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.

. Observe a signal y1, . . . , yt ∈ Y

. Goal: Predict observation at time t + 1?

. Many available models:
� I.i.d.: [0, 1]-bounded ?
� Parametric: yt = 〈θ, ϕ(t)〉+ ξt for ϕ: polynomials, wavelets, etc. ?
� Markov : yt ∼ P(·|yt−1), k-order Markov : yt ∼ P(·|yt−1, . . . , yt−k) ?
� Auto-regressive . . . ?

Which model is best?
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.

. Sample a signal y1, . . . , yt = (at , rt) ∈ Y = A× [0, 1], rt ∼ νat .

. Goal: choose at ∈ A to maximize rewards.

. Many available algorithms:
� Bandits: UCB? UCB-V? KL-UCB? TS?
� Structured bandits: OFUL, GP-UCB? OSLB?
� MDPs: UCRL? Q-learning? DQL?

Which algorithm is best?
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.

. Set of models M.
At each time step:
. Each model m ∈M outputs a decision xt,m ∈ X :

� X = Y, X = P(Y), X = A.
. We output decision xt ∈ X based on (xt,m)m∈M.
. All decisions evaluated via a loss ` : X × Y → R+

� Quadratic: `(x , y) = (x−y)2

2 ,
� Self-information: `(x , y) = − log(x(y)),
� `(x , y) = 1− y(x)

. We receive observation yt ∈ Y, and incur loss `t(xt) := `(xt , yt).

Minimize
T∑

t=1
`t(xt) ...

. in Expectation? High probability?
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Minimize
T∑

t=1
`t(xt) ...

w.r.t.

. best model (Model selection) ?

min
m∈M

T∑
t=1

`t(xt,m)

. best combination of models (Model aggregation)?

min
q∈P(M)

∑
m∈M

qm

( T∑
t=1

`t(xt,m)
)

or min
q∈P(M)

T∑
t=1

`t

( ∑
m∈M

qmxt,m

)

. best sequence of models ?
T∑

t=1
minm∈M`t(xt,m)

. ... ?
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.

. Choose xt as a convex combination of the (xt,m)m∈M ?

xt =
∑

m∈M
pt(m)xt,m where pt ∈ P(M) .

. Assume that `t(·) = `(·, yt) is convex, then

`t(xt) 6
∑

m∈M
pt(m)`t(xt,m) = EM∼pt [`t(xt,M)]

=⇒ Better on average to choose xt this way than sampling one M ∼ pt .
. Technical property: Let r.v. X s.t. a 6 X 6 b a.s. then

∀η ∈ R+, E[X ] 6 −1
η

logE[exp(−ηX )] + η
(b − a)2

8 .

=⇒ assume that ` is bounded by 1, then

EM∼pt [`t(xt,M)] 6 −1
η

log
∑

m∈M
pt(m)e−η`t (xt,m) + η

8 .
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`t(xt) 6 −1
η

log
∑

m∈M
pt(m)e−η`t (xt,m) + η

8

. This suggests:

pt(m) = wt(m)∑
m∈M wt(m) , wt+1(m) = wt(m)e−η`t (xt,m)

. We get `t(xt) 6 −1
η

log
(Wt+1

Wt

)
+ η

8 where Wt =
∑

m∈M
wt(m)

. Summing over t yields
T∑

t=1
`t(xt) 6 −1

η
log
(WT +1

W1

)
+ ηT

8

. Finally, W1 = |M| and for any m? ∈M,

WT +1 > wt+1(m?) = exp
(
− η

T∑
t=1

`t(xt,m?)
)
.

. Hence
T∑

t=1
`t(xt) 6

T∑
t=1

`t(xt,m?) + log(|M|)
η

+ ηT
8 .
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This leads to the following strategy

. Choose xt =
∑

m∈M pt(m)xt,m where pt(m) = wt (m)∑
m∈M wt (m) ,

� ∀m ∈M,w1(m) = 1 and wt+1(m) = wt(m)e−η`t (xt,m).

Theorem (Cesa-Bianchi,Lugosi 2006)
Assume that `t is convex and bounded by 1, then this strategy satisfies:

T∑
t=1

`t(xt)︸ ︷︷ ︸
LT

− min
m∈M

T∑
t=1

`t(xt,m)︸ ︷︷ ︸
LT ,m

6
log(|M|)

η
+ ηT

8

. In particular for the choice of parameter η =
√

8 log(|M|)/T ,

LT − min
m∈M

LT ,m 6

√
T log(|M|)

2
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T∑
t=1

`t(xt)︸ ︷︷ ︸
LT

− min
m∈M

T∑
t=1

`t(xt,m)︸ ︷︷ ︸
LT ,m

6
log(|M|)

η
+ ηT

8

. In particular for the choice of parameter η =
√

8 log(|M|)/T ,

LT − min
m∈M

LT ,m 6

√
T log(|M|)

2
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LT − min
m∈M

LT ,m 6

√
T
2 log(|M|)

. No statistical assumption on yt : `t only convex and bounded!

. Logarithmic in |M|: Can handle a large amount of models!

Questions

. Anytime tuning of η (η = ηt) ?
Using ηt =

√
8 log(|M|)/t at time t, one can show (more involved):

LT − min
m∈M

LT ,m 6 2

√
T log(|M|)

2 +

√
log(|M|)

2
. Examples of convex/bounded losses?
. Simplify this assumption, cf. Technical property ??
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We only used this:

`t
(
EM∼pt [xt,M ]︸ ︷︷ ︸

xt

)
6 −1

η
logEM∼pt exp

(
− η`t(xt,M)

)
+ η

8

. Satisfied if convex, bounded by 1.
Ok for quadratic loss, pb for self-information: not bounded when x small!

. What about dropping η/8 term?
Equivalent to exp(−η`t(·)) is concave: η-exp-concavity .
� Self-information loss is 1-exp-concave (with = instead of 6)
� Quadratic loss is η-exp-concave for η 6 1

2(b−a)2 on X = Y ⊂ [a, b].
� Absolute loss `(x , y) = |x − y | is not exp-concave for any η.
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. Interpretation of − 1
η logEM∼pt exp

(
− η`t(xt,M)

)
?

Entropy formula:

−1
η

logEM∼p exp
(
− ηXM

)
= inf

q∈P(M)
EM∼q[XM ] + 1

η
KL(q, p) .

. Hence, η-exp-concavity becomes:

η-exp-concavity
A loss ` is η-exp-concave if ∀x ∈ XM, p ∈ P(M),∀y ∈ Y,

`
(
EM∼p[xM ], y

)
6 inf

q∈P(M)
EM∼q[`(xM , y)] + 1

η
KL(q, p)

. Further, infimum obtained for q(m) = exp(−ηXm)p(m)∑
m′∈M exp(−ηXm′ )p(m′) .
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Generalization: we don’t need that xt = EM∼pt [xt,M ].

η-mixability
A loss ` is η-mixable if ∀x ∈ XM, p ∈ P(M), ∃xx,p∀y ∈ Y,

`
(
xx,p, y

)
6 inf

q∈P(M)
EM∼q[`(xM , y)] + 1

η
KL(q, p)

[x],p 7→ xx,p is called the substitution function.

. η-exp-concave loss is η-mixable with xx,p = EM∼pxM.
� Quadratic loss is η-exp-concave for η 6 1

2 on X = Y ⊂ [0, 1], but η-mixable for
η up to η 6 2 !
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. Consider an η-mixable loss `, and let p1 = Uniform(M) ∈ P(M).

. At time t + 1, given xt ∈ XM, and pt ∈ P(M), output decision xt = xxt,pt ,

. Receive yt and update

pt+1 = argmin
q∈PM

EM∼q[`(xt,M , yt)︸ ︷︷ ︸
`t,M

] + 1
η

KL(q, pt).

Theorem
Assume that `t is η-mixable, then after T time steps, this strategy satisfies:

LT − min
m∈M

LT ,m 6
log(|M|)

η
.

. Still for arbitrary yt ∈ Y.

. Independent on T !

. but only for specific, possibly small η (all η′ 6 η, but not larger).
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We can actually get a stronger result:

Theorem (Aggregation of experts)
Assume that `t is η-mixable, then after T time steps, the aggregation strategy with
p1 = π, satifies

∀q ∈ P(M) LT − EM∼q
[
LT ,M

]
6

1
η

(
KL(q, π)− KL(q, pT +1)

)
.

. Now, we compete against convex combination of loss of experts!

. In particular for q = δm? , we deduce

LT − LT ,m? 6
1
η

log
( 1
π(m?)

)
.

. We can move from finitely many to countably many experts:

π(m) = 1
m(m+1) , π(m) = log(2)

(
1

log(m+1) −
1

log(m+2)

)
.
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. Assumption: ` is η-Bregman-mixable w.r.t. Bregman divergence B:

∀x ∈ XM, p ∈ P(M),∃xx,p ∈ X , `(xx,p) 6 min
q∈P(M)

〈q, `x〉+ 1
η
B(q, p).

where `x denotes the vector (`(x1), . . . , `(xM)).

. Strategy: Play xxt,pt , update pt+1 = argmin
q∈P(M)

〈q, `xt〉+ 1
η
B(q, pt).

. Performance:

∀q ∈ P(M) LT − 〈q,LT 〉 6
1
η

(
B(q, π)− B(q, pT +1)

)
.

. Other interpretation: Use Legendre-Fenchel dual objective function, perform
gradient descent!
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When the best expert has small loss, we may prefer to express regret bounds on
terms of this loss:
Consider a loss convex and bounded in [0, 1], then:

LT − L?T 6
(

η

1− exp(−η) − 1
)

L?T + log(M)
1− exp(−η)

where L?T = minm∈M Lt,m

Proof: We can show that any loss ` convex and bounded in [0, 1] satisfies the
following extension of η-mixability property:

`(EM∼q(xM)) 6 − η

1− exp(−η)
1
η

ln
(
Em∼q exp(−η`(xM))

)
.

The rest is obtained by following the initial derivation.

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 16/54

Small losses



.

Aggregation of experts
A simple aggregation strategy
Simple aggregation, revisited

Best convex combinations
Best sequence: Fixed Share

Few recurring experts: Freund, MPP

From full to partial information

Stochastic or Adversarial ?

Conclusion

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 16/54

Table of contents



.

Minimize
T∑

t=1
`t(xt) ...

w.r.t.

. best combination of models (Model aggregation)?

inf q ∈ P(M)
∑

m∈M
qm

( T∑
t=1

`t(xt,m)
)

or inf
q∈P(M)

T∑
t=1

`t

( ∑
m∈M

qmxt,m

)

. Left: best combination of losses Right: loss of best combination.

. Right is harder: `t(q · xt) 6 q · `t by convexity.

. From set of experts M (finite) to set of experts P(M) (continuous) !

. If ` is η-exp-concave on X , then ` : q → `t(q · xt) is η-exp-concave on P(M).
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. p1(q) = 1
vol(P(M))) , p1 = 1

|M|1.
. Choose xt =

∑
m∈M pt(m)xt,m, where pt = Eq∼pt [q].

. When receiving (xt,m)m∈M, update

pt+1(q) = pt(q) exp(−η`t(q))∫
P(M) pt(u) exp(−η`t(q))du
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LT − inf
q∈P(M)

T∑
t=1

`t
(
q
)
6

M
η

(
1 + log

(
1 + T

M
))

.

. For comparison we had: LT − inf
q∈P(M)

∑
m

q(m)LT ,m 6
log(M)
η

.

. Proof technique: Similar +
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. Consider Binary prediction and self-information loss `.

. Aggregation over all Bernoulli B(θ), θ ∈ [0, 1].

. KT-predictor: Use prior g(θ) = 1√
θ(1−θ)

.

. Yields a fully explicit solution:

qt(1) = t θ̂t + 1/2
t + 1

Efficient computation despite aggregation of continuum of models.
. Called ”Universal prediction”. Extends to all Markov models of arbitrary order.
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.

. So far, we only considered fixed experts:

min
m∈M

T∑
t=1

`t(xt,m), min
q∈P(M)

∑
m∈M

q(m)LT ,m min
q∈P(M)

T∑
t=1

`t(
∑

m∈M
q(m)xt,m)

. What about best sequence of experts:

min
m1,...,mT∈Sk (M)

T∑
t=1

`t(xt,mt ) where Sk(M) : at most k switches.

� Difficulty: Concentrating mass exponentially fast
to a single expert means putting near 0 on others.

� When switching to other best expert, need to catch-up!
� from M to MT many experts??
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Fixed-share solution

. Guarantees each m never has not too small weight,
hence can catch-up fast enough.

. p̃t+1(·) = (1− α)pt+1(·) + α
M
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For all sequence q1, . . . , qT ∈ P(M) with at most k switches,

LT −
T∑

t=1
qt`t 6

log(M)
η

+ k
η

log
(M
α

)
+ T − k − 1

η
log
( 1

1− α
)
.

. Choosing α = k/(T − 1) yields

LT −
T∑

t=1
qt`t 6

log(M)
η

+ k
η

log
(M(T − 1)

k
)

+ k
η
.

. α going to 0 but not exponentially fast.
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Let us consider p̃t obtained from pt as p̃t+1(·) =
∑

m′∈M θ(·|m′)pt+1(m′), from a
Markov chain with initial low ω and transition matrix θ.
For all sequence m1, . . . ,mT ∈M with at most k switches

LT −
T∑

t=1
`t,mt 6

1
η

log
( 1
ω(m1)

)
+ 1
η

T∑
t=2

log
( 1
θt(mt |mt−1)

)
.

. Fixed share: θ(m′|m) = (1− α)I{m = m′}+ α/M.

. Variable share, sleeping experts, etc.

Note: even though huge amount of experts O(MT ) they share a rich structure. This
enables to have an efficient strategy maintaining only few quantities O(MT ).
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. Best sequence of experts:

min
m1,...,mT∈Sk (M)

T∑
t=1

`t(xt,mt ) where Sk(M) : at most k switches.

. Best sequence of experts with few good experts:

min
m1,...,mT∈Sk (M0)

T∑
t=1

`t(xt,mt ) where M0 ⊂M unknown but small .

� Intuition: the good experts should be good in the recent past.
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. Ensure that experts good in the recent past have large enough weight and
catch-up.

. Mixing past posterior p̃t+1(·) =
∑t

s=0 βt+1(s)ps(·)
. In particular:

� Hedge: βt+1(t ′) =
{

1 if t ′ = t
0 else

� Fixed share: βt+1(t ′) =


1− α if t ′ = t
α if t ′ = 0
0 else

� ...
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Assume ` is η-mixable. For all sequence (qt)t∈T with k switches between at most n
values,

LT −
T∑

t=1
qt · `t 6

n
η

log
(
|M|

)
+ 1
η

T∑
t=1

log
( 1
βt(τt)

)
.

where τt is last τ < t such that qτ = qt (or 0 if first occurrence).
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. Sleeping experts (Koolen et al. 2012): When experts are not available at all
rounds.

. Growing experts (Mourtada&M. 2017): When set of base experts M is no
longer fixed but may increase with time; Especially useful to handle
non-stationarity .

. ...

Most results are minimax-optimal, valid for any input sequence.
This contrasts with typical results for bandits: instance-optimal, for stochastic
sequence.
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Adjusting for the differences:

. Decision are arms X = A. Consider one expert per arm M = A.

. Losses (`t,m)m∈M become rewards (rt,a)a∈A

. Can only output an arm At ∈ A (not a combination):
xt =

∑
m∈M pt,mxt,m becomes xt = xt,mt with mt ∼ pt .

� Less good, but ok as long as E performance.

Problem: we only observe the reward of At (i.e., only rt,At ) !!
Partial information: We don’t observe rt,a for all arms.

Terminology : Adversarial setup. We want guarantees against arbitrary (bounded)
sequence of rewards/losses.
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. Output mt ∼ pt where pt(m) = wt (m)∑
m∈M wt (m) ,

� ∀m ∈M,w1(m) = 1 and wt+1(m) = wt(m) exp(−η`t,m).

`t,m is not available for all arms!
`t,m = 1− rt,a?
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We can use importance sampling

̂̀t,m =


`t,m

pt (m) if m = mt

0 otherwise

Why it is a good idea:

. ̂̀t,m is an unbiased estimator of `t,m:

E
[̂̀t,m] = `t,m

pt(m)pt(m) + 0(1− pt(m)) = `t,m

Why it may be a bad idea:
. pt,m typically small for bad arms, hence this estimates has large variance for

bad arms!
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Exp3: Exponential-weight algorithm for Exploration and Exploitation

. ∀m ∈M,w1(m) = 1.

. Output mt ∼ pt where pt(m) = wt(m)∑
m∈M wt(m)

. Receive rt,mt

. Update ∀m ∈M,wt+1(m) = wt(m) exp(−η̂̀t,m).
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Question: is this enough? is this algorithm actually exploring enough?

Answer: more or less...

. Exp3 has a small regret in expectation

. Exp3 might have large deviations with high probability (ie, from time to time it
may concentrate p̂t on the wrong arm for too long and then incur a large
regret)

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 33/54

The Exp3 Algorithm



.

Question: is this enough? is this algorithm actually exploring enough?
Answer: more or less...

. Exp3 has a small regret in expectation

. Exp3 might have large deviations with high probability (ie, from time to time it
may concentrate p̂t on the wrong arm for too long and then incur a large
regret)

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 33/54

The Exp3 Algorithm



.

Question: is this enough? is this algorithm actually exploring enough?
Answer: more or less...

. Exp3 has a small regret in expectation

. Exp3 might have large deviations with high probability (ie, from time to time it
may concentrate p̂t on the wrong arm for too long and then incur a large
regret)

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 33/54

The Exp3 Algorithm



.

Question: is this enough? is this algorithm actually exploring enough?
Answer: more or less...

. Exp3 has a small regret in expectation

. Exp3 might have large deviations with high probability (ie, from time to time it
may concentrate p̂t on the wrong arm for too long and then incur a large
regret)

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 33/54

The Exp3 Algorithm



.

Fix: add some extra uniform exploration

. ∀m ∈M,w1(m) = 1.

. Output mt ∼ pt where
pt(m) = (1− γ) wt(m)∑

m∈M wt(m) + γ

|M|

. Receive rt,mt

. Update ∀m ∈M,wt+1(m) = wt(m) exp(−η̂̀t,m).
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Theorem
If Exp3 is run with γ = η, then it achieves a regret

RT (A) = max
a∈A

T∑
t=1

rt,a − E
[ T∑

t=1
rt,At

]
6 (e − 1)γGmax + A log A

γ

with Gmax = maxa∈A
∑T

t=1 rt,a.

Theorem
If Exp3 is run with

γ = η =
√

A log A
(e − 1)T

then it achieves a regret
RT (A) 6 O(

√
TA log A)
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Comparison with online learning (convex, bounded):

RT (Exp3) 6 O(
√

T A log A)

RT (EWA) 6 O(
√

T log A)

Intuition: in online learning at each round we obtain A feedbacks, while in bandits
we receive 1 feedback.
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RT (Exp3) = E
( T∑

t=1
rt,a − rt,at

)
6

log(A)
η

+ A
2 ηT .

Further, For any non-increasing sequence (ηt)t :

RT (Exp3) = E
( T∑

t=1
rt,a − rt,at

)
6

log(A)
ηT

+ A
2

T∑
t=1

ηt .
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Step 1. Ea∼pt,η
˜̀t(a) = 1− rt,at and Eat∼pt,η

˜̀t(a) = 1− rt,a. Thus:

∀a ∈ A,
T∑

t=1
rt,a − rt,at =

T∑
t=1

Ea∼pt,η
˜̀t(a)−

T∑
t=1

Eat∼pt,η
˜̀t(a) .

Step 2. The random variable X = ˜̀t(a), is positive. By Hoeffding’s lemma,

Ea∼pt,η(˜̀t(a)) 6 −1
η

log
(
Ea∼pt,η

[
exp(−η ˜̀t(a))

])
+ η

2Ea∼pt,η(˜̀t(a)2)

= −1
η

log

∑a∈A e−
∑t

s=1 η
˜̀s (a)∑

a∈A e−
∑t−1

s=1 η
˜̀s (a)

+ η

2Ea∼pt,η(˜̀t(a)2) .



.

Step 3. Thus,

T∑
t=1

Ea∼pt,η(˜̀t(a)) 6 −1
η

log
( 1

A
∑

b
exp(−

T∑
t=1

η ˜̀t(b))
)

+
T∑

t=1

η

2Ea∼pt,η(˜̀t(a)2) .

Since the reward function is bounded by 1 we have:

Ea∼pt,η(˜̀t(a)2) = Ea∼pt,η((1− rt,At )2

p2
t (At)

I{At = a}) 6 1
pt(at) .

Step 4. Using the fact that the sum of positive terms is bigger than any of its term,

−1
η

log
(∑

b
exp(−

T∑
t=1

η ˜̀t(b))
)

6
T∑

t=1

˜̀t(a) for each a ∈ A .

Taking expectations, it comes for all a ∈ A,

E
[ T∑

t=1
rt,a − rt,at

]
6

log(A)
η

+
T∑

t=1

η

2 E
[ 1

pt(at)

]
︸ ︷︷ ︸

A

.
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Using importance sampling is bad as generates large variance, especially for arms
with low probability of being chosen (bad arms).

. Exp3.P (Auer et al. 2002): r̃t,a = rt,a + β

pt,a

. Exp3-IX (Kocak et al, 2014; Neu 2015): ˜̀t,a = `t,a
pt,a + γ

.

. Many other variants.
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. Decisions are distributions on arms X = P(A).

. One expert outputs ξt,m ∈ P(A) at time t.

. Loss of expert m ∈M: `t,m =
∑

a∈A ξt,m(a)rt(a) (Instead of reward)
. Case when |M| � |A|?
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Exponential-weight algorithm for exploration and exploitation using expert advice.

. ∀m ∈M,w1(m) = 1.

. Output at ∼ pt ∈ P(A) where

pt(a) = (1− γ) wt(m)ξt,m(a)∑
m∈M wt(m) + γ

|A|

. Receive rt,at , build ̂̀t(a) =
{

1−rt (a)
pt (a) if a = at

0 else

. Update ∀m ∈M,wt+1(m) = wt(m) exp(−η̂̀t,m). wherềt,m =
∑

a∈A ξt,m(a)̂̀t(a).
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∑

a∈A ξt,m(a)̂̀t(a).

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 42/54

Exp4



.

Exponential-weight algorithm for exploration and exploitation using expert advice.

. ∀m ∈M,w1(m) = 1.

. Output at ∼ pt ∈ P(A) where

pt(a) = (1− γ) wt(m)ξt,m(a)∑
m∈M wt(m) + γ

|A|

. Receive rt,at , build ̂̀t(a) =
{

1−rt (a)
pt (a) if a = at

0 else

. Update ∀m ∈M,wt+1(m) = wt(m) exp(−η̂̀t,m). wherềt,m =
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Theorem
If Exp4 is run with γ ∈ [0, 1], then it achieves a regret

RT (A) = max
a∈A

T∑
t=1

rt,a − E
[ T∑

t=1
rt,At

]
6 (e − 1)γGmax + A log M

γ

with Gmax = maxa∈A
∑T

t=1 rt,a.

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 43/54

Regret of Exp4



.

Aggregation of experts

From full to partial information

Stochastic or Adversarial ?

Conclusion

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 43/54

Table of contents



.

Aggregation of experts

From full to partial information

Stochastic or Adversarial ?
Meta bandits: Exp4 on MABs.

Best of both world strategies

Conclusion

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 43/54

Table of contents



.

. Φ : H → D, mapping from set of histories to some set D, such that h1 ∼ h2 iff
Φ(h1) = Φ(h2) defines equivalence relation; let [h] the equivalence class of h.

. Φ-constrained policy is π : H/Φ→ A.

. Examples:
� Φ(h) = 1 gives constant experts.
� Φ(h) = (a−1, . . . , a−m) last m actions, gives experts depending on last m actions

only.
� Φ(h) = |h| mod k gives periodic experts.

. We define the Φ-constrained regret:

RΦ
T = sup

π:H/Φ→A
E
[ T∑

t=1
rt,π([ht ])

]
− E

[ T∑
t=1

rt,at

]

More challenging than best constant expert.
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. We can define a version of Exp4 for Φ-constrained policies.

. We simply contextualize Exp4 by indexing losses, weights, parameters η by the
equivalence classes, and computing the current active class ct = Φ(ht).

. Result (M. Munos, 2011)

RΦ
T 6

∑
c∈H/Φ

E
[Aηc

2 Tc + log(A)
ηc

]
.

where Tc is number of activation times of class c until time T .
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.

. We consider we have a set (Φθ)θ∈Θ of constrained strategies.

. One Φθ-Exp3 strategy for each θ: see them as different experts?

. Run Exp4 with all these base experts: Φ1-Exp3, . . . , ΦP -Exp3 ?

Difficulty : The experts are learning algorithms. Their performance depends on the
observations they received.
We are in partial feedback: When Φp-Exp3 recommends to play action a, Exp4 may
instead play (and received reward from) action b. Hence Φp-Exp3 not only faces
partial feedback, but also it does not observe the reward corresponding to what it
decides.

Double-bandit feedback.
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Theorem (M. Munos, 2011)
In the double-bandit feedback setup, Exp4, run on (Φθ-Exp3)θ∈Θ strategies with
appropriate parameter tuning satisfies

RT = O
(

T 2/3(A log(A)C)1/3 log(|Θ|)1/2
)

with C = max
θ∈θ
|H/Φθ|.
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Aggregation of experts

From full to partial information

Stochastic or Adversarial ?
Meta bandits: Exp4 on MABs.

Best of both world strategies

Conclusion
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. Strategies for Stochastic bandits: UCB, KL-UCB, etc.
log(T ) regret bounds when stochastic model, but strong assumptions on signal.

. Strategies for Adversarial bandits: Exp3, Exp4, etc.√
T regret bounds with little assumption on model, but perhaps too

conservative.

Can we have the best of both worlds?

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 48/54

Stochastic versus Adversarial bandits



.

. Strategies for Stochastic bandits: UCB, KL-UCB, etc.
log(T ) regret bounds when stochastic model, but strong assumptions on signal.

. Strategies for Adversarial bandits: Exp3, Exp4, etc.√
T regret bounds with little assumption on model, but perhaps too

conservative.

Can we have the best of both worlds?

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 48/54

Stochastic versus Adversarial bandits



.

Several works on the topic

. Bubeck&Slivkins 2012, Auer&Chiang, 2016.

. Zimmert-Seldin 2018.
Idea: Online Mirror Descent regularized by Tsallis Entropy.
α-Tsallis entropy: Hα(x) = 1

1−α(1−
∑

a∈A xαa )

� limα→1 Hα(x) =
∑

a∈A xa log(xa)
� limα→0 Hα(x) = −

∑
a∈A log(xa)
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Let us consider the potential:

Ψt,α(q) = −
∑
a∈A

qα(a)
α

Strategy:

. Choose

pt = argmin
q∈P(A)

〈q, L̂t−1〉+ 1
ηt

Ψα(q)

(This is gradient of dual of Ψt,α/ηt at position L̂t−1)
. Sample at ∼ pt

. Observe `t,at then build ̂̀t as unbiased estimate of `t , then L̂t = L̂t−1 + ̂̀t .
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Regime Upper bound
Lower bound Learning rate

limα→0 Sto O(1) Θ(∆a)
Adv O(

√
ln(T ) Θ

(
ln(t)√

t

)
α = 1

2 Sto&Adv O(1) 1√
t

limα→1 Sto O(ln(T )) Θ
(

ln(t)
∆at

)
Adv O(

√
ln(A) Θ

(
1√
t

)
.
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Full information

. Powerful: Handle large number of experts

. Increasingly challenging targets:
� Constant expert, combination of loss of experts.
� Constant combination of experts (Hedge)
� Best sequence of switching experts
� Best sequence of few recurring experts (Freund)

. Powerful results, log of number of experts

. Computationally efficient algorithms, leveraging structure of experts.

Bandit information

. Only output one arm, not a convex combination of arms.

. Only receive reward on one arm.

. Difficulty to estimate reward/loss [Still not satisfactory]

.
√

A factor in regret bounds.
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. Bandit results for
� Best sequence of experts?
� Best sequence of few recurring experts ?
� Sleeping, Growing experts ?
� Beyond convex/bounded?

. Best of both world: Exact stochastic optimality? Estimation of loss?

. Mixed world bandit: Some arms are stochastic, others are arbitrary bounded?

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 53/54

Open questions



.

. Bandit results for
� Best sequence of experts?
� Best sequence of few recurring experts ?
� Sleeping, Growing experts ?
� Beyond convex/bounded?

. Best of both world: Exact stochastic optimality? Estimation of loss?

. Mixed world bandit: Some arms are stochastic, others are arbitrary bounded?

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 53/54

Open questions



.

. Bandit results for
� Best sequence of experts?
� Best sequence of few recurring experts ?
� Sleeping, Growing experts ?
� Beyond convex/bounded?

. Best of both world: Exact stochastic optimality? Estimation of loss?

. Mixed world bandit: Some arms are stochastic, others are arbitrary bounded?

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure 53/54

Open questions



.

MERCI

Inria Lille - Nord Europe
odalricambrym.maillard@inria.fr

odalricambrymmaillard.wordpress.com


	Aggregation of experts
	A simple aggregation strategy
	Simple aggregation, revisited
	Best convex combinations
	Best sequence: Fixed Share
	Few recurring experts: Freund, MPP

	From full to partial information
	Aggregation in the bandit world
	Exp3
	Exp3 variants
	Exp4

	Stochastic or Adversarial ?
	Meta bandits: Exp4 on MABs.
	Best of both world strategies

	Conclusion

