,m_t}

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\forall m \in \mathcal{M}, w_t(m) = \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)}$$

$$\forall m \in \mathcal{M}, w_{t+1}(m) = w_t(m) \exp(-\eta \hat{\ell}_{t,m}).$$

Question: is this enough? is this algorithm actually exploring enough?

Ínría

Question: is this enough? is this algorithm actually exploring enough? **Answer**: more or less...

Ínría

- **Question**: is this enough? is this algorithm actually exploring enough? **Answer**: more or less...
- Exp3 has a small regret in expectation

Innía

Question: is this enough? is this algorithm actually exploring enough? **Answer**: more or less...

- Exp3 has a small regret in expectation
- Exp3 might have large deviations with *high probability* (ie, from time to time it may *concentrate* $\hat{\mathbf{p}}_t$ *on the wrong arm* for too long and then incur a large regret)

main

Ínría

$$\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$$

Ínría

$$\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$$

Ínría

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

Output $m_t \sim p_t$ where
 $p_t(m) = (1 - \gamma) \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{M}|}$

$$\triangleright$$
 Receive r_{t,m_t}

Ínría

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

$$p_t(m) = (1 - \gamma) \frac{w_t(m)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{M}|}$$

$$Receive r_{t,m_t}$$

$$\forall m \in \mathcal{M}, w_{t+1}(m) = w_t(m) \exp(-\eta \hat{\ell}_{t,m}).$$

Theorem

If Exp3 is run with $\gamma=\eta,$ then it achieves a regret

$$R_{T}(\mathcal{A}) = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t,a} - \mathbb{E} \Big[\sum_{t=1}^{T} r_{t,A_{t}} \Big] \leq (e-1)\gamma G_{\max} + \frac{A \log A}{\gamma}$$

with $G_{\max} = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t,a}$.

Theorem

If Exp3 is run with

$$\gamma = \eta = \sqrt{rac{A \log A}{(e-1)T}}$$

then it achieves a regret

$$R_T(\mathcal{A}) \leqslant O(\sqrt{TA\log A})$$

Comparison with online learning (convex, bounded):

 $R_T(Exp3) \leqslant O(\sqrt{TA \log A})$

 $R_T(EWA) \leqslant O(\sqrt{T \log A})$

Ínría

Comparison with online learning (convex, bounded):

$$R_T(Exp3) \leqslant O(\sqrt{TA\log A})$$

 $R_T(EWA) \leqslant O(\sqrt{T \log A})$

Intuition: in online learning at each round we obtain *A* feedbacks, while in bandits we receive 1 feedback.

Innia

EXPECTED REGRET

$$R_{T}(Exp3) = \mathbb{E}\left(\sum_{t=1}^{T} r_{t,a} - r_{t,a_{t}}\right) \leq \frac{\log(A)}{\eta} + \frac{A}{2}\eta T.$$

Further, For any non-increasing sequence $(\eta_t)_t$:

$$R_{T}(Exp3) = \mathbb{E}\left(\sum_{t=1}^{T} r_{t,a} - r_{t,a_{t}}\right) \leq \frac{\log(A)}{\eta_{T}} + \frac{A}{2}\sum_{t=1}^{T} \eta_{t}.$$

(nría-

Step 1.
$$\mathbb{E}_{a \sim p_{t,\eta}} \tilde{\ell}_t(a) = 1 - r_{t,a_t}$$
 and $\mathbb{E}_{a_t \sim p_{t,\eta}} \tilde{\ell}_t(a) = 1 - r_{t,a}$. Thus:

$$\forall a \in \mathcal{A}, \quad \sum_{t=1}^{T} r_{t,a} - r_{t,a_t} = \sum_{t=1}^{T} \mathbb{E}_{a \sim p_{t,\eta}} \tilde{\ell}_t(a) - \sum_{t=1}^{T} \mathbb{E}_{a_t \sim p_{t,\eta}} \tilde{\ell}_t(a).$$

Step 2. The random variable $X = \tilde{\ell}_t(a)$, is positive. By Hoeffding's lemma,

$$\begin{split} \mathbb{E}_{\boldsymbol{a}\sim\boldsymbol{p}_{t,\eta}}(\tilde{\ell}_{t}(\boldsymbol{a})) &\leqslant -\frac{1}{\eta}\log\left(\mathbb{E}_{\boldsymbol{a}\sim\boldsymbol{p}_{t,\eta}}\left[\exp(-\eta\tilde{\ell}_{t}(\boldsymbol{a}))\right]\right) + \frac{\eta}{2}\mathbb{E}_{\boldsymbol{a}\sim\boldsymbol{p}_{t,\eta}}(\tilde{\ell}_{t}(\boldsymbol{a})^{2}) \\ &= -\frac{1}{\eta}\log\left(\frac{\sum_{\boldsymbol{a}\in\mathcal{A}}e^{-\sum_{s=1}^{t}\eta\tilde{\ell}_{s}(\boldsymbol{a})}}{\sum_{\boldsymbol{a}\in\mathcal{A}}e^{-\sum_{s=1}^{t-1}\eta\tilde{\ell}_{s}(\boldsymbol{a})}}\right) + \frac{\eta}{2}\mathbb{E}_{\boldsymbol{a}\sim\boldsymbol{p}_{t,\eta}}(\tilde{\ell}_{t}(\boldsymbol{a})^{2}) \,. \end{split}$$

Step 3. Thus,

$$\sum_{t=1}^{T} \mathbb{E}_{\boldsymbol{a} \sim \boldsymbol{p}_{t,\eta}}(\tilde{\ell}_t(\boldsymbol{a})) \leqslant -\frac{1}{\eta} \log\left(\frac{1}{A} \sum_{b} \exp(-\sum_{t=1}^{T} \eta \tilde{\ell}_t(b))\right) + \sum_{t=1}^{T} \frac{\eta}{2} \mathbb{E}_{\boldsymbol{a} \sim \boldsymbol{p}_{t,\eta}}(\tilde{\ell}_t(\boldsymbol{a})^2).$$

Since the reward function is bounded by 1 we have:

$$\mathbb{E}_{a \sim \rho_{t,\eta}}(\tilde{\ell}_t(a)^2) = \mathbb{E}_{a \sim \rho_{t,\eta}}(\frac{(1 - r_{t,A_t})^2}{p_t^2(A_t)}\mathbb{I}\{A_t = a\}) \leqslant \frac{1}{p_t(a_t)}$$

Step 4. Using the fact that the sum of positive terms is bigger than any of its term,

$$-\frac{1}{\eta}\log\big(\sum_{b}\exp(-\sum_{t=1}^{T}\eta\tilde{\ell}_{t}(b))\big) \quad \leqslant \quad \sum_{t=1}^{T}\tilde{\ell}_{t}(a) \text{ for each } a\in\mathcal{A} \,.$$

Taking expectations, it comes for all $a \in \mathcal{A}$,

$$\mathbb{E}\left[\sum_{t=1}^{T} r_{t,a} - r_{t,a_t}\right] \leq \frac{\log(A)}{\eta} + \sum_{t=1}^{T} \frac{\eta}{2} \underbrace{\mathbb{E}\left[\frac{1}{p_t(a_t)}\right]}_{A}.$$

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

Aggregation in the bandit world

Exp3

Exp3 variants

Exp4

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

innia

THE IMPROVED-EXP3 ALGORITHM

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Innia

THE IMPROVED-EXP3 ALGORITHM

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Exp3.P (Auer et al. 2002):
$$\tilde{r}_{t,a} = r_{t,a} + \frac{\beta}{p_{t,a}}$$

Innia

THE IMPROVED-EXP3 ALGORITHM

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Exp3.P (Auer et al. 2002):
$$\tilde{r}_{t,a} = r_{t,a} + \frac{\beta}{p_{t,a}}$$

Exp3-IX (Kocak et al, 2014; Neu 2015):
$$\tilde{\ell}_{t,a} = \frac{\ell_{t,a}}{p_{t,a} + \gamma}$$
.

The Improved-Exp3 Algorithm

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Exp3.P (Auer et al. 2002):
$$\tilde{r}_{t,a} = r_{t,a} + \frac{\beta}{p_{t,a}}$$

- ▷ Exp3-IX (Kocak et al, 2014; Neu 2015): $\tilde{\ell}_{t,a} = \frac{\ell_{t,a}}{p_{t,a} + \gamma}$.
- Many other variants.

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION Aggregation in the bandit world Exp3

Exp3 variants

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

main

A DIFFERENT POINT OF VIEW

▷ Decisions are *distributions* on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.

Ínría

- ▷ Decisions are *distributions* on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.
- ▷ One expert outputs $\xi_{t,m} \in \mathcal{P}(\mathcal{A})$ at time *t*.

Innia

- ▷ Decisions are *distributions* on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.
- ▷ One expert outputs $\xi_{t,m} \in \mathcal{P}(\mathcal{A})$ at time *t*.
- ▷ Loss of expert $m \in \mathcal{M}$: $\ell_{t,m} = \sum_{a \in \mathcal{A}} \xi_{t,m}(a) r_t(a)$ (Instead of reward)

main

- ▷ Decisions are *distributions* on arms $\mathcal{X} = \mathcal{P}(\mathcal{A})$.
- ▷ One expert outputs $\xi_{t,m} \in \mathcal{P}(\mathcal{A})$ at time *t*.
- ▷ Loss of expert $m \in \mathcal{M}$: $\ell_{t,m} = \sum_{a \in \mathcal{A}} \xi_{t,m}(a) r_t(a)$ (Instead of reward)
- $\triangleright \quad \text{Case when } |\mathcal{M}| \gg |\mathcal{A}|?$

nnia

Ínría

$$\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$$

Ínría

$$\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$$

> Output
$$a_t \sim p_t \in \mathcal{P}(\mathcal{A})$$
 where
 $p_t(a) = (1 - \gamma) \frac{w_t(m)\xi_{t,m}(a)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{A}|}$

Ínría

$$\triangleright \quad \forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\triangleright \quad \text{Receive } r_{t,a_t}, \text{ build } \widehat{\ell}_t(a) = \begin{cases} \frac{1 - r_t(a)}{p_t(a)} & \text{if } a = a_t \\ 0 & \text{else} \end{cases}$$

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

$$\forall m \in \mathcal{M}, w_1(m) = 1.$$

$$p_t(a) = (1 - \gamma) \frac{w_t(m)\xi_{t,m}(a)}{\sum_{m \in \mathcal{M}} w_t(m)} + \frac{\gamma}{|\mathcal{A}|}$$

$$Receive \ r_{t,a_t}, \text{ build } \widehat{\ell}_t(a) = \begin{cases} \frac{1 - r_t(a)}{p_t(a)} & \text{if } a = a_t \\ 0 & \text{else} \end{cases}$$

$$Update \ \forall m \in \mathcal{M}, w_{t+1}(m) = w_t(m) \exp(-\eta \widehat{\ell}_{t,m}). \text{ where}$$

$$\widehat{\ell}_{t,m} = \sum_{a \in \mathcal{A}} \xi_{t,m}(a) \widehat{\ell}_t(a).$$

Regret of Exp4

Theorem

If Exp4 is run with $\gamma \in [0,1]$, then it achieves a regret

$$R_{T}(\mathcal{A}) = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t,a} - \mathbb{E} \Big[\sum_{t=1}^{T} r_{t,A_{t}} \Big] \leqslant (e-1)\gamma G_{\max} + \frac{A \log M}{\gamma}$$

with $G_{\max} = \max_{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t,a}$.

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

Stochastic or Adversarial ?

CONCLUSION

Innía

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ? Meta bandits: Exp4 on MABs.

Best of both world strategies

CONCLUSION

main

 $\triangleright \quad \Phi : \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D} , such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines *equivalence relation*; let [h] the equivalence class of h.

nain

- $\triangleright \quad \Phi : \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D} , such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines *equivalence relation*; let [h] the equivalence class of h.
- Φ -constrained policy is $\pi : \mathcal{H}/\Phi \to \mathcal{A}$.

main

- $\begin{tabular}{ll} $\Phi: \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D}, such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines equivalence relation; let [h] the equivalence class of h. \end{tabular}$
- $\triangleright \quad \Phi \text{-constrained policy is } \pi : \mathcal{H} / \Phi \to \mathcal{A}.$
- ► Examples:
 - $\diamond \quad \Phi(h) = 1 \text{ gives constant experts.}$
 - $\Phi(h) = (a_{-1}, \dots, a_{-m})$ last *m* actions, gives experts depending on last *m* actions only.
 - $\diamond \quad \Phi(h) = |h| \mod k \text{ gives periodic experts.}$

nnía

- $\begin{tabular}{ll} $\Phi: \mathcal{H} \to \mathcal{D}$, mapping from set of histories to some set \mathcal{D}, such that $h_1 \sim h_2$ iff $\Phi(h_1) = \Phi(h_2)$ defines equivalence relation; let [h] the equivalence class of h. \end{tabular}$
- $\triangleright \quad \Phi \text{-constrained policy is } \pi : \mathcal{H} / \Phi \to \mathcal{A}.$
- ► Examples:
 - $\diamond \quad \Phi(h) = 1 \text{ gives constant experts.}$
 - $\Phi(h) = (a_{-1}, \dots, a_{-m})$ last *m* actions, gives experts depending on last *m* actions only.
 - $\diamond \quad \Phi(h) = |h| \mod k \text{ gives periodic experts.}$
- We define the Φ -constrained regret:

$$\mathcal{R}_{T}^{\Phi} = \sup_{\pi: \mathcal{H}/\Phi \to \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^{T} r_{t,\pi([h_{t}])} \right] - \mathbb{E} \left[\sum_{t=1}^{T} r_{t,a_{t}} \right]$$

More challenging than best constant expert.

 \triangleright We can define a version of Exp4 for Φ -constrained policies.

Ínría

Φ-Exp4

- \triangleright We can define a version of Exp4 for Φ -constrained policies.
- ▷ We simply *contextualize* Exp4 by indexing losses, weights, parameters η by the equivalence classes, and computing the current active class $c_t = \Phi(h_t)$.

maia

Φ-Exp4

- \triangleright We can define a version of Exp4 for Φ -constrained policies.
- ▷ We simply *contextualize* Exp4 by indexing losses, weights, parameters η by the equivalence classes, and computing the current active class $c_t = \Phi(h_t)$.
- ▶ Result (M. Munos, 2011)

$$\mathcal{R}_T^{\Phi} \leq \sum_{c \in \mathcal{H}/\Phi} \mathbb{E} \left[\frac{A\eta_c}{2} T_c + \frac{\log(A)}{\eta_c} \right].$$

where T_c is number of activation times of class c until time T.

POOL OF CONSTRAINED STRATEGIES?

▷ We consider we have a set $(\Phi_{\theta})_{\theta \in \Theta}$ of constrained strategies.

Innía

POOL OF CONSTRAINED STRATEGIES?

- ▷ We consider we have a set $(\Phi_{\theta})_{\theta \in \Theta}$ of constrained strategies.
- ▷ One Φ_{θ} -Exp3 strategy for each θ : see them as different *experts*?

main

POOL OF CONSTRAINED STRATEGIES?

- ▷ We consider we have a set $(\Phi_{\theta})_{\theta \in \Theta}$ of constrained strategies.
- ▷ One Φ_{θ} -Exp3 strategy for each θ : see them as different *experts*?
- Run Exp4 with all these base experts: Φ_1 -Exp3, ..., Φ_P -Exp3?

Difficulty: The experts are *learning* algorithms. Their performance depends on the observations they received.

We are in *partial feedback*: When Φ_p -Exp3 recommends to play action *a*, Exp4 may *instead* play (and received reward from) action *b*. Hence Φ_p -Exp3 not only faces *partial feedback*, but also it does *not* observe the reward corresponding to what it decides.

Double-bandit feedback.

Theorem (M. Munos, 2011)

In the double-bandit feedback setup, Exp4, run on $(\Phi_{\theta}-Exp3)_{\theta\in\Theta}$ strategies with appropriate parameter tuning satisfies

$$\mathcal{R}_{\mathcal{T}} = Oigg(\mathcal{T}^{2/3}(A\log(A)C)^{1/3}\log(|\Theta|)^{1/2}igg) \,\, ext{with} \,\, C = \max_{ heta \in heta} |\mathcal{H}/\Phi_{ heta}|.$$

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ? Meta bandits: Exp4 on MABs. Best of both world strategies

CONCLUSION

innia

STOCHASTIC VERSUS ADVERSARIAL BANDITS

Strategies for *Stochastic* bandits: UCB, KL-UCB, etc. log(*T*) regret bounds when stochastic model, but strong assumptions on signal.

innia

STOCHASTIC VERSUS ADVERSARIAL BANDITS

- Strategies for *Stochastic* bandits: UCB, KL-UCB, etc. log(*T*) regret bounds when stochastic model, but strong assumptions on signal.
- ▷ Strategies for *Adversarial* bandits: Exp3, Exp4, etc. \sqrt{T} regret bounds with little assumption on model, but perhaps too conservative.

Can we have the best of both worlds?

main

Best of both worlds

Several works on the topic

Ínría

Best of both worlds

Several works on the topic

▶ Bubeck&Slivkins 2012, Auer&Chiang, 2016.

Ínría

Best of both worlds

Several works on the topic

- ▶ Bubeck&Slivkins 2012, Auer&Chiang, 2016.
- ▷ Zimmert-Seldin 2018.

Idea: Online Mirror Descent regularized by Tsallis Entropy. α -Tsallis entropy: $H_{\alpha}(x) = \frac{1}{1-\alpha}(1 - \sum_{a \in \mathcal{A}} x_a^{\alpha})$

$$\diamond \quad \lim_{\alpha \to 1} H_{\alpha}(x) = \sum_{a \in \mathcal{A}} x_a \log(x_a)$$

$$\circ \quad \lim_{\alpha \to 0} H_{\alpha}(x) = -\sum_{a \in \mathcal{A}} \log(x_a)$$

Innia

OMD WITH TSALLIS ENTROPY

Let us consider the potential:

$$\Psi_{t,lpha}(q) = -\sum_{oldsymbol{a}\in\mathcal{A}}rac{q^{lpha}(oldsymbol{a})}{lpha}$$

Strategy:

Ínría

OMD WITH TSALLIS ENTROPY

Let us consider the potential:

$$\Psi_{t,lpha}(q) = -\sum_{oldsymbol{a}\in\mathcal{A}}rac{q^{lpha}(oldsymbol{a})}{lpha}$$

Choose

$$p_t = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{A})} \langle q, \widehat{L}_{t-1}
angle + rac{1}{\eta_t} \Psi_lpha(q)$$

(This is gradient of dual of $\Psi_{t,\alpha}/\eta_t$ at position $\widehat{\mathcal{L}}_{t-1}$)

OMD WITH TSALLIS ENTROPY

Let us consider the potential:

$$\Psi_{t,lpha}(q) = -\sum_{oldsymbol{a}\in\mathcal{A}}rac{q^{lpha}(oldsymbol{a})}{lpha}$$

Choose

$$p_t = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{A})} \langle q, \widehat{L}_{t-1}
angle + rac{1}{\eta_t} \Psi_lpha(q)$$

(This is gradient of dual of $\Psi_{t,\alpha}/\eta_t$ at position \widehat{L}_{t-1})

 $\triangleright \quad \text{Sample } a_t \sim p_t$

OMD WITH TSALLIS ENTROPY

Let us consider the potential:

$$\Psi_{t,lpha}(q) = -\sum_{oldsymbol{a}\in\mathcal{A}}rac{q^{lpha}(oldsymbol{a})}{lpha}$$

Choose

$$p_t = \operatorname*{argmin}_{q \in \mathcal{P}(\mathcal{A})} \langle q, \widehat{L}_{t-1}
angle + rac{1}{\eta_t} \Psi_lpha(q)$$

(This is gradient of dual of $\Psi_{t,\alpha}/\eta_t$ at position \widehat{L}_{t-1})

- Sample $a_t \sim p_t$
- $\triangleright \quad \text{Observe } \ell_{t,a_t} \text{ then build } \widehat{\ell}_t \text{ as unbiased estimate of } \ell_t, \text{ then } \widehat{L}_t = \widehat{L}_{t-1} + \widehat{\ell}_t.$

Best of both worlds

Innía

TABLE OF CONTENTS

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION

STOCHASTIC OR ADVERSARIAL ?

CONCLUSION

Innia

Full information

▷ Powerful: Handle large number of experts

Ínría

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)

Innia

Full information

- Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- Powerful results, log of number of experts

Innia

Full information

- ▷ Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- ▷ Powerful results, log of number of experts
- Computationally efficient algorithms, leveraging structure of experts.

Innia

Full information

- ▷ Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- ▷ Powerful results, log of number of experts
- ▷ Computationally efficient algorithms, leveraging structure of experts.

Bandit information

▷ Only output one arm, not a convex combination of arms.

Full information

- ▷ Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- ▷ Powerful results, log of number of experts
- ▷ Computationally efficient algorithms, leveraging structure of experts.

- ▷ Only output one arm, not a convex combination of arms.
- ▷ Only receive reward on one arm.

main

Full information

- ▷ Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- ▷ Powerful results, log of number of experts
- ▷ Computationally efficient algorithms, leveraging structure of experts.

- ▷ Only output one arm, not a convex combination of arms.
- ▷ Only receive reward on one arm.
- Difficulty to estimate reward/loss [Still not satisfactory]

Full information

- ▷ Powerful: Handle large number of experts
- Increasingly challenging targets:
 - Constant expert, combination of loss of experts.
 - Constant combination of experts (Hedge)
 - Best sequence of switching experts
 - Best sequence of few recurring experts (Freund)
- ▷ Powerful results, log of number of experts
- Computationally efficient algorithms, leveraging structure of experts.

- ▷ Only output one arm, not a convex combination of arms.
- ▷ Only receive reward on one arm.
- ▷ Difficulty to estimate reward/loss [Still not satisfactory]
- $\triangleright \sqrt{A}$ factor in regret bounds.

OPEN QUESTIONS

▶ Bandit results for

- Best sequence of experts?
- Best sequence of few recurring experts ?
- ♦ Sleeping, Growing experts ?
- ♦ Beyond convex/bounded?

Ínría

OPEN QUESTIONS

Bandit results for

- Best sequence of experts?
- Best sequence of few recurring experts ?
- Sleeping, Growing experts ?
- Beyond convex/bounded?

Best of both world: Exact stochastic optimality? Estimation of loss?

Innia

OPEN QUESTIONS

Bandit results for

- Best sequence of experts?
- Best sequence of few recurring experts ?
- Sleeping, Growing experts ?
- Beyond convex/bounded?
- Best of both world: Exact stochastic optimality? Estimation of loss?
- ▷ Mixed world bandit: Some arms are stochastic, others are arbitrary bounded?

Innia

MERCI

Inria Lille - Nord Europe odalricambrym.maillard@inria.fr odalricambrymmaillard.wordpress.com