Decisions Beyond Structure RLSS

July 02, Lille
Odalric-Ambrym Maillard

Inria Lille - Nord europe
...SequeL...

MANY MODELS?

$\triangleright \quad$ Observe a signal $y_{1}, \ldots, y_{t} \in \mathcal{Y}$

MANY MODELS?

$\triangleright \quad$ Observe a signal $y_{1}, \ldots, y_{t} \in \mathcal{Y}$

MANY MODELS?

Observe a signal $y_{1}, \ldots, y_{t} \in \mathcal{Y}$

Goal: Predict observation at time $t+1$?
Many available models:
\diamond I.i.d.: [0, 1]-bounded ?
\diamond Parametric: $y_{t}=\langle\theta, \varphi(t)\rangle+\xi_{t}$ for φ : polynomials, wavelets, etc. ?
\diamond Markov: $y_{t} \sim P\left(\cdot \mid y_{t-1}\right)$, k-order Markov: $y_{t} \sim P\left(\cdot \mid y_{t-1}, \ldots, y_{t-k}\right)$?
\diamond Auto-regressive ...?
Which model is best?

Odalric-Ambrym Maillard

MANY MODELS?

Sample a signal $y_{1}, \ldots, y_{t}=\left(a_{t}, r_{t}\right) \in \mathcal{Y}=\mathcal{A} \times[0,1], r_{t} \sim \nu_{a_{t}}$.

MANY MODELS?

Sample a signal $y_{1}, \ldots, y_{t}=\left(a_{t}, r_{t}\right) \in \mathcal{Y}=\mathcal{A} \times[0,1], r_{t} \sim \nu_{a_{t}}$.

MANY MODELS?

Sample a signal $y_{1}, \ldots, y_{t}=\left(a_{t}, r_{t}\right) \in \mathcal{Y}=\mathcal{A} \times[0,1], r_{t} \sim \nu_{a_{t}}$.

Many available algorithms:
\diamond Bandits: UCB? UCB-V? KL-UCB? TS?
\diamond Structured bandits: OFUL, GP-UCB? OSLB?
\diamond MDPs: UCRL? Q-learning? DQL?
Which algorithm is best?

Odalric-Ambrym Maillard

Aggregation of experts

From full to partial information

Stochastic or Adversarial?

Conclusion

Decisions and Losses

Odalric-Ambrym Maillard
$\triangleright \quad$ Set of models \mathcal{M}.
At each time step:

Decisions and Losses

$\triangleright \quad$ Set of models \mathcal{M}.
At each time step:
Each model $m \in \mathcal{M}$ outputs a decision $x_{t, m} \in \mathcal{X}$:
$\diamond \mathcal{X}=\mathcal{Y}$,
$\mathcal{X}=\mathcal{P}(\mathcal{Y})$,
$\mathcal{X}=\mathcal{A}$.

Decisions and Losses

$\triangleright \quad$ Set of models \mathcal{M}.
At each time step:
Each model $m \in \mathcal{M}$ outputs a decision $x_{t, m} \in \mathcal{X}$:
$\diamond \mathcal{X}=\mathcal{Y}$,
$\mathcal{X}=\mathcal{P}(\mathcal{Y})$,
$\mathcal{X}=\mathcal{A}$.

We output decision $x_{t} \in \mathcal{X}$ based on $\left(x_{t, m}\right)_{m \in \mathcal{M}}$.

Decisions and Losses

Set of models \mathcal{M}.
At each time step:
Each model $m \in \mathcal{M}$ outputs a decision $x_{t, m} \in \mathcal{X}$:
$\diamond \mathcal{X}=\mathcal{Y}$,
$\mathcal{X}=\mathcal{P}(\mathcal{Y})$, $\mathcal{X}=\mathcal{A}$.

We output decision $x_{t} \in \mathcal{X}$ based on $\left(x_{t, m}\right)_{m \in \mathcal{M}}$.
All decisions evaluated via a loss $\ell: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$
Quadratic: $\ell(x, y)=\frac{(x-y)^{2}}{2}$,
Self-information: $\ell(x, y)=-\log (x(y))$, $\ell(x, y)=1-y(x)$

Decisions and Losses

Set of models \mathcal{M}.
At each time step:
Each model $m \in \mathcal{M}$ outputs a decision $x_{t, m} \in \mathcal{X}$:
$\diamond \quad \mathcal{X}=\mathcal{Y}$,
$\mathcal{X}=\mathcal{P}(\mathcal{Y})$,
$\mathcal{X}=\mathcal{A}$.

We output decision $x_{t} \in \mathcal{X}$ based on $\left(x_{t, m}\right)_{m \in \mathcal{M}}$.
All decisions evaluated via a loss $\ell: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$
Quadratic: $\ell(x, y)=\frac{(x-y)^{2}}{2}$,
Self-information: $\ell(x, y)=-\log (x(y))$,
$\ell(x, y)=1-y(x)$
We receive observation $y_{t} \in \mathcal{Y}$, and incur loss $\ell_{t}\left(x_{t}\right):=\ell\left(x_{t}, y_{t}\right)$.

$$
\text { Minimize } \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

Decisions and Losses

Set of models \mathcal{M}.
At each time step:
Each model $m \in \mathcal{M}$ outputs a decision $x_{t, m} \in \mathcal{X}$:
$\diamond \mathcal{X}=\mathcal{Y}, \quad \mathcal{X}=\mathcal{P}(\mathcal{Y}), \quad \mathcal{X}=\mathcal{A}$.
We output decision $x_{t} \in \mathcal{X}$ based on $\left(x_{t, m}\right)_{m \in \mathcal{M}}$.
All decisions evaluated via a loss $\ell: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{+}$
Quadratic: $\ell(x, y)=\frac{(x-y)^{2}}{2}$,
Self-information: $\ell(x, y)=-\log (x(y))$,
$\ell(x, y)=1-y(x)$
We receive observation $y_{t} \in \mathcal{Y}$, and incur loss $\ell_{t}\left(x_{t}\right):=\ell\left(x_{t}, y_{t}\right)$.

$$
\text { Minimize } \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

$\triangleright \quad$ in Expectation? High probability?

DIFFERENT OBJECTIVES

w.r.t.

Minimize $\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots$

DIFFERENT OBJECTIVES

w.r.t.

Minimize $\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots$
best model (Model selection) ?

$$
\min _{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)
$$

DIFFERENT OBJECTIVES

w.r.t.

$$
\text { Minimize } \quad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

best model (Model selection) ?

$$
\min _{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)
$$

best combination of models (Model aggregation)?

$$
\min _{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \text { or } \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

DIFFERENT OBJECTIVES

w.r.t.

$$
\text { Minimize } \quad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

best model (Model selection) ?

$$
\min _{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)
$$

best combination of models (Model aggregation)?

$$
\min _{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \text { or } \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

best sequence of models ?

$$
\sum_{t=1}^{T} \min _{m \in \mathcal{M}} \ell_{t}\left(x_{t, m}\right)
$$

DIFFERENT OBJECTIVES

w.r.t.

$$
\text { Minimize } \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

best model (Model selection) ?

$$
\min _{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)
$$

best combination of models (Model aggregation)?

$$
\min _{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \text { or } \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

best sequence of models ?

$$
\sum_{t=1}^{T} \min _{m \in \mathcal{M}} \ell_{t}\left(x_{t, m}\right)
$$

Aggregation of experts
 A simple aggregation strategy

Simple aggregation, revisited Best convex combinations Best sequence: Fixed Share Few recurring experts: Freund, MPP From full to partial information

A FIRST APPROACH

\triangleright Choose x_{t} as a convex combination of the $\left(x_{t, m}\right)_{m \in \mathcal{M}}$?

$$
x_{t}=\sum_{m \in \mathcal{M}} p_{t}(m) x_{t, m} \text { where } p_{t} \in \mathcal{P}(\mathcal{M}) .
$$

A FIRST APPROACH

\triangleright Choose x_{t} as a convex combination of the $\left(x_{t, m}\right)_{m \in \mathcal{M}}$?

$$
x_{t}=\sum_{m \in \mathcal{M}} p_{t}(m) x_{t, m} \text { where } p_{t} \in \mathcal{P}(\mathcal{M})
$$

Assume that $\ell_{t}(\cdot)=\ell\left(\cdot, y_{t}\right)$ is convex, then

$$
\ell_{t}\left(x_{t}\right) \leqslant \sum_{m \in \mathcal{M}} p_{t}(m) \ell_{t}\left(x_{t, m}\right)=\mathbb{E}_{M \sim p_{t}}\left[\ell_{t}\left(x_{t, M}\right)\right]
$$

\Longrightarrow Better on average to choose x_{t} this way than sampling one $M \sim p_{t}$.

A FIRST APPROACH

\triangleright Choose x_{t} as a convex combination of the $\left(x_{t, m}\right)_{m \in \mathcal{M}}$?

$$
x_{t}=\sum_{m \in \mathcal{M}} p_{t}(m) x_{t, m} \text { where } p_{t} \in \mathcal{P}(\mathcal{M})
$$

Assume that $\ell_{t}(\cdot)=\ell\left(\cdot, y_{t}\right)$ is convex, then

$$
\ell_{t}\left(x_{t}\right) \leqslant \sum_{m \in \mathcal{M}} p_{t}(m) \ell_{t}\left(x_{t, m}\right)=\mathbb{E}_{M \sim p_{t}}\left[\ell_{t}\left(x_{t, M}\right)\right]
$$

\Longrightarrow Better on average to choose x_{t} this way than sampling one $M \sim p_{t}$. Technical property: Let r.v. X s.t. $a \leqslant X \leqslant b$ a.s. then

$$
\forall \eta \in \mathbb{R}^{+}, \quad \mathbb{E}[X] \leqslant-\frac{1}{\eta} \log \mathbb{E}[\exp (-\eta X)]+\eta \frac{(b-a)^{2}}{8} .
$$

\Longrightarrow assume that ℓ is bounded by 1 , then

$$
\mathbb{E}_{M \sim p_{t}}\left[\ell_{t}\left(x_{t, M}\right)\right] \leqslant-\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}+\frac{\eta}{8} .
$$

$$
\ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}+\frac{\eta}{8}
$$

$$
\ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}+\frac{\eta}{8}
$$

This suggests:

$$
p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}, \quad w_{t+1}(m)=w_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}
$$

$$
\ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}+\frac{\eta}{8}
$$

This suggests:

$$
p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}, \quad w_{t+1}(m)=w_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}
$$

We get $\quad \ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \left(\frac{W_{t+1}}{W_{t}}\right)+\frac{\eta}{8}$ where $W_{t}=\sum_{m \in \mathcal{M}} w_{t}(m)$

$$
\ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}+\frac{\eta}{8}
$$

This suggests:

$$
p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}, \quad w_{t+1}(m)=w_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}
$$

We get $\quad \ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \left(\frac{W_{t+1}}{W_{t}}\right)+\frac{\eta}{8}$ where $W_{t}=\sum_{m \in \mathcal{M}} w_{t}(m)$
Summing over t yields $\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \left(\frac{W_{T+1}}{W_{1}}\right)+\frac{\eta T}{8}$

$$
\ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}+\frac{\eta}{8}
$$

This suggests:

$$
p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}, \quad w_{t+1}(m)=w_{t}(m) e^{-\eta \ell_{t}\left(x_{t}, m\right)}
$$

We get $\quad \ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \left(\frac{W_{t+1}}{W_{t}}\right)+\frac{\eta}{8}$ where $W_{t}=\sum_{m \in \mathcal{M}} w_{t}(m)$
Summing over t yields $\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \left(\frac{W_{T+1}}{W_{1}}\right)+\frac{\eta T}{8}$
Finally, $W_{1}=|\mathcal{M}|$ and for any $m^{\star} \in \mathcal{M}$,

$$
W_{T+1} \geqslant w_{t+1}\left(m^{\star}\right)=\exp \left(-\eta \sum_{t=1}^{T} \ell_{t}\left(x_{t, m^{\star}}\right)\right)
$$

$$
\ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \sum_{m \in \mathcal{M}} p_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}+\frac{\eta}{8}
$$

This suggests:

$$
p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}, \quad w_{t+1}(m)=w_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}
$$

We get $\quad \ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \left(\frac{W_{t+1}}{W_{t}}\right)+\frac{\eta}{8}$ where $W_{t}=\sum_{m \in \mathcal{M}} w_{t}(m)$
Summing over t yields $\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \leqslant-\frac{1}{\eta} \log \left(\frac{W_{T+1}}{W_{1}}\right)+\frac{\eta T}{8}$
Finally, $W_{1}=|\mathcal{M}|$ and for any $m^{\star} \in \mathcal{M}$,

Hence

$$
\begin{aligned}
& W_{T+1} \geqslant w_{t+1}\left(m^{\star}\right)=\exp \left(-\eta \sum_{t=1}^{T} \ell_{t}\left(x_{t, m^{\star}}\right)\right) . \\
& \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \leqslant \sum_{t=1}^{T} \ell_{t}\left(x_{t, m^{\star}}\right)+\frac{\log (|\mathcal{M}|)}{\eta}+\frac{\eta T}{8}
\end{aligned}
$$

This leads to the following strategy

Odalric-Ambrym Maillard

This leads to the following strategy
$\triangleright \quad$ Choose $x_{t}=\sum_{m \in \mathcal{M}} p_{t}(m) x_{t, m}$ where $p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}$,
$\diamond \quad \forall m \in \mathcal{M}, w_{1}(m)=1$ and $w_{t+1}(m)=w_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}$.

Theorem (Cesa-Bianchi,Lugosi 2006)

Assume that ℓ_{t} is convex and bounded by 1 , then this strategy satisfies:

$$
\underbrace{\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)}_{L_{T}}-\min _{m \in \mathcal{M}} \underbrace{\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)}_{L_{T, m}} \leqslant \frac{\log (|\mathcal{M}|)}{\eta}+\frac{\eta T}{8}
$$

This leads to the following strategy
$\triangleright \quad$ Choose $x_{t}=\sum_{m \in \mathcal{M}} p_{t}(m) x_{t, m}$ where $p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}$,
$\diamond \quad \forall m \in \mathcal{M}, w_{1}(m)=1$ and $w_{t+1}(m)=w_{t}(m) e^{-\eta \ell_{t}\left(x_{t, m}\right)}$.

Theorem (Cesa-Bianchi,Lugosi 2006)

Assume that ℓ_{t} is convex and bounded by 1 , then this strategy satisfies:

$$
\underbrace{\sum_{t=1}^{T} \ell_{t}\left(x_{t}\right)}_{L_{T}}-\min _{m \in \mathcal{M}} \underbrace{\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)}_{L_{T, m}} \leqslant \frac{\log (|\mathcal{M}|)}{\eta}+\frac{\eta T}{8}
$$

$\triangleright \quad$ In particular for the choice of parameter $\eta=\sqrt{8 \log (|\mathcal{M}|) / T}$,

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \sqrt{\frac{T \log (|\mathcal{M}|)}{2}}
$$

AgGREGATION WITH EXPONENTIAL WEIGHTS?

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \sqrt{\frac{T}{2} \log (|\mathcal{M}|)}
$$

AgGREGATION WITH EXPONENTIAL WEIGHTS?

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \sqrt{\frac{T}{2} \log (|\mathcal{M}|)}
$$

No statistical assumption on y_{t} : ℓ_{t} only convex and bounded!

AgGREGATION WITH EXPONENTIAL WEIGHTS?

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \sqrt{\frac{T}{2} \log (|\mathcal{M}|)}
$$

No statistical assumption on $y_{t}: \ell_{t}$ only convex and bounded! Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

AgGREGATION WITH EXPONENTIAL WEIGHTS?

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \sqrt{\frac{T}{2} \log (|\mathcal{M}|)}
$$

No statistical assumption on $y_{t}: \ell_{t}$ only convex and bounded! Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of $\eta\left(\eta=\eta_{t}\right)$?
Using $\eta_{t}=\sqrt{8 \log (|\mathcal{M}|) / t}$ at time t, one can show (more involved):

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant 2 \sqrt{\frac{T \log (|\mathcal{M}|)}{2}}+\sqrt{\frac{\log (|\mathcal{M}|)}{2}}
$$

AgGREGATION WITH EXPONENTIAL WEIGHTS?

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \sqrt{\frac{T}{2} \log (|\mathcal{M}|)}
$$

No statistical assumption on $y_{t}: \ell_{t}$ only convex and bounded! Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of $\eta\left(\eta=\eta_{t}\right)$?
Using $\eta_{t}=\sqrt{8 \log (|\mathcal{M}|) / t}$ at time t, one can show (more involved):

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant 2 \sqrt{\frac{T \log (|\mathcal{M}|)}{2}}+\sqrt{\frac{\log (|\mathcal{M}|)}{2}}
$$

Examples of convex/bounded losses?

AgGREGATION WITH EXPONENTIAL WEIGHTS?

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \sqrt{\frac{T}{2} \log (|\mathcal{M}|)}
$$

No statistical assumption on $y_{t}: \ell_{t}$ only convex and bounded! Logarithmic in $|\mathcal{M}|$: Can handle a large amount of models!

Questions

Anytime tuning of $\eta\left(\eta=\eta_{t}\right)$?
Using $\eta_{t}=\sqrt{8 \log (|\mathcal{M}|) / t}$ at time t, one can show (more involved):

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant 2 \sqrt{\frac{T \log (|\mathcal{M}|)}{2}}+\sqrt{\frac{\log (|\mathcal{M}|)}{2}}
$$

Examples of convex/bounded losses?
Simplify this assumption, cf. Technical property ??

Aggregation of experts
 A simple aggregation strategy
 Simple aggregation, revisited

Best convex combinations
Best sequence: Fixed Share
Few recurring experts: Freund, MPP

From full to partial information

We only used this:

$$
\ell_{t}(\underbrace{\mathbb{E}_{M \sim p_{t}}\left[x_{t, M}\right]}_{x_{t}}) \leqslant-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_{t}} \exp \left(-\eta \ell_{t}\left(x_{t, M}\right)\right)+\frac{\eta}{8}
$$

We only used this:

$$
\ell_{t}(\underbrace{\mathbb{E}_{M \sim p_{t}}\left[x_{t, M}\right]}_{x_{t}}) \leqslant-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_{t}} \exp \left(-\eta \ell_{t}\left(x_{t, M}\right)\right)+\frac{\eta}{8}
$$

Satisfied if convex, bounded by 1 .
Ok for quadratic loss, pb for self-information: not bounded when x small!

Odalric-Ambrym Maillard

We only used this:

$$
\ell_{t}(\underbrace{\mathbb{E}_{M \sim p_{t}}\left[x_{t, M}\right]}_{x_{t}}) \leqslant-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_{t}} \exp \left(-\eta \ell_{t}\left(x_{t, M}\right)\right)+\frac{\eta}{8}
$$

$\triangleright \quad$ Satisfied if convex, bounded by 1 .
Ok for quadratic loss, pb for self-information: not bounded when x small!
What about dropping $\eta / 8$ term?
Equivalent to $\exp \left(-\eta \ell_{t}(\cdot)\right)$ is concave: η-exp-concavity.
$\diamond \quad$ Self-information loss is 1 -exp-concave (with $=$ instead of \leqslant)
$\diamond \quad$ Quadratic loss is η-exp-concave for $\eta \leqslant \frac{1}{2(b-a)^{2}}$ on $\mathcal{X}=\mathcal{Y} \subset[a, b]$.
$\diamond \quad$ Absolute loss $\ell(x, y)=|x-y|$ is not exp-concave for any η.

Odalric-Ambrym Maillard

Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_{t}} \exp \left(-\eta \ell_{t}\left(x_{t, M}\right)\right)$?
Entropy formula:

$$
-\frac{1}{\eta} \log \mathbb{E}_{M \sim p} \exp \left(-\eta X_{M}\right)=\inf _{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}\left[X_{M}\right]+\frac{1}{\eta} K L(q, p) .
$$

A SECOND LOOK AT ASSUMPTIONS

$\triangleright \quad$ Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_{t}} \exp \left(-\eta \ell_{t}\left(x_{t, M}\right)\right)$?
Entropy formula:

$$
-\frac{1}{\eta} \log \mathbb{E}_{M \sim p} \exp \left(-\eta X_{M}\right)=\inf _{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}\left[X_{M}\right]+\frac{1}{\eta} \mathrm{KL}(q, p)
$$

Hence, η-exp-concavity becomes:

η-exp-concavity

A loss ℓ is η-exp-concave if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \forall y \in \mathcal{Y}$,

$$
\ell\left(\mathbb{E}_{M \sim p}\left[\mathbf{x}_{M}\right], y\right) \leqslant \inf _{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}\left[\ell\left(\mathbf{x}_{M}, y\right)\right]+\frac{1}{\eta} K L(q, p)
$$

A SECOND LOOK AT ASSUMPTIONS

$\triangleright \quad$ Interpretation of $-\frac{1}{\eta} \log \mathbb{E}_{M \sim p_{t}} \exp \left(-\eta \ell_{t}\left(x_{t, M}\right)\right)$?
Entropy formula:

$$
-\frac{1}{\eta} \log \mathbb{E}_{M \sim p} \exp \left(-\eta X_{M}\right)=\inf _{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}\left[X_{M}\right]+\frac{1}{\eta} K L(q, p) .
$$

$\triangleright \quad$ Hence, η-exp-concavity becomes:

η-exp-concavity

A loss ℓ is η-exp-concave if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \forall y \in \mathcal{Y}$,

$$
\ell\left(\mathbb{E}_{M \sim p}\left[\mathbf{x}_{M}\right], y\right) \leqslant \inf _{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}\left[\ell\left(\mathbf{x}_{M}, y\right)\right]+\frac{1}{\eta} \mathrm{KL}(q, p)
$$

$\triangleright \quad$ Further, infimum obtained for $q(m)=\frac{\exp \left(-\eta X_{m}\right) p(m)}{\sum_{m^{\prime} \in \mathcal{M}}^{\exp \left(-\eta X_{m^{\prime}}\right) p\left(m^{\prime}\right)}}$.

A SECOND LOOK AT ASSUMPTIONS

Generalization: we don't need that $x_{t}=\mathbb{E}_{M \sim p_{t}}\left[x_{t, M}\right]$.

η-mixability

A loss ℓ is η-mixable if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathrm{x}, \mathrm{p}} \forall y \in \mathcal{Y}$,

$$
\ell\left(x_{\mathrm{x}, \mathbf{p}}, y\right) \leqslant \inf _{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}\left[\ell\left(\mathbf{x}_{M}, y\right)\right]+\frac{1}{\eta} \mathrm{KL}(q, p)
$$

$[\mathbf{x}], \mathbf{p} \mapsto \mathbf{x}_{\mathbf{x}, \mathbf{p}}$ is called the substitution function.

A SECOND LOOK AT ASSUMPTIONS

Generalization: we don't need that $x_{t}=\mathbb{E}_{M \sim p_{t}}\left[x_{t, M}\right]$.

η-mixability

A loss ℓ is η-mixable if $\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x}, \mathbf{p}} \forall y \in \mathcal{Y}$,

$$
\ell\left(x_{\mathbf{x}, \mathbf{p}}, y\right) \leqslant \inf _{q \in \mathcal{P}(\mathcal{M})} \mathbb{E}_{M \sim q}\left[\ell\left(\mathbf{x}_{M}, y\right)\right]+\frac{1}{\eta} \mathrm{KL}(q, p)
$$

$[\mathbf{x}], \mathbf{p} \mapsto \mathbf{x}_{\mathbf{x}, \mathbf{p}}$ is called the substitution function.
$\triangleright \quad \eta$-exp-concave loss is η-mixable with $x_{\mathbf{x}, \mathbf{p}}=\mathbb{E}_{M \sim p} \mathbf{x}_{\mathbf{M}}$.
$\diamond \quad$ Quadratic loss is η-exp-concave for $\eta \leqslant \frac{1}{2}$ on $\mathcal{X}=\mathcal{Y} \subset[0,1]$, but η-mixable for η up to $\eta \leqslant 2$!

AGGREGATION OF EXPERTS REVISITED

AgGREGATION OF EXPERTS REVISITED

Consider an η-mixable loss ℓ, and let $p_{1}=\operatorname{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.

AGGREGATION OF EXPERTS REVISITED

Consider an η-mixable loss ℓ, and let $p_{1}=\operatorname{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$. At time $t+1$, given $\mathbf{x}_{t} \in \mathcal{X}^{\mathcal{M}}$, and $p_{t} \in \mathcal{P}(\mathcal{M})$, output decision $x_{t}=x_{\mathrm{x}_{\mathrm{t}}, p_{\mathrm{t}}}$,

AgGREGATION OF EXPERTS REVISITED

$\triangleright \quad$ Consider an η-mixable loss ℓ, and let $p_{1}=\operatorname{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
At time $t+1$, given $\mathbf{x}_{t} \in \mathcal{X}^{\mathcal{M}}$, and $p_{t} \in \mathcal{P}(\mathcal{M})$, output decision $x_{t}=x_{\mathbf{x}_{\mathrm{t}}, p_{t}}$, Receive y_{t} and update

$$
p_{t+1}=\underset{q \in \mathcal{P}_{M}}{\operatorname{argmin}} \mathbb{E}_{M \sim q}[\underbrace{\ell\left(\mathbf{x}_{t, M}, y_{t}\right)}_{\ell_{t, M}}]+\frac{1}{\eta} \mathrm{KL}\left(q, p_{t}\right)
$$

Theorem

Assume that ℓ_{t} is η-mixable, then after T time steps, this strategy satisfies:

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \frac{\log (|\mathcal{M}|)}{\eta}
$$

AgGREGATION OF EXPERTS REVISITED

$\triangleright \quad$ Consider an η-mixable loss ℓ, and let $p_{1}=\operatorname{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
At time $t+1$, given $\mathbf{x}_{t} \in \mathcal{X}^{\mathcal{M}}$, and $p_{t} \in \mathcal{P}(\mathcal{M})$, output decision $x_{t}=x_{\mathbf{x}_{\mathrm{t}}, p_{t}}$,
Receive y_{t} and update

$$
p_{t+1}=\underset{q \in \mathcal{P}_{M}}{\operatorname{argmin}} \mathbb{E}_{M \sim q}[\underbrace{\ell\left(\mathbf{x}_{t, M}, y_{t}\right)}_{\ell_{t, M}}]+\frac{1}{\eta} \mathrm{KL}\left(q, p_{t}\right)
$$

Theorem

Assume that ℓ_{t} is η-mixable, then after T time steps, this strategy satisfies:

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \frac{\log (|\mathcal{M}|)}{\eta}
$$

Still for arbitrary $y_{t} \in \mathcal{Y}$.

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

AgGREGATION OF EXPERTS REVISITED

$\triangleright \quad$ Consider an η-mixable loss ℓ, and let $p_{1}=\operatorname{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
At time $t+1$, given $\mathbf{x}_{t} \in \mathcal{X}^{\mathcal{M}}$, and $p_{t} \in \mathcal{P}(\mathcal{M})$, output decision $x_{t}=x_{\mathbf{x}_{\mathrm{t}}, p_{t}}$,
Receive y_{t} and update

$$
p_{t+1}=\underset{q \in \mathcal{P}_{M}}{\operatorname{argmin}} \mathbb{E}_{M \sim q}[\underbrace{\ell\left(\mathbf{x}_{t, M}, y_{t}\right)}_{\ell_{t, M}}]+\frac{1}{\eta} \mathrm{KL}\left(q, p_{t}\right)
$$

Theorem

Assume that ℓ_{t} is η-mixable, then after T time steps, this strategy satisfies:

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \frac{\log (|\mathcal{M}|)}{\eta}
$$

Still for arbitrary $y_{t} \in \mathcal{Y}$.
Independent on T !

Odalric-Ambrym Maillard

AgGREGATION OF EXPERTS REVISITED

$\triangleright \quad$ Consider an η-mixable loss ℓ, and let $p_{1}=\operatorname{Uniform}(\mathcal{M}) \in \mathcal{P}(\mathcal{M})$.
At time $t+1$, given $\mathbf{x}_{t} \in \mathcal{X}^{\mathcal{M}}$, and $p_{t} \in \mathcal{P}(\mathcal{M})$, output decision $x_{t}=x_{\mathbf{x}_{\mathrm{t}}, p_{t}}$,
Receive y_{t} and update

$$
p_{t+1}=\underset{q \in \mathcal{P}_{M}}{\operatorname{argmin}} \mathbb{E}_{M \sim q}[\underbrace{\ell\left(\mathbf{x}_{t, M}, y_{t}\right)}_{\ell_{t, M}}]+\frac{1}{\eta} \mathrm{KL}\left(q, p_{t}\right)
$$

Theorem

Assume that ℓ_{t} is η-mixable, then after T time steps, this strategy satisfies:

$$
L_{T}-\min _{m \in \mathcal{M}} L_{T, m} \leqslant \frac{\log (|\mathcal{M}|)}{\eta}
$$

Still for arbitrary $y_{t} \in \mathcal{Y}$.
Independent on T !
but only for specific, possibly small η (all $\eta^{\prime} \leqslant \eta$, but not larger).

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

AGGREGATION OF EXPERTS REVISITED

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_{t} is η-mixable, then after T time steps, the aggregation strategy with $p_{1}=\pi$, satifies

$$
\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{T}-\mathbb{E}_{M \sim q}\left[L_{T, M}\right] \leqslant \frac{1}{\eta}\left(\mathrm{KL}(q, \pi)-\mathrm{KL}\left(q, p_{T+1}\right)\right) .
$$

AgGregation of experts Revisited

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_{t} is η-mixable, then after T time steps, the aggregation strategy with $p_{1}=\pi$, satifies

$$
\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{T}-\mathbb{E}_{M \sim q}\left[L_{T, M}\right] \leqslant \frac{1}{\eta}\left(\mathrm{KL}(q, \pi)-\mathrm{KL}\left(q, p_{T+1}\right)\right) .
$$

Now, we compete against convex combination of loss of experts!

AgGREGATION OF EXPERTS REVISITED

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_{t} is η-mixable, then after T time steps, the aggregation strategy with $p_{1}=\pi$, satifies

$$
\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{T}-\mathbb{E}_{M \sim q}\left[L_{T, M}\right] \leqslant \frac{1}{\eta}\left(\mathrm{KL}(q, \pi)-\mathrm{KL}\left(q, p_{T+1}\right)\right) .
$$

\triangleright Now, we compete against convex combination of loss of experts! In particular for $q=\delta_{m^{\star}}$, we deduce

$$
L_{T}-L_{T, m^{\star}} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\pi\left(m^{\star}\right)}\right) .
$$

AgGregation of experts Revisited

We can actually get a stronger result:

Theorem (Aggregation of experts)

Assume that ℓ_{t} is η-mixable, then after T time steps, the aggregation strategy with $p_{1}=\pi$, satifies

$$
\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{T}-\mathbb{E}_{M \sim q}\left[L_{T, M}\right] \leqslant \frac{1}{\eta}\left(\operatorname{KL}(q, \pi)-K L\left(q, p_{T+1}\right)\right) .
$$

$\triangleright \quad$ Now, we compete against convex combination of loss of experts! In particular for $q=\delta_{m^{\star}}$, we deduce

$$
L_{T}-L_{T, m^{\star}} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\pi\left(m^{\star}\right)}\right) .
$$

$\triangleright \quad$ We can move from finitely many to countably many experts:

$$
\pi(m)=\frac{1}{m(m+1)}, \quad \pi(m)=\log (2)\left(\frac{1}{\log (m+1)}-\frac{1}{\log (m+2)}\right) .
$$

BREGMAN AGGREGATION

Assumption: ℓ is η-Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$
\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x}, \mathbf{p}} \in \mathcal{X}, \ell\left(x_{\mathbf{x}, \mathbf{p}}\right) \leqslant \min _{q \in \mathcal{P}(\mathcal{M})}\left\langle q, \ell_{\mathbf{x}}\right\rangle+\frac{1}{\eta} \mathcal{B}(q, p) .
$$

where ℓ_{x} denotes the vector $\left(\ell\left(x_{1}\right), \ldots, \ell\left(x_{M}\right)\right)$.

BREGMAN AGGREGATION

Assumption: ℓ is η-Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$
\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x}, \mathbf{p}} \in \mathcal{X}, \ell\left(x_{\mathbf{x}, \mathbf{p}}\right) \leqslant \min _{q \in \mathcal{P}(\mathcal{M})}\left\langle q, \ell_{\mathbf{x}}\right\rangle+\frac{1}{\eta} \mathcal{B}(q, p) .
$$

where ℓ_{x} denotes the vector $\left(\ell\left(x_{1}\right), \ldots, \ell\left(x_{M}\right)\right)$.
Strategy: Play $x_{\mathbf{x}_{\mathrm{t}}, \mathbf{p}_{\mathbf{t}}}$, update $p_{t+1}=\underset{q \in \mathcal{P}(\mathcal{M})}{\operatorname{argmin}}\left\langle q, \ell_{\mathrm{x}_{\mathbf{t}}}\right\rangle+\frac{1}{\eta} \mathcal{B}\left(q, p_{t}\right)$.

Assumption: ℓ is η-Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$
\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x}, \mathbf{p}} \in \mathcal{X}, \ell\left(x_{\mathbf{x}, \mathbf{p}}\right) \leqslant \min _{q \in \mathcal{P}(\mathcal{M})}\left\langle q, \ell_{\mathbf{x}}\right\rangle+\frac{1}{\eta} \mathcal{B}(q, p) .
$$

where ℓ_{x} denotes the vector $\left(\ell\left(x_{1}\right), \ldots, \ell\left(x_{M}\right)\right)$.
Strategy: Play $x_{\mathbf{x}_{\mathrm{t}}, \mathbf{p}_{\mathbf{t}}}$, update $p_{t+1}=\underset{q \in \mathcal{P}(\mathcal{M})}{\operatorname{argmin}}\left\langle q, \ell_{\mathrm{x}_{\mathbf{t}}}\right\rangle+\frac{1}{\eta} \mathcal{B}\left(q, p_{t}\right)$.
Performance:

$$
\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{T}-\left\langle q, \mathbf{L}_{T}\right\rangle \leqslant \frac{1}{\eta}\left(\mathcal{B}(q, \pi)-\mathcal{B}\left(q, p_{T+1}\right)\right) .
$$

Assumption: ℓ is η-Bregman-mixable w.r.t. Bregman divergence \mathcal{B} :

$$
\forall \mathbf{x} \in \mathcal{X}^{\mathcal{M}}, p \in \mathcal{P}(\mathcal{M}), \exists x_{\mathbf{x}, \mathbf{p}} \in \mathcal{X}, \ell\left(x_{\mathbf{x}, \mathbf{p}}\right) \leqslant \min _{q \in \mathcal{P}(\mathcal{M})}\left\langle q, \ell_{\mathbf{x}}\right\rangle+\frac{1}{\eta} \mathcal{B}(q, p) .
$$

where ℓ_{x} denotes the vector $\left(\ell\left(x_{1}\right), \ldots, \ell\left(x_{M}\right)\right)$.
$\triangleright \quad$ Strategy: Play $x_{x_{\mathrm{t}}, \mathbf{p}_{\mathrm{t}}}$, update $p_{t+1}=\underset{q \in \mathcal{P}(\mathcal{M})}{\operatorname{argmin}}\left\langle q, \ell_{\mathrm{x}_{\mathrm{t}}}\right\rangle+\frac{1}{\eta} \mathcal{B}\left(q, p_{t}\right)$.
Performance:

$$
\forall q \in \mathcal{P}(\mathcal{M}) \quad L_{T}-\left\langle q, \mathbf{L}_{T}\right\rangle \leqslant \frac{1}{\eta}\left(\mathcal{B}(q, \pi)-\mathcal{B}\left(q, p_{T+1}\right)\right) .
$$

Other interpretation: Use Legendre-Fenchel dual objective function, perform gradient descent!

SmALL LOSSES

When the best expert has small loss, we may prefer to express regret bounds on terms of this loss:
Consider a loss convex and bounded in $[0,1]$, then:

$$
L_{T}-L_{T}^{\star} \leqslant\left(\frac{\eta}{1-\exp (-\eta)}-1\right) L_{T}^{\star}+\frac{\log (M)}{1-\exp (-\eta)}
$$

where $L_{T}^{\star}=\min _{m \in \mathcal{M}} L_{t, m}$
Proof: We can show that any loss ℓ convex and bounded in $[0,1]$ satisfies the following extension of η-mixability property:

$$
\ell\left(\mathbb{E}_{M \sim q}\left(x_{M}\right)\right) \leqslant-\frac{\eta}{1-\exp (-\eta)} \frac{1}{\eta} \ln \left(\mathbb{E}_{m \sim q} \exp \left(-\eta \ell\left(x_{M}\right)\right)\right) .
$$

The rest is obtained by following the initial derivation.

AgGregation of Experts

A simple aggregation strategy Simple aggregation, revisited

Best convex combinations

Best sequence: Fixed Share
Few recurring experts: Freund, MPP

From full TO Partial information

$$
\text { Minimize } \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

$$
\text { Minimize } \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

w.r.t.
best combination of models (Model aggregation)?

$$
\inf q \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \quad \text { or } \quad \inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

$$
\text { Minimize } \quad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

w.r.t.
best combination of models (Model aggregation)?

$$
\inf q \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \quad \text { or } \quad \inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

Left: best combination of losses
Right: loss of best combination.
w.r.t.

$$
\text { Minimize } \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

best combination of models (Model aggregation)?

$$
\inf q \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \quad \text { or } \quad \inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

Left: best combination of losses
Right: loss of best combination. Right is harder: $\ell_{t}\left(\mathbf{q} \cdot \mathbf{x}_{t}\right) \leqslant \mathbf{q} \cdot \ell_{t}$ by convexity.

DIFFERENT OBJECTIVES

w.r.t.

$$
\text { Minimize } \quad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

best combination of models (Model aggregation)?

$$
\inf q \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \quad \text { or } \quad \inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

Left: best combination of losses Right: loss of best combination.
Right is harder: $\ell_{t}\left(\mathbf{q} \cdot \mathbf{x}_{t}\right) \leqslant \mathbf{q} \cdot \ell_{t}$ by convexity.
From set of experts \mathcal{M} (finite) to set of experts $\mathcal{P}(\mathcal{M})$ (continuous)!

DIFFERENT OBJECTIVES

w.r.t.

$$
\text { Minimize } \quad \sum_{t=1}^{T} \ell_{t}\left(x_{t}\right) \ldots
$$

best combination of models (Model aggregation)?

$$
\inf q \in \mathcal{P}(\mathcal{M}) \sum_{m \in \mathcal{M}} q_{m}\left(\sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right)\right) \quad \text { or } \quad \inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q_{m} x_{t, m}\right)
$$

Left: best combination of losses Right: loss of best combination.
Right is harder: $\ell_{t}\left(\mathbf{q} \cdot \mathbf{x}_{t}\right) \leqslant \mathbf{q} \cdot \ell_{t}$ by convexity.
From set of experts \mathcal{M} (finite) to set of experts $\mathcal{P}(\mathcal{M})$ (continuous)! If ℓ is η-exp-concave on \mathcal{X}, then $\bar{\ell}: q \rightarrow \ell_{t}\left(\mathbf{q} \cdot \mathbf{x}_{t}\right)$ is η-exp-concave on $\mathcal{P}(\mathcal{M})$.

AgGregation over $\mathcal{P}(\mathcal{M})$: Strategy

Aggregation over $\mathcal{P}(\mathcal{M})$: Strategy

$$
\bar{p}_{1}(q)=\frac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))}, p_{1}=\frac{1}{|\mathcal{M}|} \mathbf{1} .
$$

Aggregation over $\mathcal{P}(\mathcal{M})$: Strategy

$\bar{p}_{1}(q)=\frac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))}, p_{1}=\frac{1}{|\mathcal{M}|} \mathbf{1}$.
Choose $x_{t}=\sum_{m \in \mathcal{M}} p_{t}(m) x_{t, m}$, where $p_{t}=\mathbb{E}_{q \sim \bar{p}_{t}}[q]$.

AgGregation over $\mathcal{P}(\mathcal{M})$: Strategy

$\bar{p}_{1}(q)=\frac{1}{\operatorname{vol}(\mathcal{P}(\mathcal{M})))}, p_{1}=\frac{1}{|\mathcal{M}|} \mathbf{1}$.
Choose $x_{t}=\sum_{m \in \mathcal{M}} p_{t}(m) x_{t, m}$, where $p_{t}=\mathbb{E}_{q \sim \bar{p}_{t}}[q]$.
When receiving $\left(x_{t, m}\right)_{m \in \mathcal{M}}$, update

$$
p_{t+1}(q)=\frac{\bar{p}_{t}(q) \exp \left(-\eta \bar{\ell}_{t}(q)\right)}{\int_{\mathcal{P}(\mathcal{M})} \bar{p}_{t}(u) \exp \left(-\eta \bar{\ell}_{t}(q)\right) d u}
$$

AGGREGATION OVER $\mathcal{P}(\mathcal{M}):$ PERFORMANCE

$$
L_{T}-\inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \bar{\ell}_{t}(q) \leqslant \frac{M}{\eta}\left(1+\log \left(1+\frac{T}{M}\right)\right) .
$$

AGGREGATION OVER $\mathcal{P}(\mathcal{M}):$ PERFORMANCE

$$
L_{T}-\inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \bar{\ell}_{t}(q) \leqslant \frac{M}{\eta}\left(1+\log \left(1+\frac{T}{M}\right)\right) .
$$

For comparison we had: $L_{T}-\inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{m} q(m) L_{T, m} \leqslant \frac{\log (M)}{\eta}$.

AGGREGATION OVER $\mathcal{P}(\mathcal{M}):$ PERFORMANCE

$$
L_{T}-\inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \bar{\ell}_{t}(q) \leqslant \frac{M}{\eta}\left(1+\log \left(1+\frac{T}{M}\right)\right) .
$$

For comparison we had: $L_{T}-\inf _{q \in \mathcal{P}(\mathcal{M})} \sum_{m} q(m) L_{T, m} \leqslant \frac{\log (M)}{\eta}$.
Proof technique: Similar +

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

EXAMPLE OF UNIVERSAL PREDICTION

Odalric-Ambrym Maillard

Consider Binary prediction and self-information loss ℓ.

Consider Binary prediction and self-information loss ℓ. Aggregation over all Bernoulli $\mathcal{B}(\theta), \theta \in[0,1]$.

Consider Binary prediction and self-information loss ℓ.
Aggregation over all Bernoulli $\mathcal{B}(\theta), \theta \in[0,1]$.
KT-predictor: Use prior $g(\theta)=\frac{1}{\sqrt{\theta(1-\theta)}}$.

Consider Binary prediction and self-information loss ℓ.
Aggregation over all Bernoulli $\mathcal{B}(\theta), \theta \in[0,1]$.
KT-predictor: Use prior $g(\theta)=\frac{1}{\sqrt{\theta(1-\theta)}}$.
Yields a fully explicit solution:

$$
q_{t}(1)=\frac{t \widehat{\theta}_{t}+1 / 2}{t+1}
$$

Efficient computation despite aggregation of continuum of models.

Consider Binary prediction and self-information loss ℓ.
Aggregation over all Bernoulli $\mathcal{B}(\theta), \theta \in[0,1]$.
KT-predictor: Use prior $g(\theta)=\frac{1}{\sqrt{\theta(1-\theta)}}$.
Yields a fully explicit solution:

$$
q_{t}(1)=\frac{t \widehat{\theta}_{t}+1 / 2}{t+1}
$$

Efficient computation despite aggregation of continuum of models.
Called "Universal prediction". Extends to all Markov models of arbitrary order.

Aggregation of experts
 A simple aggregation strategy Simple aggregation, revisited Best convex combinations

Best sequence: Fixed Share

Few recurring experts: Freund, MPP

From full to partial information

So far, we only considered fixed experts:
$\min _{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right), \quad \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q(m) L_{T, m} \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q(m) x_{t, m}\right)$

Best sequence of experts

\triangleright So far, we only considered fixed experts:
$\min _{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right), \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q(m) L_{T, m} \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q(m) x_{t, m}\right)$

What about best sequence of experts:

$$
\min _{m_{1}, \ldots, m_{T} \in \mathcal{S}_{k}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m_{t}}\right) \text { where } \mathcal{S}_{k}(\mathcal{M}): \text { at most } k \text { switches. }
$$

\diamond Difficulty: Concentrating mass exponentially fast to a single expert means putting near 0 on others.
$\diamond \quad$ When switching to other best expert, need to catch-up!
$\diamond \quad$ from \mathcal{M} to \mathcal{M}^{T} many experts??

Best sequence of experts

\triangleright So far, we only considered fixed experts:
$\min _{m \in \mathcal{M}} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m}\right), \quad \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{m \in \mathcal{M}} q(m) L_{T, m} \min _{q \in \mathcal{P}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(\sum_{m \in \mathcal{M}} q(m) x_{t, m}\right)$

What about best sequence of experts:

$$
\min _{m_{1}, \ldots, m_{T} \in \mathcal{S}_{k}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m_{t}}\right) \text { where } \mathcal{S}_{k}(\mathcal{M}): \text { at most } k \text { switches. }
$$

Difficulty: Concentrating mass exponentially fast to a single expert means putting near 0 on others.
\diamond When switching to other best expert, need to catch-up!
$\diamond \quad$ from \mathcal{M} to \mathcal{M}^{T} many experts??

Fixed-share solution

Fixed-share solution
\triangleright Guarantees each m never has not too small weight, hence can catch-up fast enough.

Fixed-share solution
\triangleright Guarantees each m never has not too small weight, hence can catch-up fast enough.
$\tilde{p}_{t+1}(\cdot)=(1-\alpha) p_{t+1}(\cdot)+\frac{\alpha}{M}$

For all sequence $q_{1}, \ldots, q_{T} \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$
L_{T}-\sum_{t=1}^{T} q_{t} \ell_{t} \leqslant \frac{\log (M)}{\eta}+\frac{k}{\eta} \log \left(\frac{M}{\alpha}\right)+\frac{T-k-1}{\eta} \log \left(\frac{1}{1-\alpha}\right) .
$$

For all sequence $q_{1}, \ldots, q_{T} \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$
L_{T}-\sum_{t=1}^{T} q_{t} \ell_{t} \leqslant \frac{\log (M)}{\eta}+\frac{k}{\eta} \log \left(\frac{M}{\alpha}\right)+\frac{T-k-1}{\eta} \log \left(\frac{1}{1-\alpha}\right) .
$$

Choosing $\alpha=k /(T-1)$ yields

$$
L_{T}-\sum_{t=1}^{T} q_{t} \ell_{t} \leqslant \frac{\log (M)}{\eta}+\frac{k}{\eta} \log \left(\frac{M(T-1)}{k}\right)+\frac{k}{\eta} .
$$

For all sequence $q_{1}, \ldots, q_{T} \in \mathcal{P}(\mathcal{M})$ with at most k switches,

$$
L_{T}-\sum_{t=1}^{T} q_{t} \ell_{t} \leqslant \frac{\log (M)}{\eta}+\frac{k}{\eta} \log \left(\frac{M}{\alpha}\right)+\frac{T-k-1}{\eta} \log \left(\frac{1}{1-\alpha}\right) .
$$

Choosing $\alpha=k /(T-1)$ yields

$$
L_{T}-\sum_{t=1}^{T} q_{t} \ell_{t} \leqslant \frac{\log (M)}{\eta}+\frac{k}{\eta} \log \left(\frac{M(T-1)}{k}\right)+\frac{k}{\eta} .
$$

α going to 0 but not exponentially fast.

MARKOV-HEDGE

Let us consider \tilde{p}_{t} obtained from p_{t} as $\tilde{p}_{t+1}(\cdot)=\sum_{m^{\prime} \in \mathcal{M}} \theta\left(\cdot \mid m^{\prime}\right) p_{t+1}\left(m^{\prime}\right)$, from a Markov chain with initial low ω and transition matrix θ.
For all sequence $m_{1}, \ldots, m_{T} \in \mathcal{M}$ with at most k switches

$$
L_{T}-\sum_{t=1}^{T} \ell_{t, m_{t}} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\omega\left(m_{1}\right)}\right)+\frac{1}{\eta} \sum_{t=2}^{T} \log \left(\frac{1}{\theta_{t}\left(m_{t} \mid m_{t-1}\right)}\right) .
$$

MARKOV-HEDGE

Let us consider \tilde{p}_{t} obtained from p_{t} as $\tilde{p}_{t+1}(\cdot)=\sum_{m^{\prime} \in \mathcal{M}} \theta\left(\cdot \mid m^{\prime}\right) p_{t+1}\left(m^{\prime}\right)$, from a Markov chain with initial low ω and transition matrix θ.
For all sequence $m_{1}, \ldots, m_{T} \in \mathcal{M}$ with at most k switches

$$
L_{T}-\sum_{t=1}^{T} \ell_{t, m_{t}} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\omega\left(m_{1}\right)}\right)+\frac{1}{\eta} \sum_{t=2}^{T} \log \left(\frac{1}{\theta_{t}\left(m_{t} \mid m_{t-1}\right)}\right) .
$$

Fixed share: $\theta\left(m^{\prime} \mid m\right)=(1-\alpha) \mathbb{I}\left\{m=m^{\prime}\right\}+\alpha / M$.

MARKOV-HEDGE

Let us consider \tilde{p}_{t} obtained from p_{t} as $\tilde{p}_{t+1}(\cdot)=\sum_{m^{\prime} \in \mathcal{M}} \theta\left(\cdot \mid m^{\prime}\right) p_{t+1}\left(m^{\prime}\right)$, from a Markov chain with initial low ω and transition matrix θ.
For all sequence $m_{1}, \ldots, m_{T} \in \mathcal{M}$ with at most k switches

$$
L_{T}-\sum_{t=1}^{T} \ell_{t, m_{t}} \leqslant \frac{1}{\eta} \log \left(\frac{1}{\omega\left(m_{1}\right)}\right)+\frac{1}{\eta} \sum_{t=2}^{T} \log \left(\frac{1}{\theta_{t}\left(m_{t} \mid m_{t-1}\right)}\right) .
$$

Fixed share: $\theta\left(m^{\prime} \mid m\right)=(1-\alpha) \mathbb{I}\left\{m=m^{\prime}\right\}+\alpha / M$.
Variable share, sleeping experts, etc.
Note: even though huge amount of experts $O\left(M^{\top}\right)$ they share a rich structure. This enables to have an efficient strategy maintaining only few quantities $O(M T)$.

Agqregation of experts
 A simple aggregation strategy
 Simple aggregation, revisited Best convex combinations Best sequence: Fixed Share Few recurring experts: Freund, MPP

Best sequence of experts

Best sequence of experts:

$$
\min _{m_{1}, \ldots, m_{T} \in \mathcal{S}_{k}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m_{t}}\right) \text { where } \mathcal{S}_{k}(\mathcal{M}): \text { at most } k \text { switches. }
$$

Best sequence of experts

Best sequence of experts:

$$
\min _{m_{1}, \ldots, m_{T} \in \mathcal{S}_{k}(\mathcal{M})} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m_{t}}\right) \text { where } \mathcal{S}_{k}(\mathcal{M}): \text { at most } k \text { switches. }
$$

Best sequence of experts with few good experts:

$$
\min _{m_{1}, \ldots, m_{T} \in \mathcal{S}_{k}\left(\mathcal{M}_{0}\right)} \sum_{t=1}^{T} \ell_{t}\left(x_{t, m_{t}}\right) \text { where } \mathcal{M}_{0} \subset \mathcal{M} \text { unknown but small. }
$$

\diamond Intuition: the good experts should be good in the recent past.

Mixing Past Posteriors

Ensure that experts good in the recent past have large enough weight and catch-up.

Mixing Past Posteriors

Ensure that experts good in the recent past have large enough weight and catch-up.
Mixing past posterior $\tilde{p}_{t+1}(\cdot)=\sum_{s=0}^{t} \beta_{t+1}(s) p_{s}(\cdot)$

Mixing Past Posteriors

Ensure that experts good in the recent past have large enough weight and catch-up.
Mixing past posterior $\tilde{p}_{t+1}(\cdot)=\sum_{s=0}^{t} \beta_{t+1}(s) p_{s}(\cdot)$
In particular:
\diamond Hedge: $\beta_{t+1}\left(t^{\prime}\right)= \begin{cases}1 & \text { if } t^{\prime}=t \\ 0 & \text { else }\end{cases}$
\diamond Fixed share: $\beta_{t+1}\left(t^{\prime}\right)= \begin{cases}1-\alpha & \text { if } t^{\prime}=t \\ \alpha & \text { if } t^{\prime}=0 \\ 0 & \text { else }\end{cases}$

Assume ℓ is η-mixable. For all sequence $\left(q_{t}\right)_{t \in \mathcal{T}}$ with k switches between at most n values,

$$
L_{T}-\sum_{t=1}^{T} q_{t} \cdot \ell_{t} \leqslant \frac{n}{\eta} \log (|\mathcal{M}|)+\frac{1}{\eta} \sum_{t=1}^{T} \log \left(\frac{1}{\beta_{t}\left(\tau_{t}\right)}\right) .
$$

where τ_{t} is last $\tau<t$ such that $q_{\tau}=q_{t}$ (or 0 if first occurrence).

OTHER MODELS

Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.

OTHER MODELS

Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.
Growing experts (Mourtada\&M. 2017): When set of base experts \mathcal{M} is no longer fixed but may increase with time; Especially useful to handle non-stationarity.

OTHER MODELS

$\triangleright \quad$ Sleeping experts (Koolen et al. 2012): When experts are not available at all rounds.
$\triangleright \quad$ Growing experts (Mourtada\&M. 2017): When set of base experts \mathcal{M} is no longer fixed but may increase with time; Especially useful to handle non-stationarity.

Most results are minimax-optimal, valid for any input sequence. This contrasts with typical results for bandits: instance-optimal, for stochastic sequence.

Odalric-Ambrym Maillard

Aggregation of experts

From full To partial information

Stochastic or Adversarial ?

Conclusion

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION Aggregation in the bandit world

Exp3
Exp3 variants
Exp4

Stochastic or Adversarial ?

Adjusting for the differences:

Adjusting for the differences:
Decision are arms $\mathcal{X}=\mathcal{A}$. Consider one expert per $\operatorname{arm} \mathcal{M}=\mathcal{A}$.

Adjusting for the differences:
Decision are arms $\mathcal{X}=\mathcal{A}$. Consider one expert per $\operatorname{arm} \mathcal{M}=\mathcal{A}$. Losses $\left(\ell_{t, m}\right)_{m \in \mathcal{M}}$ become rewards $\left(r_{t, a}\right)_{a \in \mathcal{A}}$

A NATURAL APPROACH

Adjusting for the differences:
$\triangleright \quad$ Decision are arms $\mathcal{X}=\mathcal{A}$. Consider one expert per $\operatorname{arm} \mathcal{M}=\mathcal{A}$.
Losses $\left(\ell_{t, m}\right)_{m \in \mathcal{M}}$ become rewards $\left(r_{t, a}\right)_{a \in \mathcal{A}}$
Can only output an arm $A_{t} \in \mathcal{A}$ (not a combination):
$x_{t}=\sum_{m \in \mathcal{M}} p_{t, m} x_{t, m}$ becomes $x_{t}=x_{t, m_{t}}$ with $m_{t} \sim p_{t}$.
$\diamond \quad$ Less good, but ok as long as \mathbb{E} performance.
Problem: we only observe the reward of A_{t} (i.e., only $r_{t, A_{t}}$)!! Partial information: We don't observe $r_{t, a}$ for all arms.

Terminology: Adversarial setup. We want guarantees against arbitrary (bounded) sequence of rewards/losses.

Odalric-Ambrym Maillard

Output $m_{t} \sim p_{t}$ where $p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}}{ }^{w_{t}(m)}}$,
$\diamond \quad \forall m \in \mathcal{M}, w_{1}(m)=1$ and $w_{t+1}(m)=w_{t}(m) \exp \left(-\eta \ell_{t, m}\right)$.

$$
\begin{aligned}
& \ell_{t, m} \text { is not available for all arms! } \\
& \qquad \ell_{t, m}=1-r_{t, a} \text { ? }
\end{aligned}
$$

We can use importance sampling

$$
\widehat{\ell}_{t, m}= \begin{cases}\frac{\ell_{t, m}}{p_{t}(m)} & \text { if } m=m_{t} \\ 0 & \text { otherwise }\end{cases}
$$

We can use importance sampling

$$
\widehat{\ell}_{t, m}= \begin{cases}\frac{\ell_{t, m}}{p_{t}(m)} & \text { if } m=m_{t} \\ 0 & \text { otherwise }\end{cases}
$$

Why it is a good idea:

IMPORTANCE WEIGHTS?

We can use importance sampling

$$
\widehat{\ell}_{t, m}= \begin{cases}\frac{\ell_{t, m}}{p_{t}(m)} & \text { if } m=m_{t} \\ 0 & \text { otherwise }\end{cases}
$$

Why it is a good idea:
$\widehat{\ell}_{t, m}$ is an unbiased estimator of $\ell_{t, m}$:

$$
\mathbb{E}\left[\hat{\ell}_{t, m}\right]=\frac{\ell_{t, m}}{p_{t}(m)} p_{t}(m)+0\left(1-p_{t}(m)\right)=\ell_{t, m}
$$

IMPORTANCE WEIGHTS?

We can use importance sampling

$$
\widehat{\ell}_{t, m}= \begin{cases}\frac{\ell_{t, m}}{p_{t}(m)} & \text { if } m=m_{t} \\ 0 & \text { otherwise }\end{cases}
$$

Why it is a good idea:
$\widehat{\ell}_{t, m}$ is an unbiased estimator of $\ell_{t, m}$:

$$
\mathbb{E}\left[\hat{\ell}_{t, m}\right]=\frac{\ell_{t, m}}{p_{t}(m)} p_{t}(m)+0\left(1-p_{t}(m)\right)=\ell_{t, m}
$$

Why it may be a bad idea:

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

IMPORTANCE WEIGHTS?

We can use importance sampling

$$
\widehat{\ell}_{t, m}= \begin{cases}\frac{\ell_{t, m}}{p_{t}(m)} & \text { if } m=m_{t} \\ 0 & \text { otherwise }\end{cases}
$$

Why it is a good idea:
$\widehat{\ell}_{t, m}$ is an unbiased estimator of $\ell_{t, m}$:

$$
\mathbb{E}\left[\widehat{\ell}_{t, m}\right]=\frac{\ell_{t, m}}{p_{t}(m)} p_{t}(m)+0\left(1-p_{t}(m)\right)=\ell_{t, m}
$$

Why it may be a bad idea:
$p_{t, m}$ typically small for bad arms, hence this estimates has large variance for bad arms!

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION Aggregation in the bandit world

Exp3

Exp3 variants
Exp4

Stochastic or Adversarial ?

Conclusion

Exp3: Exponential-weight algorithm for Exploration and Exploitation

Exp3: Exponential-weight algorithm for Exploration and Exploitation

$$
\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1
$$

Exp3: Exponential-weight algorithm for Exploration and Exploitation

$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $m_{t} \sim p_{t}$ where $p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}$

Exp3: Exponential-weight algorithm for Exploration and Exploitation

$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $m_{t} \sim p_{t}$ where $p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}$
$\triangleright \quad$ Receive $r_{t, m_{t}}$

The Exp3 Algorithm

Exp3: Exponential-weight algorithm for Exploration and Exploitation

\triangleright	$\forall m \in \mathcal{M}, w_{1}(m)=1$.
\triangleright	Output $m_{t} \sim p_{t}$ where $p_{t}(m)=\frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}$
\triangleright	Receive $r_{t, m_{t}}$
\triangleright	Update $\forall m \in \mathcal{M}, w_{t+1}(m)=w_{t}(m) \exp \left(-\eta \widehat{\ell}_{t, m}\right)$.

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring enough?

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring enough? Answer: more or less...

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring enough? Answer: more or less...

Exp3 has a small regret in expectation

The Exp3 Algorithm

Question: is this enough? is this algorithm actually exploring enough? Answer: more or less...

Exp3 has a small regret in expectation
Exp3 might have large deviations with high probability (ie, from time to time it may concentrate $\widehat{\mathbf{p}}_{t}$ on the wrong arm for too long and then incur a large regret)

Fix: add some extra uniform exploration

Fix: add some extra uniform exploration

$$
\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1 .
$$

Fix: add some extra uniform exploration
$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $m_{t} \sim p_{t}$ where

$$
p_{t}(m)=(1-\gamma) \frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}+\frac{\gamma}{|\mathcal{M}|}
$$

Fix: add some extra uniform exploration
$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $m_{t} \sim p_{t}$ where

$$
p_{t}(m)=(1-\gamma) \frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}+\frac{\gamma}{|\mathcal{M}|}
$$

$\triangleright \quad$ Receive $r_{t, m_{t}}$

Odalric-Ambrym Maillard

Fix: add some extra uniform exploration
$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $m_{t} \sim p_{t}$ where

$$
p_{t}(m)=(1-\gamma) \frac{w_{t}(m)}{\sum_{m \in \mathcal{M}} w_{t}(m)}+\frac{\gamma}{|\mathcal{M}|}
$$

$\triangleright \quad$ Receive $r_{t, m_{t}}$
$\triangleright \quad$ Update $\forall m \in \mathcal{M}, w_{t+1}(m)=w_{t}(m) \exp \left(-\eta \widehat{\ell}_{t, m}\right)$.

The Exp3 Algorithm

Theorem

If $\operatorname{Exp} 3$ is run with $\gamma=\eta$, then it achieves a regret

$$
R_{T}(\mathcal{A})=\max _{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t, a}-\mathbb{E}\left[\sum_{t=1}^{T} r_{t, A_{t}}\right] \leqslant(e-1) \gamma G_{\max }+\frac{A \log A}{\gamma}
$$

with $G_{\max }=\max _{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t, \mathrm{a}}$.

Theorem

If Exp3 is run with

$$
\gamma=\eta=\sqrt{\frac{A \log A}{(e-1) T}}
$$

then it achieves a regret

$$
R_{T}(\mathcal{A}) \leqslant O(\sqrt{T A \log A})
$$

Comparison with online learning (convex, bounded):

$$
\begin{aligned}
R_{T}(E x p 3) & \leqslant O(\sqrt{T A \log A}) \\
R_{T}(E W A) & \leqslant O(\sqrt{T \log A})
\end{aligned}
$$

Comparison with online learning (convex, bounded):

$$
\begin{aligned}
& R_{T}(E x p 3) \leqslant O(\sqrt{T A \log A}) \\
& R_{T}(E W A) \leqslant O(\sqrt{T \log A})
\end{aligned}
$$

Intuition: in online learning at each round we obtain A feedbacks, while in bandits we receive 1 feedback.

$$
R_{T}(E x p 3)=\mathbb{E}\left(\sum_{t=1}^{T} r_{t, a}-r_{t, a_{t}}\right) \leqslant \frac{\log (A)}{\eta}+\frac{A}{2} \eta T .
$$

Further, For any non-increasing sequence $\left(\eta_{t}\right)_{t}$:

$$
R_{T}(E x p 3)=\mathbb{E}\left(\sum_{t=1}^{T} r_{t, a}-r_{t, a_{t}}\right) \leqslant \frac{\log (A)}{\eta_{T}}+\frac{A}{2} \sum_{t=1}^{T} \eta_{t} .
$$

Step 1. $\mathbb{E}_{a \sim p_{t}, \eta} \tilde{\ell}_{t}(a)=1-r_{t, a t}$ and $\mathbb{E}_{a t} \sim p_{t, \eta} \tilde{\ell}_{t}(a)=1-r_{t, a}$. Thus:

$$
\forall a \in \mathcal{A}, \quad \sum_{t=1}^{T} r_{t, a}-r_{t, a_{t}}=\sum_{t=1}^{T} \mathbb{E}_{a \sim p_{t, \eta}} \tilde{\ell}_{t}(a)-\sum_{t=1}^{T} \mathbb{E}_{a_{t} \sim p_{t, \eta}} \tilde{\ell}_{t}(a) .
$$

Step 2. The random variable $X=\tilde{\ell}_{t}(a)$, is positive. By Hoeffding's lemma,

$$
\begin{aligned}
\mathbb{E}_{a \sim p_{t, \eta}}\left(\tilde{\ell}_{t}(a)\right) & \leqslant-\frac{1}{\eta} \log \left(\mathbb{E}_{a \sim p_{t, \eta}}\left[\exp \left(-\eta \tilde{\ell}_{t}(a)\right)\right]\right)+\frac{\eta}{2} \mathbb{E}_{a \sim p_{t, \eta}}\left(\tilde{\ell}_{t}(a)^{2}\right) \\
& =-\frac{1}{\eta} \log \left(\frac{\sum_{a \in \mathcal{A}} e^{-\sum_{s=1}^{t} \eta \tilde{\ell}_{s}(a)}}{\sum_{a \in \mathcal{A}} e^{-\sum_{s=1}^{t-1} \eta \tilde{\ell}_{s}(a)}}\right)+\frac{\eta}{2} \mathbb{E}_{a \sim p_{t, \eta}}\left(\tilde{\ell}_{t}(a)^{2}\right) .
\end{aligned}
$$

Step 3. Thus,

$$
\sum_{t=1}^{T} \mathbb{E}_{a \sim p_{t, \eta}}\left(\tilde{\ell}_{t}(a)\right) \leqslant-\frac{1}{\eta} \log \left(\frac{1}{A} \sum_{b} \exp \left(-\sum_{t=1}^{T} \eta \tilde{\ell}_{t}(b)\right)\right)+\sum_{t=1}^{T} \frac{\eta}{2} \mathbb{E}_{a \sim p_{t, \eta}}\left(\tilde{\ell}_{t}(a)^{2}\right)
$$

Since the reward function is bounded by 1 we have:

$$
\mathbb{E}_{\mathrm{a} \sim p_{t, \eta}}\left(\tilde{\ell}_{t}(a)^{2}\right)=\mathbb{E}_{\mathrm{a} \sim p_{t, \eta}}\left(\frac{\left(1-r_{t, A_{t}}\right)^{2}}{p_{t}^{2}\left(A_{t}\right)} \mathbb{I}\left\{A_{t}=a\right\}\right) \leqslant \frac{1}{p_{t}\left(a_{t}\right)} .
$$

Step 4. Using the fact that the sum of positive terms is bigger than any of its term,

$$
-\frac{1}{\eta} \log \left(\sum_{b} \exp \left(-\sum_{t=1}^{T} \eta \tilde{\ell}_{t}(b)\right)\right) \leqslant \sum_{t=1}^{T} \tilde{\ell}_{t}(a) \text { for each } a \in \mathcal{A} \text {. }
$$

Taking expectations, it comes for all $a \in \mathcal{A}$,

$$
\mathbb{E}\left[\sum_{t=1}^{T} r_{t, a}-r_{t, a t}\right] \leqslant \frac{\log (A)}{\eta}+\sum_{t=1}^{T} \frac{\eta}{2} \underbrace{[\mathbb{E}}_{A} \underbrace{\left.\frac{1}{p_{t}\left(a_{t}\right)}\right]}_{p_{t}} .
$$

Aggregation of experts

From full to partial information Aggregation in the bandit world Exp3
Exp3 variants
Exp4

Stochastic or Adversarial ?

The Improved-Exp3 Algorithm

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Exp3.P (Auer et al. 2002): $\tilde{r}_{t, a}=r_{t, a}+\frac{\beta}{p_{t, a}}$

The Improved-Exp3 Algorithm

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Exp3.P (Auer et al. 2002): $\tilde{r}_{t, a}=r_{t, a}+\frac{\beta}{p_{t, a}}$
Exp3-IX (Kocak et al, 2014; Neu 2015): $\tilde{\ell}_{t, a}=\frac{\ell_{t, a}}{p_{t, a}+\gamma}$.

The Improved-Exp3 Algorithm

Using importance sampling is bad as generates large variance, especially for arms with low probability of being chosen (bad arms).

Exp3.P (Auer et al. 2002): $\tilde{r}_{t, a}=r_{t, a}+\frac{\beta}{p_{t, a}}$
Exp3-IX (Kocak et al, 2014; Neu 2015): $\tilde{\ell}_{t, a}=\frac{\ell_{t, a}}{p_{t, a}+\gamma}$.
Many other variants.

Aggregation of experts

FROM FULL TO PARTIAL INFORMATION Aggregation in the bandit world

Exp3
Exp3 variants

Exp4

Stochastic or Adversarial ?

Conclusion

A DIFFERENT POINT OF VIEW

Decisions are distributions on arms $\mathcal{X}=\mathcal{P}(\mathcal{A})$.

A DIFFERENT POINT OF VIEW

Decisions are distributions on arms $\mathcal{X}=\mathcal{P}(\mathcal{A})$. One expert outputs $\xi_{t, m} \in \mathcal{P}(\mathcal{A})$ at time t.

A DIFFERENT POINT OF VIEW

$\triangleright \quad$ Decisions are distributions on arms $\mathcal{X}=\mathcal{P}(\mathcal{A})$.
One expert outputs $\xi_{t, m} \in \mathcal{P}(\mathcal{A})$ at time t.
Loss of expert $m \in \mathcal{M}: \ell_{t, m}=\sum_{a \in \mathcal{A}} \xi_{t, m}(a) r_{t}(a)$ (Instead of reward)

A DIFFERENT POINT OF VIEW

$\triangleright \quad$ Decisions are distributions on arms $\mathcal{X}=\mathcal{P}(\mathcal{A})$.
One expert outputs $\xi_{t, m} \in \mathcal{P}(\mathcal{A})$ at time t.
Loss of expert $m \in \mathcal{M}: \ell_{t, m}=\sum_{a \in \mathcal{A}} \xi_{t, m}(a) r_{t}(a)$ (Instead of reward) Case when $|\mathcal{M}| \gg|\mathcal{A}|$?

Exponential-weight algorithm for exploration and exploitation using expert advice.

Exponential-weight algorithm for exploration and exploitation using expert advice.
$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.

Exponential-weight algorithm for exploration and exploitation using expert advice.
$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $a_{t} \sim p_{t} \in \mathcal{P}(\mathcal{A})$ where

$$
p_{t}(a)=(1-\gamma) \frac{w_{t}(m) \xi_{t, m}(a)}{\sum_{m \in \mathcal{M}} w_{t}(m)}+\frac{\gamma}{|\mathcal{A}|}
$$

Exponential-weight algorithm for exploration and exploitation using expert advice.
$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $a_{t} \sim p_{t} \in \mathcal{P}(\mathcal{A})$ where $p_{t}(a)=(1-\gamma) \frac{w_{t}(m) \xi_{t, m}(a)}{\sum_{m \in \mathcal{M}} w_{t}(m)}+\frac{\gamma}{|\mathcal{A}|}$
$\triangleright \quad$ Receive $r_{t, a_{t}}$, build $\widehat{\ell}_{t}(a)= \begin{cases}\frac{1-r_{t}(a)}{p_{t}(a)} & \text { if } a=a_{t} \\ 0 & \text { else }\end{cases}$

Exponential-weight algorithm for exploration and exploitation using expert advice.
$\triangleright \quad \forall m \in \mathcal{M}, w_{1}(m)=1$.
$\triangleright \quad$ Output $a_{t} \sim p_{t} \in \mathcal{P}(\mathcal{A})$ where

$$
p_{t}(a)=(1-\gamma) \frac{w_{t}(m) \xi_{t, m}(a)}{\sum_{m \in \mathcal{M}} w_{t}(m)}+\frac{\gamma}{|\mathcal{A}|}
$$

\triangleright Receive $r_{t, a_{t}}$, build $\widehat{\ell}_{t}(a)= \begin{cases}\frac{1-r_{t}(a)}{p_{t}(a)} & \text { if } a=a_{t} \\ 0 & \text { else }\end{cases}$
$\triangleright \quad$ Update $\forall m \in \mathcal{M}, w_{t+1}(m)=w_{t}(m) \exp \left(-\eta \widehat{\ell}_{t, m}\right)$. where $\widehat{\ell}_{t, m}=\sum_{a \in \mathcal{A}} \xi_{t, m}(a) \widehat{\ell}_{t}(a)$.

Theorem

If Exp4 is run with $\gamma \in[0,1]$, then it achieves a regret

$$
R_{T}(\mathcal{A})=\max _{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t, a}-\mathbb{E}\left[\sum_{t=1}^{T} r_{t, A_{t}}\right] \leqslant(e-1) \gamma G_{\max }+\frac{A \log M}{\gamma}
$$

with $G_{\max }=\max _{a \in \mathcal{A}} \sum_{t=1}^{T} r_{t, \mathrm{a}}$.

Aggregation of experts

From full TO Partial information

Stochastic or Adversarial ?

Conclusion

Agqregation of experts

From full to partial information

Stochastic or Adversarial?
 Meta bandits: Exp4 on MABs.

Best of both world strategies

CONSTRAINED OPPONENT/COMPARISON CLASS

$\Phi: \mathcal{H} \rightarrow \mathcal{D}$, mapping from set of histories to some set \mathcal{D}, such that $h_{1} \sim h_{2}$ iff $\Phi\left(h_{1}\right)=\Phi\left(h_{2}\right)$ defines equivalence relation; let $[h]$ the equivalence class of h.

CONSTRAINED OPPONENT/COMPARISON CLASS

$\Phi: \mathcal{H} \rightarrow \mathcal{D}$, mapping from set of histories to some set \mathcal{D}, such that $h_{1} \sim h_{2}$ iff $\Phi\left(h_{1}\right)=\Phi\left(h_{2}\right)$ defines equivalence relation; let $[h]$ the equivalence class of h. Φ-constrained policy is $\pi: \mathcal{H} / \Phi \rightarrow \mathcal{A}$.

CONSTRAINED OPPONENT/COMPARISON CLASS

$\Phi: \mathcal{H} \rightarrow \mathcal{D}$, mapping from set of histories to some set \mathcal{D}, such that $h_{1} \sim h_{2}$ iff $\Phi\left(h_{1}\right)=\Phi\left(h_{2}\right)$ defines equivalence relation; let [h] the equivalence class of h.
Φ-constrained policy is $\pi: \mathcal{H} / \Phi \rightarrow \mathcal{A}$.
Examples:
$\diamond \quad \Phi(h)=1$ gives constant experts.
$\diamond \quad \Phi(h)=\left(a_{-1}, \ldots, a_{-m}\right)$ last m actions, gives experts depending on last m actions only.
$\diamond \quad \Phi(h)=|h| \bmod k$ gives periodic experts.

CONSTRAINED OPPONENT/COMPARISON CLASS

$\triangleright \quad \Phi: \mathcal{H} \rightarrow \mathcal{D}$, mapping from set of histories to some set \mathcal{D}, such that $h_{1} \sim h_{2}$ iff $\Phi\left(h_{1}\right)=\Phi\left(h_{2}\right)$ defines equivalence relation; let [h] the equivalence class of h.
Φ-constrained policy is $\pi: \mathcal{H} / \Phi \rightarrow \mathcal{A}$.
Examples:
$\diamond \quad \Phi(h)=1$ gives constant experts.
$\diamond \quad \Phi(h)=\left(a_{-1}, \ldots, a_{-m}\right)$ last m actions, gives experts depending on last m actions only.
$\diamond \quad \Phi(h)=|h| \bmod k$ gives periodic experts.
$\triangleright \quad$ We define the Φ-constrained regret:

$$
\mathcal{R}_{T}^{\Phi}=\sup _{\pi: \mathcal{H} / \Phi \rightarrow \mathcal{A}} \mathbb{E}\left[\sum_{t=1}^{T} r_{t, \pi\left(\left[h_{t}\right]\right)}\right]-\mathbb{E}\left[\sum_{t=1}^{T} r_{t, a_{t}}\right]
$$

More challenging than best constant expert.

Ф-Ехp4

We can define a version of Exp4 for Φ-constrained policies.

Ф-Exp4

We can define a version of Exp4 for Φ-constrained policies.
We simply contextualize Exp4 by indexing losses, weights, parameters η by the equivalence classes, and computing the current active class $c_{t}=\Phi\left(h_{t}\right)$.

Ф-ЕхР4

We can define a version of Exp4 for Φ-constrained policies.
We simply contextualize Exp4 by indexing losses, weights, parameters η by the equivalence classes, and computing the current active class $c_{t}=\Phi\left(h_{t}\right)$.
Result (M. Munos, 2011)

$$
\mathcal{R}_{T}^{\Phi} \leqslant \sum_{c \in \mathcal{H} / \Phi} \mathbb{E}\left[\frac{A \eta_{c}}{2} T_{c}+\frac{\log (A)}{\eta_{c}}\right] .
$$

where T_{c} is number of activation times of class c until time T.

We consider we have a set $\left(\Phi_{\theta}\right)_{\theta \in \Theta}$ of constrained strategies.

We consider we have a set $\left(\Phi_{\theta}\right)_{\theta \in \Theta}$ of constrained strategies. One Φ_{θ}-Exp3 strategy for each θ : see them as different experts?

Pool of CONSTRAINED STRATEGIES?

$\triangleright \quad$ We consider we have a set $\left(\Phi_{\theta}\right)_{\theta \in \Theta}$ of constrained strategies.
One Φ_{θ}-Exp3 strategy for each θ : see them as different experts?
Run Exp4 with all these base experts: Φ_{1} - $\operatorname{Exp} 3, \ldots, \Phi_{P}$-Exp3 ?
Difficulty: The experts are learning algorithms. Their performance depends on the observations they received.
We are in partial feedback: When Φ_{p}-Exp3 recommends to play action a, Exp4 may instead play (and received reward from) action b. Hence Φ_{p}-Exp3 not only faces partial feedback, but also it does not observe the reward corresponding to what it decides.

Double-bandit feedback.

Odalric-Ambrym Maillard

Exp4 ON Φ_{θ}-Exp3 STRATEGIES

Theorem (M. Munos, 2011)

In the double-bandit feedback setup, Exp4, run on $\left(\Phi_{\theta} \text { - } \operatorname{Exp} 3\right)_{\theta \in \Theta}$ strategies with appropriate parameter tuning satisfies

$$
\mathcal{R}_{T}=O\left(T^{2 / 3}(A \log (A) C)^{1 / 3} \log (|\Theta|)^{1 / 2}\right) \text { with } C=\max _{\theta \in \theta}\left|\mathcal{H} / \Phi_{\theta}\right| .
$$

AgGregation of Experts

From full to partial information

> Stochastic or Adversarial?

Meta bandits: Exp4 on MABs.
Best of both world strategies

Conclusion

Strategies for Stochastic bandits: UCB, KL-UCB, etc. $\log (T)$ regret bounds when stochastic model, but strong assumptions on signal.

Strategies for Stochastic bandits: UCB, KL-UCB, etc. $\log (T)$ regret bounds when stochastic model, but strong assumptions on signal. Strategies for Adversarial bandits: Exp3, Exp4, etc.
\sqrt{T} regret bounds with little assumption on model, but perhaps too conservative.

Can we have the best of both worlds?

Several works on the topic

BEST OF BOTH WORLDS

Several works on the topic
Bubeck\&Slivkins 2012, Auer\&Chiang, 2016.

BEST OF BOTH WORLDS

Several works on the topic
Bubeck\&Slivkins 2012, Auer\&Chiang, 2016.
Zimmert-Seldin 2018.
Idea: Online Mirror Descent regularized by Tsallis Entropy. α-Tsallis entropy: $H_{\alpha}(x)=\frac{1}{1-\alpha}\left(1-\sum_{a \in \mathcal{A}} x_{a}^{\alpha}\right)$

$$
\begin{aligned}
\lim _{\alpha \rightarrow 1} H_{\alpha}(x) & =\sum_{a \in \mathcal{A}} x_{a} \log \left(x_{a}\right) \\
\lim _{\alpha \rightarrow 0} H_{\alpha}(x) & =-\sum_{a \in \mathcal{A}} \log \left(x_{a}\right)
\end{aligned}
$$

OMD wITH TsALLIS ENTROPY

Let us consider the potential:

$$
\psi_{t, \alpha}(q)=-\sum_{a \in \mathcal{A}} \frac{q^{\alpha}(a)}{\alpha}
$$

Strategy:

OMD wITH TsALLIS ENTROPY

Let us consider the potential:

$$
\psi_{t, \alpha}(q)=-\sum_{a \in \mathcal{A}} \frac{q^{\alpha}(a)}{\alpha}
$$

Strategy:
Choose

$$
p_{t}=\underset{q \in \mathcal{P}(\mathcal{A})}{\operatorname{argmin}}\left\langle q, \widehat{L}_{t-1}\right\rangle+\frac{1}{\eta_{t}} \Psi_{\alpha}(q)
$$

(This is gradient of dual of $\Psi_{t, \alpha} / \eta_{t}$ at position \hat{L}_{t-1})

OMD wITH TsALLIS ENTROPY

Let us consider the potential:

$$
\Psi_{t, \alpha}(q)=-\sum_{a \in \mathcal{A}} \frac{q^{\alpha}(a)}{\alpha}
$$

Strategy:
Choose

$$
p_{t}=\underset{q \in \mathcal{P}(\mathcal{A})}{\operatorname{argmin}}\left\langle q, \widehat{L}_{t-1}\right\rangle+\frac{1}{\eta_{t}} \Psi_{\alpha}(q)
$$

(This is gradient of dual of $\Psi_{t, \alpha} / \eta_{t}$ at position \hat{L}_{t-1})
Sample $a_{t} \sim p_{t}$

OMD wITH TsALLIS ENTROPY

Let us consider the potential:

$$
\Psi_{t, \alpha}(q)=-\sum_{a \in \mathcal{A}} \frac{q^{\alpha}(a)}{\alpha}
$$

Strategy:
Choose

$$
p_{t}=\underset{q \in \mathcal{P}(\mathcal{A})}{\operatorname{argmin}}\left\langle q, \widehat{L}_{t-1}\right\rangle+\frac{1}{\eta_{t}} \Psi_{\alpha}(q)
$$

(This is gradient of dual of $\Psi_{t, \alpha} / \eta_{t}$ at position \hat{L}_{t-1})
Sample $a_{t} \sim p_{t}$
Observe $\ell_{t, a_{t}}$ then build $\widehat{\ell}_{t}$ as unbiased estimate of ℓ_{t}, then $\widehat{L}_{t}=\widehat{L}_{t-1}+\widehat{\ell}_{t}$.

	Regime	Upper bound Lower bound $O(1)$	Learning rate $\Theta\left(\Delta_{a}\right)$
$\lim _{\alpha \rightarrow 0}$	Sto	$O(1)$	$\Theta\left(\frac{\ln (t)}{\sqrt{t}}\right)$
	Adv	$O(\sqrt{\ln (T)}$	$\frac{1}{\sqrt{t}}$
$\alpha=\frac{1}{2}$	Sto\&Adv	$O(1)$	$\Theta\left(\frac{\ln (t)}{\Delta_{a} t}\right)$
$\lim _{\alpha \rightarrow 1}$	Sto	$O(\ln (T))$	$\Theta\left(\frac{1}{\sqrt{t}}\right)$.

Agqregation of experts

From full to partial information

Stochastic or Adversarial ?

Conclusion

Odalric-Ambrym Maillard

Full information

Powerful: Handle large number of experts

TAKE HOME MESSAGE

Full information

$\triangleright \quad$ Powerful: Handle large number of experts
Increasingly challenging targets:
$\diamond \quad$ Constant expert, combination of loss of experts.
\diamond Constant combination of experts (Hedge)
\diamond Best sequence of switching experts
\diamond Best sequence of few recurring experts (Freund)

TAKE HOME MESSAGE

Full information

$\triangleright \quad$ Powerful: Handle large number of experts Increasingly challenging targets:
$\diamond \quad$ Constant expert, combination of loss of experts.
\diamond Constant combination of experts (Hedge)
\diamond Best sequence of switching experts
$\diamond \quad$ Best sequence of few recurring experts (Freund)
Powerful results, log of number of experts

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

TAKE HOME MESSAGE

Full information

$\triangleright \quad$ Powerful: Handle large number of experts
Increasingly challenging targets:
$\diamond \quad$ Constant expert, combination of loss of experts.
\diamond Constant combination of experts (Hedge)
\diamond Best sequence of switching experts
\diamond Best sequence of few recurring experts (Freund)
Powerful results, log of number of experts
Computationally efficient algorithms, leveraging structure of experts.
Bandit information

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

TAKE HOME MESSAGE

Full information

$\triangleright \quad$ Powerful: Handle large number of experts
Increasingly challenging targets:
$\diamond \quad$ Constant expert, combination of loss of experts.
\diamond Constant combination of experts (Hedge)
\diamond Best sequence of switching experts
\diamond Best sequence of few recurring experts (Freund)
$\triangleright \quad$ Powerful results, log of number of experts
Computationally efficient algorithms, leveraging structure of experts.
Bandit information
\triangleright Only output one arm, not a convex combination of arms.

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

TAKE HOME MESSAGE

Full information

$\triangleright \quad$ Powerful: Handle large number of experts
Increasingly challenging targets:
$\diamond \quad$ Constant expert, combination of loss of experts.
\diamond Constant combination of experts (Hedge)
\diamond Best sequence of switching experts
\diamond Best sequence of few recurring experts (Freund)
$\triangleright \quad$ Powerful results, log of number of experts
Computationally efficient algorithms, leveraging structure of experts.
Bandit information
\triangleright Only output one arm, not a convex combination of arms.
Only receive reward on one arm.

TAKE HOME MESSAGE

Full information

$\triangleright \quad$ Powerful: Handle large number of experts
Increasingly challenging targets:
$\diamond \quad$ Constant expert, combination of loss of experts.
\diamond Constant combination of experts (Hedge)
\diamond Best sequence of switching experts
\diamond Best sequence of few recurring experts (Freund)
$\triangleright \quad$ Powerful results, log of number of experts
Computationally efficient algorithms, leveraging structure of experts.
Bandit information
\triangleright Only output one arm, not a convex combination of arms.
Only receive reward on one arm.
Difficulty to estimate reward/loss [Still not satisfactory]

Odalric-Ambrym Maillard
RLSS Lecture: Decisions beyond Structure

TAKE HOME MESSAGE

Full information

$\triangleright \quad$ Powerful: Handle large number of experts
\triangleright Increasingly challenging targets:
$\diamond \quad$ Constant expert, combination of loss of experts.
\diamond Constant combination of experts (Hedge)
\diamond Best sequence of switching experts
\diamond Best sequence of few recurring experts (Freund)
$\triangleright \quad$ Powerful results, log of number of experts
Computationally efficient algorithms, leveraging structure of experts.
Bandit information
\triangleright Only output one arm, not a convex combination of arms.
Only receive reward on one arm.
Difficulty to estimate reward/loss [Still not satisfactory]
\sqrt{A} factor in regret bounds.

Open Questions

Bandit results for
\diamond Best sequence of experts?
\diamond Best sequence of few recurring experts ?
\diamond Sleeping, Growing experts?
\diamond Beyond convex/bounded?

Open Questions

Bandit results for
\diamond Best sequence of experts?
\diamond Best sequence of few recurring experts ?
\diamond Sleeping, Growing experts?
\diamond Beyond convex/bounded?
Best of both world: Exact stochastic optimality? Estimation of loss?

OPEN QUESTIONS

Bandit results for
\diamond Best sequence of experts?
\diamond Best sequence of few recurring experts?
\diamond Sleeping, Growing experts?
\diamond Beyond convex/bounded?
\triangleright Best of both world: Exact stochastic optimality? Estimation of loss?
Mixed world bandit: Some arms are stochastic, others are arbitrary bounded?

MERCI

Inria Lille - Nord Europe
odalricambrym.maillard@inria.fr
odalricambrymmaillard.wordpress.com

